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Pins are essential connecting components in power transmission lines. Teir extensive use yet leads to frequent defects. Given the
small size of a pin and many similar components, the detection of such defects is not ideal, which is a technological problem in the
identifcation and diagnosis of power defects. In response to the large size, complex background, and on-site requirements, such as
real-time detection, of power transmission lines, this paper proposes a method to detect pin defects based on TPH-MobileNetv3
(Transformer prediction HeadMobilenetv3).Tis paper modifes and adds a self-attention layer toMobilNetV3-Small to improve
the feature extraction capability of small targets after downsampling. A feature fusion structure with layers of self-attention and
a convolutional block attentionmodule (CBAM) is added to the neck network, and a transformer prediction head are added to the
head network so that diferent scale characteristics can be fused and focused from space and channels to strengthen the detection
of small targets. Compared with the traditional MobileNetV3, the detection accuracy of the algorithm in this paper has been raised
by 24%, as shown in the detection results of measured data. Moreover, compared with the mainstream algorithms with the same
detection accuracy, this algorithm not only reduces the model size and signifcantly enhances detection efciency but also satisfes
the requirement of edge image processing of power inspection.

1. Introduction

Power transmission lines are a vital channel of energy
transportation in China. Transmission towers are the
main carriers, whose structural safety is crucial for line
operation [1]. Pins are an important ftting of power
transmission lines, which fx nuts and prevent them from
loosening. However, due to long-term exposure and
mechanical vibration, pins may fall of or come out,
followed by risks, such as loosened nuts and structures.
Currently, pin defects are mainly inspected manually and
through drones or helicopters. Particularly, drones are
widely applied because of the close-up shots of risks, high
intelligence, and edge computing. Pins account for a small
proportion of images and are typically small targets due to
multiple factors. For instance, pins are small. Most pic-
tures taken by drones are high-defnition. Additionally,
there is a certain safe distance between drones and power
transmission lines. Targets whose pixels are smaller than

32 × 32 or those represent less than 1% of the area are
collectively referred to as small targets in the feld of image
recognition [2]. Te diagnosis and identifcation of such
targets can be tricky. In addition, the picture background
of power transmission lines is mostly a complex moun-
tainous environment with great environmental in-
terferences and light infuences. As a result, there are few
research achievements in the detection of pin defects at
home and abroad. Te paper [3], based on the residual
network, ResNet101 [4], adopted the feature pyramid and
integrated multiscale features to improve the detection
precision of small targets. Last, the K-means algorithm
was used to optimize the anchor box and detect pin de-
fects. A Faster-RCNN two-stage detection model was
employed in the paper [5]. Regional candidates containing
targets were screened out through the region extraction
algorithm. Ten, the candidates were further selected to
obtain bounding boxes and conduct target classifcation.
Higher detection accuracy was achieved at the expense of
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a lower detection speed. In terms of the paper [6], a deeper
network was designed to expand the receptive feld based
on the residual network. Meanwhile, more shallow se-
mantic information was retained to strengthen the de-
tection of small targets. Te detection speed was raised
compared to the aforementioned Faster-RCNN model,
while the global information fusion was inadequate. Te
conventional convolutional neural network (CNN) ex-
tracts the features of targets through multi-layer down-
sampling, which cannot fully integrate and utilize such
features. Transformer [7] has emerged and has become
extensively used in computer vision in recent years. Its
attention mechanism boasts a strong feature extraction
capability based on its globality and capture of the long-
distance dependency of the feature map [8]. Terefore,
Transformer makes up for the inadequate feature ex-
traction of the traditional CNN. Tanks to the increase in
intelligent applications, lightweight networks that can be
deployed to the edge have recently become a popular
research direction. Trough reduced computation, model
pruning, quantization, and knowledge distillation, such
networks become lightweight, resulting in faster rea-
soning. A lightweight network is particularly important in
deployment. MobileNetv3 [9] is a lightweight network for
mobile devices proposed by Google, featuring a depthwise
separable convolution that can dramatically reduce
computation [10].

In order to realize the high-efciency and high-precision
detection of pin defects of power transmission lines, this
paper introduces an algorithm for the detection of pin
defects of power transmission lines, based on TPH-
MobileNetv3, by combining the advantages of Trans-
former and MobileNet. Specifcally, a MobileNetv3-based
backbone network with the attention mechanism designed
to extract target features. Te Transformer Encoder is added
to the end of the backbone network to focus on targets and
reduce computation. Concurrently, a CBAM [11] module
with channels and spatial attention is employed to enhance
the feature fusion and target focus of MobileNetv3.

2. The Network Structure

TeTPH-Mobilenetv3 structure of the network in this paper
is shown in Figure 1. MobileNetv3 is classifed into
MobileNetv3-Large and MobileNetv3-Small. Te former is
mainly used for high computing resources, while the latter is
low. MobileNetv3-Small is adopted as the backbone network
in this paper, in that, the algorithm should, subsequently, be
deployed on the edge side. Te last four layers of the
backbone network are replaced with a trans layer. Com-
puting resources can be efectively saved by reducing the size
of the feature map of the latter layer. Te backbone network
takes advantage of the translation invariance of CNN and the
global correlation between feature maps of the Transformer.

Tree feature maps of diferent scales are fused in the
neck of the network. Because an excessive downsampling
ratio can lead to the disappearance of features of small
targets and raise the difculty of localization and classif-
cation, bilinear interpolation for upsampling is adopted for

the feature maps of layers 7, 9, and 13 to obtain larger feature
maps. Context information is obtained through the
Transformer structure before the network outputs features,
so as to reinforce the detection of indistinguishable targets.
Next, the CBAM module is used to intensify space and
channel information to better distinguish dense and small
targets.

For the head of the network, head of YOLO is used for
reference. Target classifcation and location regression are
conducted. Te number of channels predicted is
b × (4 + 1 + c), wherein b represents the number of pre-
diction boxes in each feature grid, which is generally 3. 4
stands for the position of the prediction box, (x, y, h, w); 1
the background; c the number of target categories.

Network losses consist of the following three parts: the
confdence loss of whether there is a target in the predictive
frame, the classifcation loss of target categories in the
predictive frame, and the localization loss of the bounding
boxes of the predictive frame and the real box. Te overall
loss function is shown in the following equation:

L � λ1Lconf + λ2Lcls + λ3Lloc, (1)

where L is the overall loss; λ the weight; Lconf the confdence
loss; Lcls the classifcation loss; and Lloc the localization loss.

In terms of confdence loss, binary cross entropy (BCE)
is used as the loss function, as shown in the following
equation:

Lconf � − 􏽘
N

i�1
y

(i) log 􏽢y
(i)

+ 1 − y
(i)

􏼐 􏼑log 1 − y
(i)

􏼐 􏼑, (2)

where 􏽢y stands for the predicted probability of the i-th
sample to be a certain category and y(i) the label of the i-th
sample.

Te target category loss means the diference between the
predicted category and the real label. BCE is used as the loss
function, as shown in the following equation:

Lcls(O, C) � − 􏽘
i∈pos

􏽘
j∈cls

Oij􏼐 􏼑 ln sigmoid Cij􏼐 􏼑􏼐 􏼑

+ 1 − Oij􏼐 􏼑 ln 1 − sigmoid Cij􏼐 􏼑􏼐 􏼑,

(3)

where Oij is the prediction of whether the actual object in the
target bounding box i is the current category and Cij the
predicted value.

Te positioning loss is calculated by Complete-IoU
(CIoU), as shown in the following equation:

Lloc � 1 − CIOU � 1 − IOU −
distance22

distance C
2 −

]2

(1 − IOU) + ]
􏼠 􏼡,

(4)

where distance2 is the Euclidean distance between the center
points of the prediction and real boxes. distanceC stands for
the diagonal distance between the smallest circumscribed
rectangles between the prediction and real boxes. ] is
a parameter to measure the consistency of the length-width
ratio. Te equation of defnition is shown in the following
equation:
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where wgt and hgt refer to the width and height of the real
box, while wp and hp stand for the width and height of the
prediction box.

2.1. Transformer Encoder. Inspired by the excellent perfor-
mance of Transformers in visual detection, this paper adds
a self-attention-based Transformer coding module to the last
layer of the MobileNetv3-Small backbone network and the
whole network’s neck. Tere are somewhat target feature
losses in the backbone network after multiple down-
sampling. However, the multi-head attention mechanism in
the Transformer module can calculate all the correlations
between the features in the entire feature map to obtain the
global view. Compared with the convolution module, the
Transformer module can better extract features and fuse the
features of diferent layers in the feature fusion structure of
the neck of the network to capture more target information.
Te Transformer Encoder module consists of a multi-head
attention layer and a multi-layer perceptron (MLP). Each
layer is connected by a residual structure. Te structure of
the Transformer module is shown in Figure 2, and the
calculation of attention is shown in the following equation:

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (6)

where Q, K, and V represent the query, key, and value
generated for the input sequence X, respectively. All their
dimensions are dk. Te product of Q and K is divided by��

dk

􏽰
. Te result, after being processed with Softmax, mul-

tiplies V to obtain a weighted feature map.

2.2. CBAM Module. A CBAM module with space and
channel attention is added to the feature fusion module,
which sequentially computes attention maps along two
independent dimensions, channel, and space and multiplies
the attention maps to optimize adaptive features. CBAM is
a lightweight module, whose overhead can be ignored. Te
structure of the CBAM module in this paper is shown in
Figure 3.

3. Experimental Results and Analysis

3.1. Te Experimental Environment and Data. Te envi-
ronmental confguration of this experiment included CPU
model: Intel Xeon 6240R; GPU model: NVIDIA GeForce
RTX 3090; operating system: Ubuntu16.04, CUDA10.0, and
Cudnn7.6.5 and a deep learning framework based on
PyTorch1.4 and Python3.7.
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Figure 1: Structure of TPH-MobileNetv3.
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Te experimental dataset consisted of 834 aerial images
taken with a DJI drone. Te pin defects defned in this paper
include the following four types: bolt missing pin, bolt of pin,
pin installation irregularities, and bolt not tightened. In power
maintenance operations, if the above four types of defects are
present, they all need to be overhauled, so these four types of
images are grouped into the pin defect category, which is dis-
tinguished from the normal pin category.Terewere 1,573 target
nuts with pin defects marked as lsqxz. Te data were expanded,
and then the dataset was randomly divided into the training set,
the validation set, and the test set at the ratio of 8 :1 :1.

Te statistics of the width-height ratios and pixel ratios
of targets in the dataset are shown in Figure 4. Te statistical
graph of widths and heights indicates that 85.3% of the target

width-height ratios were concentrated within the range of
1.0 to 1.5.Te target detection anchor in this paper was set to
(1 :1, 2 : 3, 3 : 2), respectively. Te targets accounted for
a small proportion of the whole image, as revealed in the
statistical graph of the pixel ratios of targets. In order to
obtain a better detection efect, samples in the central point
were randomly cut. Reasoning results were postprocessed
during the testing and validation phases to obtain the de-
tection result of targets on the original image.

3.2.Model Training. In this paper, Adam, a gradient descent
method of adaptive learning rates, was used.Temomentum
was set to 0.9, and the weight attenuation coefcient was
0.0005. Te size of the input image was the original size
without conversion. Te batch size was set to 16. Epoch was
set to 100, and the initial learning rate 0.001. Learning rates
were warmed up for initialization and adjusted through
cosine annealing.

3.3. Assessment Method of Experimental Results. For the
target detection of samples of a single category recall (R),
precision (P), and average precision (AP) are commonly
used to assess model performance. For the target detection of
samples of multiple categories, mean average precision
(mAP) and AP50 are generally used to assess model
performance.

3.4. Comparison of the Results of Diferent Algorithms. In
order to better demonstrate the superiority of TPH-
Mobilenetv3 in the detection of pin defects, the experi-
mental results of other mainstream target detection algo-
rithms currently used in pin defects were compared and
tested on the dataset of this paper, which are not necessarily
the latest, but they have many on-site applications that can
make the comparison results more valuable. For multi-stage
networks, Cascade R-CNN [12] was selected. For two-stage
networks, Faster-RCNN was selected. For single-stage net-
work, SSD [13], MobileNetv3, YOLOV3 [14], YOLOV4 [15],
and RetinaNet [16] were selected. Te backbone network of
each model, the recall, precision, and average precision of
testing, foating point operations per second (FLOPs) used to
measure the computation of the complexity of the model,
and model parameters, Params, are shown in Table 1.

Table 1 reveals that SSD was poor in detecting small
targets due to blurred information fuzziness after multiple
downsampling and a lack of feature fusion. Tanks to its
feature fusion structure, FPN, Faster-RCNN was signif-
cantly better than SSD in the precision of target detection,
yet the efect was still not ideal. Similarly, because of FPN,
RetinaNet and YOLOV3 had high recall rates. Nevertheless,
the precision of RetinaNet was poor. With respect to two-
stage networks, Cascade R-CNN had high precision but low
average precision. YOLOV4 outperformed Faster-RCNN in
average precision because of its data enhancement method
and improved PANet feature fusion method. Te perfor-
mance indicators of MobileNetV3 were not prominent,
while its computation was advantageous. Te recall and
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Figure 2: Structure of the Transformer module.
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average precision of the TPH-MobileNetV3 network in this
paper were drastically improved as compared with the
traditional MobileNetV3 network. Additionally, compared
with YOLOv4, model parameters were reduced and FPS
performance was greatly intensifed.

For the power sector, timely detection of defects in
power transmission lines andmaintenance are top priorities.
Tus, high recall is more important than high precision in
that defects can be detected more efectively. In addition, in
order to allow the terminal to quickly get detect results,
network size is a key indicator. Table 1 implies that the
model proposed in this paper balanced recall and precision
and had a small size, making it advantageous over other
models. Figure 5 shows some original and partially enlarged

images of the detection results of TPH-MobileNetV3, from
which we can see that the algorithm in this paper could
practically detect pin defects from diferent angles.

In order to analyze the infuence of Transformer
Encoder and CBAM used in this paper on the detection
efect of the model, traditional MobileNetV3-Small,
MobileNet-Small + Transformer, and MobileNet-
Small + Transformer + CBAM were used to test the same
dataset. Te test results are shown in Table 2. Due to its
feature fusion structure, MobileNetV3-Small had low
precision. Because of the Transformer layer added to its
target feature extraction structure, MobileNet-
Small + Transformer had a better recall, as compared
with MobileNetV3-Small. Yet, the efect was not ideal.

Input Feature

Channel Attention
Module

Spatial
Attention
Module Refined Feature

Figure 3: Structure of the CBAM module.
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Figure 4: Statistics of the width-height ratios and pixel ratios of targets: (a) statistical graph of width-height ratios and (b) statistical graph of
the pixel ratios of targets.

Table 1: Comparison of diferent algorithms by precision.

Model Backbone network Image
size R P AP FLOPs

(G)
Params
(M) FPS

SSD VGG16 5122 0.743 0.009 0.445 98.81 36.04 6.8
Faster-RCNN ResNet-101-FPN 5122 0.740 0.327 0.650 83.13 60.52 4.5
RetinaNet ResNet-101-FPN 5122 0.878 0.084 0.634 80.70 56.74 5.3
Cascade R-CNN ResNet-101-FPN 5122 0.780 0.481 0.668 110.77 88.16 5.4
YOLOV3 DarkNet-53 5122 0.699 0.546 0.623 50.06 61.95 6.1
YOLOV4 CSPDarkNet53 5122 0.823 0.236 0.681 39.85 27.60 5.8
MobileNetV3-small MobileNetV3 5122 0.645 0.016 0.472 0.32 2.9 30.1
Ours MobileNetV3-small 5122 0.820 0.402 0.715 28.56 18.67 21.3
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Comparatively, MobileNet-Small + Transformer + CBAM
had signifcantly higher recall and precision, due to the
improved backbone network for feature extraction and

the attention-based feature fusion pyramid. Moreover, the
improved structure was compared with the other struc-
tures in terms of the infuence on the algorithm reasoning

Original image 1 Original image 2

Original image 3 Original image 4

Original image 5 Original image 6

Partially enlarged image 1 Partially enlarged image 2 Partially enlarged image 3 Partially enlarged image 4

Figure 5: Original and partially enlarged images of the detection results of TPH-MobileNetV3.
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Table 2: Comparative experiment on the validation set in terms of each modifcation of the algorithms.

Method R P FPS
MobileNetV3-small 0.637 0.014 30.1
MobileNet-small + transformer 0.765 0.035 18.7
MobileNet-small + transformer +CBAM 0.820 0.402 12.3

Table 3: Comparative test results under the same conditions of faster-RCNN and the algorithm in this paper.

Model Faster-RCNN TPH-MobileNetV3
Category R AP R AP
Heavy hammer corrosion 0.851 0.813 0.872 0.834
Foreign bodies, such as bird’s nests, on transmission towers 0.932 0.849 0.943 0.858
Deformed grading rings 0.632 0.594 0.670 0.653
Separated wire strands 0.750 0.675 0.784 0.694
Improperly installed number plates of transmission towers 0.784 0.702 0.895 0.832
mAP 0.727 0.774

(a)

(b)

(c)
Figure 6: Continued.
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time. FPS in the table means the frames reasoned per
second regarding images with the width and height of
4,864 × 3,648 on RTX 3090. As modifcations increased,
the reasoning speed decreased and recall and precision
were improved.

3.5. Defect Identifcation Results of Other Small Targets.
Furthermore, other defects of power transmission lines were
detected with the network proposed in this paper. Such
defects fell into the following four categories: heavy hammer
corrosion, foreign bodies, such as bird’s nests, on trans-
mission towers, deformed grading rings, and improperly
installed number plates of transmission towers. A total of
1,576 images were taken, wherein 1,216 images were in the
training set and 231 in the test set.Te comparison of the test
results of Faster-RCNN and the algorithm in this paper
under the same experimental conditions are shown in Ta-
ble 3. Te mAP of Faster-RCNN was 0.727 and that of TPH-
MobileNetV3 in this paper 0.774. Te algorithm in this
paper outperformed Faster-RCNN in terms of the detection
of the above four types of defects. Moreover, compared with
Faster-RCNN, the network model in this paper is smaller,
and the processing frame rate is faster, which makes it more
suitable for carrying on the edge side or drone side. Figure 6
demonstrates the test results on the test set of Faster-RCNN
and TPH-MobileNetV3 in this paper. Te frst column is the
test results of TPH-MobileNetV3, and the second one is
Faster-RCNN.Te model proposed in this paper had higher
precision.

4. Conclusions

In response to the challenge of detecting the small targets of
pin defects in the images taken during the inspection of
high-voltage power transmission lines, this paper introduces
a TPH-MobileNetV3 network with improvedMobileNetV3-
Small. Te MobileNetV3-Small backbone network is
modifed into a self-attention layer with an attention
mechanism so that small target features can still be precisely
extracted upon multiple downsampling. Furthermore, the
neck network of MobileNetV3 is optimized through the

addition of a feature fusion structure with self-attention and
CBAM layers to strengthen the detection of small targets.
Te experimental results reveal that the network proposed in
this paper has well balanced recall, precision, and detection
speed. Compared with the traditional MobileNetV3-Small, it
has prominently raised detection precision despite some-
what increased computation. Te recall was raised from
0.645 to 0.820, and precision from 0.472 to 0.715. Compared
with network models with similar recall and precision, such
as YOLOv4, the size of this paper’s network fell from
27.06M to 18.67M, and computing power was reduced from
39.85G to 28.56G. FPS greatly rose from 5.8 to 21.3. In
short, image detection on the edge side can be basically
satisfed. In the subsequent research, we plan to combine
a variety of defects of high-voltage power transmission lines
in small target detection to reinforce the generalization of
the network further.
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