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Bearings are critical components in modern manufacturing, yet they are prone to failures in induction machines. Detecting these
faults early can reduce repair costs. To achieve efcient and accurate fault detection, we explore vibration-based analysis. Traditional
methods rely on manual feature extraction, which is time-consuming. In contrast, our work leverages deep learning, particularly
convolutional neural networks, to automatically extract fault features from raw data. We investigate various image sizes (16×16,
32× 32, 64× 64, 128×128, 256× 256) and their performance in bearing fault diagnosis. Our convolutional neural networks-based
approach is compared to traditional methods such as support vector machine, nearest neighbors, and artifcial neural networks.
Results demonstrate the superior performance of our data-driven fault diagnosis using convolutional neural networks.

1. Introduction

In rotating machinery, rolling bearings are the most widely
used equipment in industry. Modern rotatory machine
equipments become larger, complex, and more precise with
the development of technology, which makes rolling bear-
ings always run under high-speed and heavy-load operating
conditions. Bearing failure will result in signifcant break-
down time, elevated repair cost, and even a potential de-
crease in productivity [1]. Rolling bearings are one of the
important mechanical parts of rotating machinery and are
the main cause of basic industrial equipment failure [2].
Terefore, condition monitoring (CM) and fault diagnosis
are of utmost importance for the reliability, safety, and
industrial manufacturing. In the era of Internet of Tings,
huge data in real time are collected from bearing health
monitoring systems. Mining the features from raw data and
efectively and correctly identifying health of machine with
newly developed and advanced methods has become a new
subject in the machine health monitoring and diagnosis of
faults [3]. Signal-based diagnosis includes analysis of time

domain [4], analysis of frequency domain [5], and analysis of
time-frequency domain [6]. Model based fault diagnosis
algorithms are actually developed to measure the uniformity
between actual and predicted output. Knowledge-based fault
diagnosis includes symbolic intelligence quantitative
methods and qualitative methods based onmachine learning
[7]. Qualitative methods include both unsupervised learning
systems like principal component analysis (PCA) and su-
pervised learning systems such as artifcial neural network
(ANN) [8] and support vector machine (SVM) [9].

In traditional machine learning methods, feature ex-
traction is the most difcult task, relying on techniques of
signal processing and diagnostic expertise that are also limited
in fault diagnosis capabilities due to shallow architectures
[10]. Deep learning, branch of machine learning, on the other
hand, can extract the features from raw data and has become
a promising tool for fault diagnosis [11]. Deep learning has lot
of applications such as, pedestrian reidentifcation [12] and
face alignment [13]. CNN is a deep learning method and has
emerged as an efective method for the fault diagnosis. CNNs
have diferent layers, namely, convolution, pooling, and the
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fully connected fnal layer. CNNs can efortlessly recognize
specifc structures and patterns. Methods for feature extraction
by continuous wavelet transform and bearing fault diagnosis
based on the convolutional neural network and support vector
machine [14]. Study in [15] proposed the diagnosis of bearing
faults based on short-time Fourier transform and convolutional
neural network. A deep learningmechanism reported by [16] in
combination of cyclic spectral coherence and CNN to enhance
the performance of rolling bearings. Te conversion of the
vibration signal to grey scale image to establish convolutional
neural network model for classifcation is reported in [17]. A
novel method signal-to-image mapping to covert one-
dimensional vibration signal into two-dimensional grey scale
image and combined with convolutional neural network for the
extraction of fault features [18]. Deep convolution neural
network (DCNN) has been established to achieve high accuracy
under a noisy situation by adopting an end-to-end learning
method [19]. CNN applied on the roller bearing and gear box
dataset and achieved high accuracy of up to 99% [20]. Deep
learning technology is widely used in fault detection and di-
agnosis of bearing faults. An improved deep convolutional
neural network withmultiscale information is proposed in [21].
An interesting study with thermal images for the bearing fault
diagnosis is also carried out [22]. A novel method for fault
diagnosis is proposed, which transforms the vibration signal
into a symmetrized dot pattern image in polar coordinates along
with the convolutional neural network [23].

In this paper, we propose a fast, simple, and accurate
motor fault detection and condition monitoring system using
2-D CNN. CNN-based fault diagnosis approach includes the
conversion of a raw vibration signal by direct processing of
signal segments into two-dimensional (2-D) grey scale image,
which can extract the fault features automatically. Diferent
image sizes are considered, compared, and analyzed with the
proper training for the diagnosis of bearing faults in an in-
duction machine. Te diagnosis method based on optimum
image size will also be compared with the traditional fault
detection techniques such as support vectormachines, nearest
neighbors, and artifcial neural networks which includes
extraction of time domain features manually.

In summary, the contributions of paper are to obtain the
optimum image size with increased number of fault conditions.
Te research article also presents the design of a simple ar-
chitecture with a smaller number of flters, which reduces the
training time. Further, a comparative study of the developed
deep learning method with classic classifcation methods has
been projected in this research work.

Te rest of paper is organized as follows: Section 2
provides a brief introduction to motor faults. Motor fault
diagnosis dataset outlined in Section 3. Te proposed 2-D
CNNs with parameters are presented in Section 4. Perfor-
mance is evaluated in Section 5. Finally, Section 6 concludes
paper with future directions.

2. Introduction to Motor Fault

Induction motors are reliable, rugged, low-cost, low-
maintenance, suitable-sized, and reasonably efcient. Be-
sides all these advantages, these motors also have

undesirable faults. Tese faults can be due to bearings, rotor,
stator, their windings, etc. Induction motors operated ex-
tensively in harsh environment which may cause faults in
these motors. Insufcient cooling, insufcient lubrication,
high vibrations, overloading, and frequent switching can
lead induction motor to failure.

According to the Electric power research institute
(EPRI), 41% of faults are due to bearings, 37% due to stator
faults including stator windings caused by mechanical
stresses, electrical stresses, thermal stresses and environ-
mental stresses, 13% due to rotor faults including rotor mass
unbalance, broken rotor faults, faults due to bowed rotors,
rotor winding faults, and 10% other faults [24] (see Figure 1).

Bearings are the most common elements used in elec-
trical machines in various industries including textiles,
manufacturing, power plants, oil refneries, pumping sta-
tions, construction, and renewable energy. Tese bearings
are used to permit rotatory motions in machines. It reduces
friction between the machine parts and enhances power and
performance to save energy. Bearings consist of two diferent
races named as the inner race and outer race, as shown in the
(see Figure 2).

Spalling and pitting are single-point defects normally
caused by fatigue and operational wear and are called as
localized defects. Tese defects start from the microlevel and
increases with time. Localized defects mostly cause impul-
sive vibrations and cause failure. On the other hand, con-
tamination, improper lubrication, misalignment, and
corrosion cause distributed defects. Tese defects spread over
the whole area, cause continuous vibrations, and results in
motor failure [25].

3. Motor Fault Data Preparation

Vibration data of rolling bearings collected at the Case
Western Reserve University bearing data center are used for
testing and verifying the proposed method. Data were
collected by using the 2hp Reliance electric motor having
SKF and NTN bearing. Te test rig contains drive end (DE)
and fan end (FE) bearings data with faults of 0.007 inches,
0.014 inches, 0.021 inches, and 0.028 inches in diameter with
motor loads varied at 0, 1, 2, and 3 hp. Faults seeded using an
electro-discharge machine (EDM). All these faults were
introduced separately at inner raceways, outer raceways, and
into the ball. Data were collected using the accelerometer at
a 12 o’clock position of motor housing for both FE and DE
bearings. Digital data were collected at 12,000 samples per
second and 48,000 samples per second [26].

In this study, DE bearing data for normal, inner race
fault, outer race fault, and ball fault conditions are gathered
for classifcation with faults of 0.007 inches, 0.014 inches,
0.021 inches, and 0.028 inches in diameter. Dataset contains
one normal and ffteen fault states under a load of 1hp and
1772 RPM motor speed (see Table 1).

Te dataset in this research has one normal and ffteen
fault conditions. A total of sixteen conditions, as described in
Table 1. include a single point drive end defect having four
balls, four inner race faults, and seven outer race faults.
Outer race fault conditions are relative to the load zone. Data
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are selected with diferent fault conditions from a large
database. After the selection, data are combined and
arranged according to their respective classes in the form of
matrix, as shown in Table 1.

3.1. Segmentation. A raw signal is divided into diferent
segments with respect to image size. Segment length is se-
lected on an M×M basis where M is the image size. For
a 32× 32-pixels image, length of each segment will be 1024.
Signals are divided into segments of length 4096 to obtain
the size of 64× 64 pixels image, 16384 to obtain the size of
128×128 pixels image, and signals are divided into segments
of length 65536 to obtain the size of 256× 256 pixels image.

Diferent-sized segment lengths are used for diferent
sizes of images (16×16, 32× 32, 64× 64, 128×128, and
256× 256).Te process of segmentation is shown in Figure 3
and number of segments for each signal (see Table 2).

3.2. Signal-to-Image Conversion. From the segments, data of
each image is extracted and converted into a 2-D grey scale
image. Image conversion is made using the formula given in
[27].

P(j, k) � round
L((j − 1) × M + k) − Min(L)

Max(L) − Min(L)
× 255 , (1)

where L(i), i � 1 . . .M2, value of segmented signal, P(j, k),

j � 1 . . . M, k � 1 . . .M, pixel strength of image, round, is
the rounding function, and 255, is the pixel strength of grey
scale image.

3.3. Creation of the Image Data Store. Image data store is
created to manage a collection of image fles, where each
individual image fts in memory. Subfolders in image data
store are considered as labels. In this research, four classes
are used (normal, inner race, outer race, and ball), which are
also the labels for the data. Te image data store is then is
used as an input to the CNN for fault diagnosis. Figure 4
demonstrates the fowchart of CNN.

4. Proposed 2-D Convolutional Network

4.1. Overview of CNNs. Te convolutional neural network
(CNN) is inspired from the biological processes. Te con-
nectivity pattern of the neurons resembles the organization
of our visual cortex. It involves little preprocessing as
compared to other image classifcation algorithms as it uses
variations of multilayer perceptions [28]. CNN is popular for
training images, and for the frst time in 2012, it was pro-
posed by Alex Krizhevsky, won the Image Net competition,
and made a record by reducing the classifcation error rate
from 26% to 15% [29]. Tis was a remarkable achievement
and opened new ways for the use of CNN in image clas-
sifcation tasks. With the successes achieved by CNN, several
Internet giant companies like Google and Facebook have
started using CNN and variants of CNN for AI tasks such as
photo tagging, speech recognition, etc. Similarly, Google and
Amazon use deep convolutional networks for photo
searching and product recommendation, respectively. Te
use of CNN has given a great boost to technologies such as
image processing and natural language processing [30, 31].

4.2. CNN Architecture. Te convolutional layer convolves
the input with the flter value, containing weights with
specifc size. In convolving input with the flter, simple el-
ement- wise multiplication is required as the flter slides over
the input. Te output of this convolution is detection of
curves, lines, and other useful features from the input im-
ages. In CNN, the flter slides over all the values of input to
give an output (Equation (2)). In this case, the input image is
of the size 32× 32 (i.e., 1024). Te depth of the input should
be the same as the depth of the receptive feld. If the size of
the receptive feld is 5× 5 then the flter size should be of
same size, i.e., 5× 5. Te second argument is the number of
flters actually neurons, which are connected to the same
region of input. 16, 32, and 64 flters are used in convolution
layers consecutively. Filters actually are neurons, which are
connected to the same region of input. Padding and stride
are important parameters in the convolutional layer. A
diagrammatic illustration of CNN layers is illustrated in
Figure 5.
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Figure 2: Bearing construction.
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Figure 1: Failure percentage of induction motor.
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Padding ensures that the output size is the same as the
input. Equation (3) shows the mathematical formula to
calculate the padding size. Stride controls how the flter
convolves over the input volume. Details about the pa-
rameters are given in Table 3.

Output �
Input − Filter Size + 2Padding

Stride
+ 1, (2)

Zero Padding �
Filter Size − 1

2
. (3)

Te batch normalization layer speeds up the training of
the network and saves time. It also reduces the sensitivity to
network initialization. Normalization layer makes the
training an easier optimization problem. Convolution is
a linear operation, so almost after every convolution, the

Table 1: Description of rolling bearing dataset.

Operating condition Fault diameter (inches) Fault orientation
(outer race) Matrix size

Normal 0 — 483903∗1
Ball faults
Ball 0.007 —

486598∗1Ball 0.014 —
Ball 0.021 —
Ball 0.028 —
Inner race faults
Inner race 0.007 —

486744∗1Inner race 0.014 —
Inner race 0.021 —
Inner race 0.028 —
Outer race faults
Outer race 0.007 Orthogonal@3 00

854807∗1

Outer race 0.007 Center@6 00
Outer race 0.007 Opposite@12 00
Outer race 0.014 Center@6 00
Outer race 0.021 Orthogonal@3 00
Outer race 0.021 Center@6 00
Outer race 0.021 Opposite@12 00

1st Segment

2nd Segment

3rd Segment

Nth Segment

Matrix Size M×M

N
o 
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Figure 3: Segmentation of bearing data.

Table 2: Labels count for diferent image sizes.

Labels ↓ 16×16 32× 32 64× 64 128×128 256× 256
Normal 1890 472 118 29 7
Ball 1900 475 118 29 7
Inner race 1901 475 118 29 7
Outer race 1999 500 130 31 13
Total count 7690 1919 484 118 34

Data Acquisition

Data Selection

Deep Learning

Segmentation

Image Creation

Data Store
Creation

Time Domain
Analysis

Segmentation

Feature Extraction

Feature Selection

Classification 

Fault Diagnosis

Preprocessing

Figure 4: Flow chart of CNN.
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ReLU operation takes an operation. ReLU is a pixel wise
process that maps all negative pixel values in the feature map
to zero. Te main objective of ReLU is to introduce non-
linearity in network.

To reduce the computational complexity and feature
deduction or down sampling in CNN, the pooling layer is
used such as max pooling, which reduces the number of
weights from the frst layer i.e., convolutional layer. Mostly,
it takes a flter size of 2× 2 with the stride of 2. In max
pooling, the larger value in a particular row is selected for the
next layer in order to minimize the features. Output of this
layer is shown in the following equation:

Output �
Input − Filter Size

Stride
+ 1. (4)

Te fully connected layer is the concrete and fnalized
layer of CNN.Tis layer plays an extremely important role as
it contains information directly useful for decision-making.
Te output size in the fully connected layer is equal to the
number of target classes. In this study, the output classes are
four (normal, inner race outer race, ball). Te SoftMax
activation function consists of positive numbers that sum to
one as an output. Tese probabilities can be used for the
classifcation purposes by the classifcation layer.

5. Performance Evaluation

Vibration signals are divided into diferent segments of
diferent lengths with respect to image size. Te number of
segments for each image size are shown in Table 2. Diferent-
sized images are obtained from the segmented data. From
the large bunch of data images, samples of normal, inner
race fault, outer race fault, and ball fault are shown in
Figure 6 for each image size. As the faults are diferent, every
image shows a diferent pattern.

Network training is done fve times on each image size
and randomly selected results of training process for each
image size are also discussed and the optimum image is
obtained on the average basis. Data are divided into
training data and validation data. 80% and above of the data
are used for the training purposes and the remaining for the
validation purposes, as discussed in Table 4 for each
image size.

Vibration signals are divided into segments of length 256
to obtain a 16×16 pixels image. Te confusion matrix in
Figure 7 shows four diferent conditions for the output and
target class. In this case, the prediction accuracy for the ball
is 98%, inner race is 96%, normal is 100%, outer race is
97.3%, and over all accuracy is 97.8%. 2.2% is the percentage
of wrongly predicted samples. Te image samples for
analysis are been shown in Figure 6.

To obtain the size of 32× 32 pixels image vibration
signals are divided into segments with a length of 1024. Te
confusion matrix in Figure 8 shows four diferent conditions
for the output and target class. In this case, the prediction
accuracy for ball is 100%, inner race is 100%, normal is 100%,
outer race is 99.0%, the and overall accuracy is 99.7%. 0.3% is
the percentage of wrongly predicted samples.

For 64× 64 pixels image signals are divided into seg-
ments of length of 4096. Te confusion matrix Figure 9
shows four diferent conditions with the output and target
class. In this case, the prediction accuracy for ball is 100%,
inner race is 94.7%, normal is 100%, outer race is 100%,
overall accuracy is 98.8%, and the error is 1.2%.

Segments of length 16,384 are created to obtain the size
of 128×128 pixels image. Te confusion matrix Figure 10
shows four diferent conditions with the output and target
class. In this case, the prediction accuracy for ball is 50%,
inner race is 66.7%, normal is 100%, outer race is 57.1%, and
the overall accuracy is 66.7%. As all the samples are predicted
correctly so the error is 33.3%.

Signals are divided into segments of length 65,536 to
obtain the size of 256× 256 pixels image. Te average ac-
curacy obtained from 256× 256 image size is 67.43 which is
less than all other image sizes.

Relying on a single training process for optimum image
size is not a good idea. Te training process is repeated
several times and on an average basis, the prediction ac-
curacy is calculated on each image size to obtain the
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Figure 5: CNN layers.

Table 3: Layers confguration of CNN model.

Layers Filters Zero padding Stride
Convolutional (5× 5, 16) 2 1
Pooling MaxPool (2× 2) 1 2
Convolutional (3× 3, 32) 1 1
Pooling MaxPool (2× 2) 1 2
Convolutional (3× 3, 64) 1 1
Fully connected 4 — —
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optimum size image for the bearing dataset. Te results in
Table 5 show that image size 32× 32 has the highest accuracy
(99.756) and is the optimum size.

5.1. Comparison with Other Methods. Self-extraction of
features is necessary in the case of traditional methods other
than deep learning. Time domain features extracted after the
segmentation process are listed below.

5.1.1. Root Mean Square. Root mean square measures the
overall level of a discrete signal where N is the number of
discrete points which represents signal from each sample
points.

RMS �

�������

1
N



N

n�1
f
2
n




. (5) 5.1.2. Mean. Temean of a segment indicates the amplitude
of the segment. Tis indicates the frst moment of the data
considered
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Figure 6: Image samples for analysis.

Table 4: Training and test fles for diferent image sizes.

Image size⟶ 16×16 32× 32 64× 64 128×128 256× 256
Train fles 6800 1600 400 100 24
Test fles 890 319 84 18 10
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Figure 7: Confusion matrix of 16×16 images.
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Mean �
1
N

× 
N

i�1
fn. (6)

5.1.3. Peak Value. Te peak value is the maximum accel-
eration in the signal amplitude and is measured in the time
domain.

Pv �
1
2

max fn(  − min fn(  . (7)

5.1.4. Crest Factor. Te crest factor is the ratio of peak
acceleration over RMS, and it detects acceleration bursts
even if the signal RMS has not changed.

Crest factor �
pv

RMS
. (8)

5.1.5. Skewness. Skewness is the third moment of distri-
bution used to measure the asymmetry of the probability
distribution along with its mean

Skewness �
1/N 

N
n�1 fn − f 

3

RMS3
. (9)

5.1.6. Kurtosis. Kurtosis is the scaled version of fourth
moment and is used to fnd tailness in probability distri-
bution curve.

Kurtosis �
1/N 

N
n�1 fn − f 

4

RMS4
. (10)

5.1.7. Variance. Variance indirectly measures the data
distribution frommean of segment and is the second central
moment of distribution.

Variance � σ �
1/N 

N
n�1 fn − μ( 

2

N
. (11)

5.1.8. Standard Deviation. Standard Deviation is the posi-
tive square root of variance to measure the variation of data.

SD �
1

N−1


N

n�1
fn − f 

2⎛⎝ ⎞⎠

1/2

. (12)

5.1.9. Clearance Factor. Clearence factor feature is the
maximum for healthy bearings and goes on decreasing for
defective bearing in rotating machinery.
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Clf �
pv

1/N 
N
n�1 fn


 

2. (13)

5.1.10. Impulse Factor. Impulse factor if specifes as true, the
object extracts the impulses and appends the value to feature
returned by extract function.

If �
pv

1/N 
N
n�1 fn



. (14)

5.1.11. Shape Factor. Shape factor is RMS divided by the
mean of the absolute value and it depends on signal shape
and independent on signal dimensions.

Sf �
RMS

1/N 
N
n�1 fn



. (15)

Principal component analysis (PCA) a statistical pro-
cedure, most widely used technique for the dimension re-
duction. Ten features are shown in Figure 11 with their
individual and cumulative variance. PCA helps in the se-
lection of features from a large number of features. Features
are also referred as principle components. As the explained
variance of top three components are more than 90%, so the
number of components selected for the model training is
three in this part of the research.

Selected feature out of all features showing apposite
results in separating the fault classes according to their
categories. Figure 12 shows the 1st and 2nd principle com-
ponent with for diferent classes.

5.1.12. SVM Model Results. Classifer is necessary for the
classifcation purpose and to know the exact classifed and
misclassifed samples of data. SVM model is trained for

16384 observations including eleven predictors and four
response classes with cross validation of 5 folds. Class shown
are as follows:

(i) Class 1 Normal
(ii) Class 2 Inner Race
(iii) Class 3 Outer Race
(iv) Class 4 Ball

Model trained for bearing fault diagnosis with the help of
SVM is shown in Figure 13 having accuracy of 98.3%.
Figure 14 shows the confusion matrix of SVM classifer. Te
SVMmodel predicts all the four classes. Prediction of class 1
(normal) is 100%, class 2 (inner race) is 97%, class 3 (outer
race) is 98%, and class 4 (ball) is 99%.

Table 5: Performance evaluation of image sizes on average basis.

Run # 16×16 32×32 64×64 128×128 256×256 
Run 1
Run 2
Run 3
Run 4

Average 97.776 99.756 98.794 63.334 67.43 
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Figure 11: Individual and cumulative variance by PCA.

8 Journal of Electrical and Computer Engineering



5.1.13. Nearest Neighbor Model Results. Model trained for
bearing fault diagnosis with the help of NN is shown in
Figure 15 having an accuracy of 97.4%. Te NN model is
trained for 16,384 observations including eleven predictors

and four response classes with cross validation of 5 folds.
Figure 16 shows the confusion matrix of NN classifer. NN
model predicts all the four classes. Prediction of class 1
(normal) is 100%, class 2 (inner race) is 96%, class 3 (outer
race) is 96%, and class 4 (ball) is 98%.

5.1.14. Artifcial Neural Network (ANN) Results. From
a total of 16384 samples.

(i) 70% for training (11468 samples)
(ii) 15% for validation (2458 samples)
(iii) 15% for testing (2458 samples)

Training data are presented to the network during
training. Network is trained on the default settings with 10
neurons in the hidden layer. Validation is used to measure
network generalization. Testing data have no efect on
training and independently measures the performance of the
network. Te confusion matrix of training, validation, and
test are shown separately in Figure 17. In the last confusion
matrix, all are combined to show the overall predictions by
the network. Prediction of class 1 is 100%, class 2 is 98%,
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Figure 16: Confusion matrix of NN model.
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class 3 is 97%, and class 4 is 99%. Te overall prediction
accuracy of the model is 98.9%.

At the end comparison is made from all the methods
used in this thesis for the detection of faults in bearings.
From Figure 18, it is clear that model with deep learning
(CNN) has the highest prediction accuracy (99.75%), as
compared to ANN (98.9%), SVM (98.3%), and NN (97.4%).

6. Conclusion and Future Work

In summary, the feld of condition monitoring and fault di-
agnosis is crucial for ensuring the reliability and safety of
industrial manufacturing processes. Tis study is focused on
fault detection and diagnosis methods for induction motors,
with a particular emphasis on a CNN-based approach that was
tested under sixteen diferent conditions. Te results dem-
onstrated that, on average, a 32× 32 pixel image size yielded
the highest prediction accuracy of 99.756%, surpassing the
performance of SVM (98.3%), NN (97.4%), and ANN (98.9%).

Looking ahead, there are numerous avenues for further
exploration. Future research will involve in-depth analysis of
specifc mechanisms, novel applications, and alternative
approaches. Moreover, the network’s capabilities can be
enhanced to predict the remaining useful life of bearings. To
ensure that the system meets all requirements and specif-
cations while fulflling its intended purpose, hardware val-
idation of the current network represents a key direction for
future development.
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