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Lighting has emerged as a central concern in the domain of city planning and design in recent decades. Better lighting does more
than just make cities safer and more secure; it also makes them more aesthetically pleasing and easier to live in. A single type of
optical sensor is no longer sufficient to meet the needs of intelligent lighting for urban roads, and as such, there is a growing
demand for cutting-edge control systems that can adapt to the dynamic lighting needs in urban environments. This paper’s goal is
to create an intelligent urban lighting control system by integrating optical multisensor technology and the gray model (GM
model). Programmable logic controller (PLC) serves as the system’s central processing unit, with light intensity sensors and color
sensor-detecting devices placed strategically throughout each city and linked directly to the controller. Each road streetlight is
equipped with a motion sensor detection device that is tasked with identifying the presence of vehicles and pedestrians within its
field of view. Data fusion technology is utilized to process the environmental data gathered by optical multisensors, the collected
data are then used to control and predict outcomes using the robust prediction capability of the GM model, and the result is
a lighting control strategy that is both efficient and intelligent. In the end, the strategy presented in this paper is applied to
improving the management of an industrial park lighting system’s energy consumption. The results of the evaluations show that
the fresh method is successful in dimming, prediction, and control. This conclusively demonstrates the efficacy of the paper’s
proposed design solution, which integrates optical multisensor technology with sophisticated control algorithms and data analysis
to improve the quality of life in urban areas by boosting the efficiency and sustainability of the urban lighting system.

1. Introduction

Since urban lighting is such an integral part of smart cities, it
is experiencing rapid, intelligent, and environmentally
friendly growth. Cities are also looking for strategies to
optimize energy consumption in light of rising concerns
about sustainability and the need to reduce energy use. As
a result, it is important for communities to work towards
creating a more sophisticated method of controlling their
streetlights. There is a growing recognition of the impor-
tance of urban lighting control systems to the health, safety,
and attractiveness of metropolitan areas [1]. Public, street,
park, and building lighting can all benefit from these sys-
tems, which regulate and manage lighting settings to

maximize efficiency while maintaining enough illumination.
Although urban lighting control systems help improve city
life, they are still constrained in their effectiveness. Tradi-
tional urban lighting control systems, for instance, fre-
quently rely on predetermined schedules or manual
adjustments that ignore dynamic factors such as pedestrian
traffic, weather conditions, and natural light, leading to
systems that lack flexibility and adaptability to meet the
changing lighting needs of a city. Therefore, it is crucial to
create a smart and logical lighting control system as cities
grow and their lighting requirements alter.

Technology advancements have allowed for the creation
of better and more efficient lighting control systems, which is
particularly significant given the significance of urban
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lighting. The urban lighting industry is currently on board
with the idea that digital and intelligent technologies can be
used to better utilize lighting facilities and energy usage, all
while satisfying public traffic and avoiding excessive energy
consumption and simple and brutal control means [2].
Researchers are, therefore, focusing more of their efforts on
street lighting control systems, with the goal of creating
more practical intelligent lighting management systems.
Literature [3] relies on natural-light-sensing sensors to
measure illumination levels. The streetlight comes on when
there is not enough daylight, combining the benefits of both
artificial and natural illumination while reducing power use.
Infrared sensors are used to track passing vehicles and
people in the published works [4]. These experts devised and
constructed a smart lighting system that can swiftly detect
pedestrian and vehicle movements and activate street
lighting fixtures to improve safety and convenience. In-
telligent control algorithms for intelligent lighting systems
were proposed in literature [5], with researchers studying
and analyzing the microcontroller system’s algorithm in
order to determine the best way to process wireless control
signals for use in regulating the functioning of intersection
traffic lights. They demonstrated that the algorithm was able
to fairly disperse traffic and significantly cut down on the
waiting time.

Previous research has shown that sensor technology is
essential in creating and deploying urban lighting man-
agement systems. However, it has proven challenging for
a single type of sensor to meet the needs of intelligent
lighting for urban roads due to the variability of external
natural light (sunny, cloudy, etc.). New opportunities for
investigating better and more efficient urban lighting control
systems have emerged with the rapid growth of sensor
technology, notably optical sensor technology [6]. Fur-
thermore, this paper also focuses on the reasonable and
intelligent control strategy needed for the intelligent lighting
management system for urban highways, in addition to the
assistance of sensor technology. In light of these needs, the
purpose of this paper is to investigate the design of optical
multisensor technology and the GM model-based urban
lighting control system, with the goal of making urban
lighting systems more energy efficient and environmentally
friendly in the aim to better the quality of life in urban areas.
The novel components of this paper’s research are, first, the
integration of various optical sensors to collect data of the
road lighting environment in real time (light intensity
sensor, color sensor, and motion sensor). Intelligent and
responsive control of the lighting system is possible with the
help of data collection on aspects such as light level, pe-
destrian flow, traffic flow, and weather conditions. Second,
this paper uses an enhanced version of the GM (1,1) model
for lighting prediction control, namely, the polynomial
discrete gray model GM (1,1,K), to solve the inadequacies of
the traditional model. The GM (1,1,K) model predicts future
lighting demand and aids the system in making educated
lighting control decisions by assessing environmental data
acquired by optical multisensors. In the end, the strategy
presented in this paper is applied to improving the man-
agement of an industrial park lighting system’s energy
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consumption. The results of the trials show that the precision
and consistency of system lighting measurements are en-
hanced by the use of optical multisensor technology, while
the GM (1,1,K) model offers useful insights for lighting
prediction and optimization. In this way, the new technology
succeeds in three respects at once: dimming effect, pre-
diction performance, and control performance.

2. Related Theory and Technology

2.1. Optical Sensors. Urban lighting control systems rely
heavily on optical sensors, which are devices that can detect
and quantify light or electromagnetic waves [7]. Figure 1
depicts the primary uses for four different types of optical
sensors that are frequently employed: light intensity sensors,
color sensors, motion sensors, and occupancy sensors.
Roadway illumination factors including brightness, color
temperature, occupancy levels, and ambient light may be
tracked in real time thanks to the strategic placement of
these sensors in metropolitan highways. Lighting control
techniques, energy optimization, and user happiness can all
benefit from this information gathered by the system. For
instance, the system can reduce the brightness of artificial
lighting or turn it off altogether if a light intensity sensor
detects a drop in ambient light owing to daylight saving time
[8]. When a motion detector senses movement, the system
can brighten the lights in that area for further security and
visibility [9]. In parks, the system can light specific paths
based on detected occupancy, while dimming other areas to
save energy [10].

2.2. Multisensor Data Fusion Technology. In the 1980s, ad-
vancements in data processing led to the creation of data
fusion technology. With the purpose to improve the accu-
racy of the data gathered by sensors, this technology per-
forms operations such as analysis, filtering, and synthesis
[11]. Data fusion technology has become increasingly
popular as a result of the growing sophistication of com-
puting and communication systems. There are now three
distinct forms of data fusion architecture in use today:
centralized, distributed, and hybrid [12]. The sensor of the
centralized kind, shown in Figure 2(a), cannot perform any
analysis or make any decisions on its own and must instead
transmit the raw data it has collected to a central processor
for processing. Figure 2(b) depicts a distributed architecture
in which the sensor transfers the raw data it has collected to
the fusion node for preprocessing and then transfers the
results of that preprocessing to the processor for analysis and
decision-making. The hybrid structure combines elements of
both the centralized and decentralized models. It combines
their benefits but at the expense of a high computational and
communication cost.

Because lamps are spread out along different routes, and
the terminal sensors in this system will detect the values of
many environmental parameters, including light intensity,
color, and motion, a great deal of data will be generated on
the system. This system uses a distributed data fusion ar-
chitecture to improve analysis and judgment.



Journal of Electrical and Computer Engineering

Light
intensity
sensor

-
[}
w
g
Q
«
=
Q
2
o
o
Motion
sensor
Occupancy
sensor

This sensor measures the intensity or brightness of light in a given

area. It provides quantitative data about the amount of light,

allowing the control system to adjust lighting levels accordingly.

The sensor detects movement or changes in the surrounding

environment. In urban lighting control, they are used to detect the
presence of pedestrians or vehicles. This information can be used
to activate or adjust lighting in specific areas as needed, enhancing

safety.

Occupancy sensors determine whether an area or space is

occupied by detecting the presence or absence of an individual.
They can be used to optimize energy consumption by activating

or deactivating lighting based on occupancy, ensuring that the
lights are only on when they are needed.

Figure 1: Classification of optical sensors.
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FIGURE 2: Overall structure of data fusion technology. (a) Centralized processing method. (b) Distributed processing method.

2.3. GM Model. Invented by the Chinese mathematician
and economist Deng Julong in the 1980s [13], the gray
model (GM) is a form of mathematical modeling. To put
it another way, the model lowers the randomness and
uncertainty in data series by forming correlations be-
tween known data points and unknown future values,
allowing it to make predictions based on limited or in-
complete data. As a result, GM models are widely
employed in many different sectors, including business,
agriculture, and economics [14], thanks to their many
benefits when working with data series. The GM (1,1)
model is used to evaluate and predict linear data series,
whereas the GM (2,1) model is used to handle nonlinear
data series, and these are currently the most popular GM

models. The GM (1,1) model is the simplest and most
extensively employed model for predicting the gray
system. A first-order differential equation is constructed
from a sequence of observed data in this model. The
model obtains these estimates for the series’ starting
points and growth rates by solving the differential
equation. It is possible to make forecasts about future
values using these parameters. When the data series is
nonlinear, the GM (2,1) model is an extension of the GM
(1,1) model. For better prediction results, it adds a new
cumulative generation operation.

The GM model is crucial in the development of lighting
management programs. The dynamic aspects of lighting
demand in urban areas, such as time of day, weather, and



consumption, can be captured by this method, making it an
effective tool for lighting demand analysis and forecasting
based on limited data.

3. System Design

Management agencies have spent a lot of time and money on
fixing various issues plaguing the current urban lighting
system, such as the unreasonableness of its control methods
and accompanying massive energy waste. The system’s main
goal is to design a scientific, reasonable, and environmentally
friendly urban intelligent lighting control system, and it does
so by adhering to the principles of safety and reliability, high
applicability, and scalability. In order to increase energy
efficiency, decrease operating costs, and boost user satis-
faction in urban lighting environments, the system collects
and processes data of environmental factors surrounding
streetlights through optical multisensors and also uses the
GM model to control and predict the collected data to
achieve a more efficient and intelligent lighting control
strategy.

3.1. General Architecture of the Control System. This paper
proposes a “sensing-processing-decision-control” lighting
system for roads that relies on optical multisensors to detect
environmental changes, process data in real time, and
generate control strategies. There are two main components
to the system: software and hardware. The bulk of the
hardware system consists of terminal devices, controllers,
and a server platform, with sensors detecting the intensity
and color of natural light strategically positioned across the
city and communicating with a central hub controller. Every
streetlight has motion detectors built in to check if there are
any passing vehicles or pedestrians. The controller for the
road’s lights can be found in the streetlight distribution box.
The streetlight monitoring system may be remotely moni-
tored in real time thanks to Ethernet-based connection
between the primary controller and the database manage-
ment center. Figure 3 depicts the system’s general design,
which is primarily mirrored in the software platform system
of the control room. This system includes the communi-
cation interface software, data processing software, and
operation management software.

The control system is the brains of the operation, pro-
cessing data from optical multisensors in the field to de-
termine the optimal brightness level for streetlights and
assigning different lighting strategies based on the state of
the road. Because of this, the upper and lower networks
make up the lighting control system architecture presented
in this paper. Ethernet ties the city’s central controller to
regional monitoring stations across the metropolis. Each
district’s central light intensity and color sensor wirelessly
transmit data about the district’s natural illumination to the
district’s main controller, which then activates or deactivates
the district’s streetlights and sends data about the district’s
portion of the city’s roads to the monitoring center, where it
is displayed. Each road in the city is equipped with a con-
troller for the city’s streetlights, and the streetlights on both
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sides of the road are wired together. Each motorway
streetlight or sidewalk street light is equipped with a motion
sensor, and the information detected is sent to the road light
controller, which then activates appropriate streetlights
based on the information sent by the motion sensor.
Through the streetlight controller, data from the lower
network are relayed to the higher network’s master con-
troller. This allows the entire lighting control system to
communicate across a network. Figure 4 depicts the overall
system network architecture.

3.2. Selection and Design of Optical Multisensor

3.2.1. Light Intensity Sensor Module. By measuring exterior
ambient brightness, the light intensity sensor module may
determine if the streetlight has to be activated [15]. The light
intensity sensor is built as an analog-to-digital converter so
that the collected amplified signal can be converted into
a digital signal that can be read using a computer. LM393 is
useful for a wide variety of tasks, including switch control,
alarms, and temperature monitoring, thanks to its ability to
compare and output high- and low-level signals based on
a variety of input signals. It is well suited for both long-term
operation and quick response thanks to its low power
consumption, high-speed response, and other qualities. As
a result, the light intensity sensor module in this research
was developed using the LM393 chip. Figure 5 depicts the
light intensity sensor’s internal workings.

In this research, a light intensity sensor measures the
level of illumination from streetlights and sends that in-
formation through an analog-to-digital converter for use by
the system. When conditions on the road alter, the street-
light must adapt its settings accordingly. When the street-
light is too bright, the system adjusts the driver circuit’s
output current to lower the intensity of the light. However,
when ambient light levels are low, the system takes action to
modify the driving circuit’s output current, keeping the
streetlight illuminated.

3.2.2. Color Sensor. The results from a color sensor can be
utilized to change the streetlight’s intensity or hue to match
the ambient light level or desired effect [16]. In order to
determine the color of the observed light, the system works
by detecting the intensity of the light across a spectrum of
wavelengths. If the sensor senses that it is getting dark, for
instance, it can instruct the streetlight to shine brighter. On
the other hand, the streetlight can be dimmed or turned off if
the sensor determines that there is already enough light
outside. In sum, color sensors play a crucial role in street
lighting management systems by providing real-time feed-
back on the illumination conditions to allow for efficient and
adaptive regulation of streetlights. In this study, an RGB
color sensor is utilized to accomplish intelligent lighting
system control by detecting and analyzing the color of light
in the surrounding environment through the measurement
of light intensity across three color channels: red, green, and
blue. Figure 6 depicts the inner workings of an RGB color
Sensor.
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3.2.3. Motion Sensor Module. The motion sensor module
in this system uses an infrared pyroelectric module to
detect oncoming pedestrians and vehicles [17]. After
a short period, the streetlight installed on the terminal

module returns to its dim setting after being activated by
a high-level signal if a person or vehicle is spotted passing
by. The circuit layout of the infrared sensor is depicted in
Figure 7.
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Pyroelectric element PIR is shown in Figure 7. Changes
in road temperature cause an increase in charge density at
the pyroelectric exterior’s electrodes, which causes a dis-
charge of static electricity in all directions. Light density
resistor (LDR) and temperature correction resistor (TCR)
interfaces make it simple to add new capabilities to the
sensor. The connector for the jumper cap is labeled “LH.”
We would not be able to keep setting it off while it is in L.
Contrarily, when set to H, it might be activated multiple
times while waiting.

3.2.4. Data Processing Module Design. Once data have been
acquired from the aforementioned optical sensors, it will be
processed using data fusion-based algorithms to improve the
accuracy of the data and streamline the system’s operation.
Optical multisensor data fusion can be thought of as a four-
step process: In the first step, sensors are used to collect data
on the lighting conditions near the streetlight, including the
intensity and color of the light, as well as the traffic flow in
and out of the area. The second step involves removing
potential sources of error from the raw data that were ob-
tained. In the final phase, all of the data that passed the first
two filters are combined. The ideal fusion results are
achieved in the fourth stage by fusing the findings from the
fusion at the data level with the information at the decision
level. The whole fusion process is depicted in Figure 8.

One of the features that the lighting control system must
have is data processing, as the controller is more interested
in summary statistics than in the raw readings from each
sensor’s terminal. An adaptive weighted fusion algorithm is
used in the system’s processing link for data-level fusion,
allowing for the fusion of data from several sensors [18]. The
system will next employ the polynomial discrete gray model
G (1,1,K) for lighting prediction control in the decision-level
fusion phase.

3.3. Predictive Control Model

3.3.1. GM (1,1) Prediction Model. The gray GM (1,1) model
is the GM model’s simplest and most common variant. Its
underlying premise is that for a given data series, a new set of
data series with a discernible trend can be formed through
cumulative addition, and a model can then be constructed to
forecast based on the growing trend of the new data series.
The cumulative reduction approach is then used to do an
inverse reduction, recovering the predicted values of the
original dataset [19].

Assume that the original data series a® has C obser-
vations, i.e., a® = {a(o) 1), a® (2) ...a® (O)}. The original
data series a© is cumulated to generate a new series a”),
which weakens the irregularity and randomness of the data
series and the effect of random perturbation on the data. The
cumulative generation reveals the development of the gray
volume accumulation process and brings out the patterns
contained in the cluttered raw data.

Let the resulting new array be AV () ={aY (1), AY (2)
A (O}, where AV (C) is defined as shown in the fol-
lowing formula:

c
AY©) =Y a"),i=23,,C (1)
i=1
Then, we calculate its immediate mean equal brand new
series Z" from A", as shown in the following formula:

Z(l) ={Z(1)(2),Z(1) (3),"’,2(1)(C)}, (2)
ZW (i) =0.5a (i) + 0.5aV (i - 1).

For the series A", Z") establishes the whitening dif-
ferential formula and constructs the GM (1,1) model as
shown in the following formula:

da

i +ka = 1. (3)

Its whitening formula is as follows:
a” (i) +kxzW (i) = b, (4)

where k and b denote the system development coefficient
and the driving term coeflicient, respectively, which are the
parameters to be determined for the model. The traditional
GM models are based on data using the least squares method
to solve for the parameters as shown in the following
formula:

a* =k b’
(5)
- (MT-M)TM-N,

where M and N are parameters whose definitions are given
in the following formulas:

a(o)(z)
(0)

M= a .(3) , )
a(o) (C)

-z9 )1

-z 3)1

N = (7)

-z9%n

The two formula parameters are derived from this.
Formula (8) shows the solution of formula (3):

Wy Dy by ke b
a (t)—<a (1) k) e +k. (8)

Formula (9) shows the temporal response series of the GM
(1,1) model:

aV@i+1) =<a“> 1) - Z)-ek" Wb L2,---,C.  (9)

P

Predicted values are calculated by reducing the afore-
mentioned results cumulatively, as indicated in the following
formula:
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a% G+ =aPi+1-a"0)

=(1- ek)<x(0) (1) —%)oeki,i -1,2,---,C.
(10)

The prediction accuracy of the GM (1,1) model is
highly dependent on the model parameters k and b. The
optimality of the solution of the sought parameters di-
rectly affects the prediction accuracy of the model. It is
shown that when the data series changes smoothly (i.e.,
|k| <0.5), the error of the GM (1,1) model is small and the
prediction effect is very satisfactory. However, for high
growth data series (i.e., |k| > 0.5), the error is large and the
prediction results are not satisfactory [20].

3.3.2. Polynomial Discrete Gray Model. The conventional
GM (1,1) model solely employs the sequence of system
behavior without the external action sequence because it is
a single series prediction model. Because of this, issues such
as high data distribution performance needs, weak anti-
interference ability, and limited application arise [21]. An
improved solution is provided by the proposed polynomial
discrete gray model (GM (1,1,K) model) [22]. The model is
commonly used to fit data series with high unpredictability
and uncertainty because it incorporates the best features of
the nonflush gray model, the power exponential gray model,
and the discrete gray model. In light of this, the predictive
control model for the urban lighting system in this paper is
the GM (1,1,K) model.

With a nonnegative original series
AO () =1{a®(1),a9(2),---,a®(C)},i=1,2,---,C, the
first-order cumulative sequence of a‘® (i) is shown in the
following formula:

a(l) () = {a(l) (1),a(1) (), ,a(l) (C)}

d (11)
=Za(0)(j)’i=1’2)""c-
j=1

Let us assume that the discrete polynomial model is GM
(1,1,K), defined as follows:

al (@) =2aWV G =1)+8)+8,i" +---+ 8", (12)

Let the parameters of the GM (1,1,K) model be
P=1[A08y,8,,--,0k]"; then, the least squares estimate of P
is shown in the following formula:

P=(N"N) "M, (13)

where M and N are parameters whose definitions are given
in the following formulas:

aV)y 1 o2 .. K

(1) r Kr
a1 1 3 ... 3
T S (P

aV%c-1ny 1 c ... c

a? (2)

a (3)

M= , (15)

()

where r is the conditioning operator and K is the number of
polynomials.

If the initial condition @V (1) =a® (1) is given, the
estimate of GM (1,1,K) is obtained as shown in the following
formula:

al @) =2aW G- 1)+8y+08,i" +---+0gi" . (16)

If the initial condition a® (1) =a©@ (1) is given, the pre-
dicted value of the original series is obtained as shown in the
following formula:

%@ =a%@-aYi-1,i=23,--,C (17)

New GM (1,1,K) incorporates the best features of
multiple gray models into a single framework, and its two
independently adjustable parameters, » and K, allow for
greater flexibility in dealing with real-world issues. This
makes the model more useful as a predictive control model
for the urban lighting system under investigation in
this paper.

4. System Performance Testing

4.1. Experimental Design. Experiments are conducted from
three perspectives (dimming effect, prediction performance,
and control performance) to evaluate the practicability and
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efficacy of the lighting control system described in the
present paper. First, the house model, PLC controller, PC
upper computer (Simulink module), LED driver, light in-
tensity sensor, color sensor, and infrared sensor make up the
major components of the intelligent lighting experiment
platform upon which the first and second sets of experiments
are based. A municipal W industrial park was chosen as the
experimental object for the third round of experiments. The
park spans 3,000 square meters across two stories above
ground. In 2021, the industrial park will need a total of
117,356.48 Kw-h of electricity. The paper presents a method
for regulating the park’s lighting system’s energy use in such
a way as to achieve maximum efficiency.

4.2. Experimental Results and Analysis

4.2.1. Experiment 1: Dimming Effect Analysis. A fixed illu-
minance tracking experiment was first developed to test the
control system’s dimming effect after the optical multisensor
and the GM model had been validated. In Figure 9(a), we see
the dimming effect achieved by operating the lighting control
system with illuminance set to R=100Lx. We also ran tests
comparing the enhanced GM model to the VAE model and
the GAN model to prove that it is superior to these other
methods when it comes to the dimming impact. To test the
anti-interference capabilities of various models, a 20Lx-strong
disturbance is superimposed on the measured light level for
60 seconds. Figures 9(b)-9(d) depict the outcomes of the tests.

Figure 9(a) demonstrates how well the system follows the
desired brightness level without straying too far from the
target. As can be seen from Figures 9(b)-9(d), when the
system was disturbed in 60, the control system using the
GM model can swiftly recover from disturbances and re-
sume following the programmed illuminance value. The
response time of the systems using the VAE and GAN
models is longer. This demonstrates that the GM-based
lighting control system can generate reliable predictions
by analyzing data from optical multisensors about the
lighting environment in relation to variables such as time of
day, weather conditions, and pedestrian flow. As a result, the
urban lighting system is better able to adapt to shifting
environmental circumstances and user preferences with this
method’s adaptive lighting management, which features
a good dimming effect and excellent interference immunity.

4.2.2. Experiment 2: Predictive Performance Analysis. On
a typical workday in the park, we conducted studies to
predict future performance. The energy consumption of the
industrial park was predicted using the lighting control
technology described in this paper. In the experiment, the
optical multisensor developed in this paper is used to collect
data on parameters such as light intensity, temperature, and
pedestrian traffic flow, and the data from these sensors are
then combined to gain a more holistic understanding of the

lighting environment, which in turn increases the precision
and reliability of the lighting measurements. The predicted
and actual energy consumption of the new lighting system is
shown as a function of time in Figure 10.

Figure 10 shows that when the method presented in this
paper was applied to the park lighting management system,
the projected energy consumption figures were quite close to
the actual values. This demonstrates the high prediction
performance of the optical multisensor and the GM model-
based lighting control system and the extremely satisfactory
prediction accuracy of campus lighting energy usage. This is
because the optical multisensor improves the accuracy and
reliability of lighting measurements by combining data from
several sensors to provide a more thorough picture of the
lighting environment. The GM model can make reliable
forecasts because it considers a wide range of variables,
including time of day, weather, and foot traffic. Therefore,
combining these two technologies not only helps reduce
energy waste but also boosts the reliability of lighting control
systems’ forecasts.

4.2.3. Experiment 3: Optimal Control Performance Analysis.
There is a clearer distinction between slow and busy times at
the city’s W industrial park. Therefore, the power con-
sumption of the park’s lighting system may be predicted
using the street lighting management system proposed in
this paper, which can then be utilized to give data standards
for subsequent energy consumption control and aid firms in
saving energy and reducing emissions. The experiment in-
volved creating a column chart from the monitored lighting
system’s monthly energy consumption data. The approach
of entering a single number is used to make calculations
easier, and the outcomes of efforts to optimize energy use are
shown in Figure 11.

Figure 11 illustrates that after implementing the energy
consumption optimization control strategy proposed in this
research, the lighting system at this industrial park uses an
estimated annual total of 40,099 Kw-h of power. This in-
dustrial park’s lighting system has reduced its electricity use
by approximately two thirds compared to what it was in
2021. This is due to the fact that optical multisensors are used
to collect data about the lighting environment, and the GM
model is then used to analyze and forecast the lighting
demand based on these limited data, analyze the pattern and
trend of lighting consumption, and come up with a reliable
prediction of the lighting demand in the future. We can
deduce that the industrial park’s lighting system has a lower
annual average power consumption during the months of 1
and 3, when business volume is greatly reduced and working
hours are correspondingly shorter. In addition, the lighting
system uses less energy at this time of day. Power usage
increases and decreases in tandem with fluctuating order
volumes in other months. The paper’s approach has been
shown to greatly boost the park’s lighting system’s energy
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FiGUure 9: Dimming effect of the system controller. (a) Actual illuminance L-time curve. (b) Actual illuminance L-time curve when
disturbed. (c) Actual illuminance L-time curve of GAN when disturbed. (d) Actual illuminance L-time curve of VAE when disturbed.

consumption optimization control performance; therefore,
it is worth spreading the word about and putting into
practice.

In conclusion, the aforementioned tests proved the
usefulness of combining optical multisensor technologies

and GM models in municipal lighting management systems.
Therefore, it is worthwhile to promote and apply the lighting
control system developed in this study since it helps improve
energy efficiency, reduce operating costs, and boost user
happiness in urban lighting environments.
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5. Conclusion

The smart city’s urban lighting sector is growing rapidly,
intelligently, and sustainably, and urban lighting manage-
ment systems are becoming increasingly important to urban
functionality, safety, and aesthetics. City planners and ad-
ministrators in urban lighting today prioritize centralized
control, uniform administration, and energy conservation
and environmental protection. In this study, we investigate
real-world urban lighting requirements and propose
a management system using optical multisensors and the
GM model to achieve them. The system continuously
monitors and records lighting conditions using optical
sensors such as light intensity, motion, and color sensors.
This information lets lights be controlled and altered in real
time for various situations. However, adding GM models to
urban lighting control systems improves their functionality.
The GM model analyzes past data and forecasts future
lighting needs to optimize energy usage and meet lighting
needs in various urban environments. Simulation tests
confirmed the system’s dimming effect, prediction

performance, and control performance, demonstrating that
this paper’s lighting control system can optimize energy
consumption and implement precise lighting controls.

In conclusion, this paper’s investigation into optical
multisensor techniques and GM models for urban lighting
control has shown their potential to enhance the perfor-
mance and utility of urban lighting systems, and it has
provided new avenues for the development of such systems.
However, the urban lighting control system described in this
work still confronts significant constraints due to the
enormous quantity of information involved and the wide
coverage of the street lighting system, and more research is
needed to solve these issues and limits. First, additional
optimization of the optimal parameters of the GM model is
required. The prediction accuracy of the model is adversely
affected because the parameters derived in this approach are
not optimal, especially when forecasting nonstationary data
series, for which the parameter model calculated using
conventional mathematical methods will generate sub-
stantial mistakes. The artificial intelligence algorithms built
by humans in recent years have perfectly solved several
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highly complicated optimization issues and presented a fresh
notion for the solution of this problem by emulating the
evolutionary mechanism of real creatures. The gray model
accuracy will be improved by exploring the use of an ant
colony algorithm to solve the GM model parameters. Sec-
ond, the Internet of things, big data, and cloud computing
have all found widespread use in a variety of industries;
furthermore, the integration of these new technologies can
be investigated in the future to further improve the effec-
tiveness of urban lighting control systems. Third, given the
urban nature of streetlights, the collected data can be sup-
plemented with information about ambient noise, exhaust
levels, and particulate matter 2.5 (PM2.5) levels to inform
not only lighting strategy but also air pollution prevention
and control initiatives.
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