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In the process of charging and using electric vehicles, lithium battery may cause hazards such as fre or even explosion due to
thermal runaway. Terefore, a target detection model based on the improved YOLOv5 (You Only Look Once) algorithm is
proposed for the features generated by lithium battery combustion, using the K-means algorithm to cluster and analyse the target
locations within the dataset, while adjusting the residual structure and the number of convolutional kernels in the network and
embedding a convolutional block attention module (CBAM) to improve the detection accuracy without afecting the detection
speed. Te experimental results show that the improved algorithm has an overall mAP evaluation index of 94.09%, an average F1
value of 90.00%, and a real-time detection FPS (frames per second) of 42.09, which can meet certain real-time monitoring
requirements and can be deployed in various electric vehicle charging stations and production platforms for safety detection and
will provide a guarantee for the safe production and development of electric vehicles in the future.

1. Introduction

As people’s awareness of environmental protection in-
creases, the proportion of new-energy electric vehicles is also
increasing and their supporting infrastructure construction,
such as charging stations, is also increasing year by year. Te
power source of new energy electric vehicles is mainly
lithium battery, which has the advantages of high storage
energy density, long service life, and lightweight and is very
popular in all kinds of new energy vehicle products.
However, in the process of rapid charging of new energy
electric vehicles at charging stations, the internal lithium
battery may leak, catch fre, or even explode due to thermal
runaway and other reasons [1]. Terefore, it becomes es-
pecially important to monitor the safety of electric vehicles
in the charging process.

At present, deep learning-based target detection
methods have gradually become the mainstream, including
one-stage series algorithms and two-stage series algorithms.

Te two-stage series algorithms include R-convolutional
neural network (R-CNN), faster R-CNN, and other net-
works. In the frst step, region proposal network (RPN) is
trained, and in the second step, the classifcation and lo-
cation information of the target are predicted by convolu-
tional neural network [2].Te one-stage series of algorithms,
mainly, single shot multibox detector (SSD) algorithms [3],
adopt the idea of mathematical regression, omitting RPN,
and directly regressing to obtain the class probability and
location coordinates of the object, with slightly lower ac-
curacy, but signifcantly improving the detection speed. Te
combustion of electric vehicle battery cells is complex and
variable, with no exact rule. Once the internal stable state of
the lithium battery due to collision, overcharging, and other
situations is established, thermal runaway will quickly lead
to the battery electrolyte decomposition and other reactions,
resulting in the release of a large amount of heat and rapid
heating of the battery, but also generating a lot of hydrogen,
methane, and other white smoke. Te lithium battery fre

Hindawi
Journal of Electrical and Computer Engineering
Volume 2023, Article ID 9215528, 12 pages
https://doi.org/10.1155/2023/9215528

https://orcid.org/0000-0001-9282-6464
https://orcid.org/0000-0001-8355-5826
https://orcid.org/0009-0000-8697-695X
mailto:03390@qust.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9215528


process is rapid, often resulting in booming combustion and
even explosion phenomena. Te fre will usually ignite the
surrounding electrical equipment, causing smoke and
continuous burning phenomena [4–6]. Experiments in the
literature [7] proved that the main way to afect the sur-
rounding environment when the battery compartment ex-
plosion of electric vehicles is high temperature, the
temperature in the battery compartment will rise to 2158K in
0.12 s, the high temperature will spread around horizontally
along the pressure relief hole, and it is very easy to cause the
surrounding charging pile or other vehicles to burn. In
addition, in the case of large-scale outdoor charging stations,
it is difcult to cover all the scenarios using traditional
physical sensors and is susceptible to the infuence of the
surrounding environment, such as driver smoking and
restaurant smoking. If not detected in time, more damage
will occur.

Earlier traditional detection methods were based on
image feature-based recognition judgments. Smoke and
fame combustion features are diverse, and the color, texture,
and motion features are extremely complex. Xie et al. [8]
proposed a method for early detection of fres in indoor
enclosed environments based on the refective properties of
frelight, while developing a highly sensitive foreground
identifcation method for fame detection by using strategic
background updates and block binarisation thresholds, but
it is difcult to apply to complex scenes with multiple re-
fections outdoors. Liu et al. [9] presented the YdUaVa colour
model to analyse the colour changes and motion trajectories
of smoke in adjacent frames, thus roughly fltering out
blocks of images suspected of having smoke. Du et al. [10]
improved the ViBe algorithm based on the color features of
smoke to extract smoke features. Chen et al. [11] introduced
a convolutional network to extract smoke texture in-
formation and combine it with the static texture information
of the original image for detection. Zhao et al. [12] built
a classifcation model of fame elements by YCbCr color
space and formulated new rules to reduce the interference of
image brightness. Wu et al. [13] performed multithreshold
segmentation based on the image grayscale entropy criterion
and used an improved particle swarm optimization algo-
rithm to select thresholds as a way to quickly segment fame
targets and background regions. Te Krawtchouk torch was
introduced to construct the feature vectors of fame images
as a way to construct support vector machines for detection
[14]. All the above methods are based on traditional image-
based detection methods, which have low accuracy and slow
speed. Nowadays, many deep learning-based target de-
tection methods are applied in video fame detection with
better results. Te accuracy of faster R-CNN on fame de-
tection task is improved by using color-guided anchoring-
based strategy to constrain the generation region of anchor
frames, but the detection speed still needs to be improved
[15]. Te detection efciency of small fame regions is
particularly improved by improving the prior frame of
YOLOv3 network and combining the features of fame
ficker to reduce the false detection [16], but the detection
speed of YOLOv3 algorithm is slow and not applicable to
video stream monitoring. To track ship fres, Wu et al. [17]

modifed the YOLOv4 algorithm with the SE attention
mechanism module. Cai et al. [18] improved the YOLOv4
algorithm by replacing the network structure and pruning
operations to achieve real-time object detection on an in-
vehicle platform. Deep separable convolution was applied to
a YOLOv4 network by Huo et al. [19] to enhance the al-
gorithm’s ability to detect smoke, but the algorithm was too
old and lacked the capability to detect early fames. Wu et al.
[20] proposed a fame detection model using the YOLOv5
network, but it could not detect the intense smoke phe-
nomenon in the early stages of lithium battery combustion
and lacked the timeliness of hazard prediction. Li et al. [21]
applied the YOLOv5 algorithm to the feld of remote sensing
and proposed the TCS-YOLO method by adding con-
volutional layers and replacing activation functions to im-
prove the efciency of identifying global oil storage tanks.
Wang et al. [22] applied a structurally reparameterised
adaptation of the re-param visual geometry group
(RepVGG) model to the conventional CenterNet to achieve
object detection in mobile driving scenarios. Te YOLO [23]
family of algorithms is also commonly used in applications
such as marine, biomedical, and autonomous driving and is
extremely versatile and stable [24–30]. In recent years, the
percentage of fre accidents in electric vehicles that occur in
the parked state and during charging can be more than half
of the accidents [31–33]. Terefore, the safety monitoring of
electric vehicles during charging is very important.

We propose an enhanced YOLOv5-based electric vehicle
charging safety monitoring algorithm in this paper for
lithium battery combustion and fre characteristics, such as
white smoke and fre light from defagration, that may be
brought on by thermal runaway during the charging process.
Te method suggested in this article can be directly applied
to the existing video surveillance equipment, and it is less
expensive, more universal, and easier to implement than the
traditional detection methods. However, it also has a higher
monitoring accuracy and speed when compared to the
unimproved algorithm. Te Methods section of the paper
describes the algorithms used as well as the innovations and
improvements made to address the issue at hand. Following
this, the Experimental Procedure and Results Analysis
sections present experiments and comparisons based on the
improved approach. Finally, we present experimental con-
clusions and afrmations for future applications in real-
world scenarios. Figure 1 depicts the fowchart’s overall
structure. Tis paper’s main contributions are as follows:

(1) In order to solve the problem that the original al-
gorithm has poor detection capability for small
targets in the complex scenario of electric vehicle
combustion, the number of convolution kernels
inside the algorithm is increased and more residual
components are stacked in the feature extraction part
to improve the detection capability of the algorithm
for small targets.

(2) To address the uncertainty and complexity of the
target locations in the fame smoke dataset, the K-
means clustering algorithm was introduced to
recluster the target locations in the dataset to obtain
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the most suitable anchor frame for this dataset and
improve the training speed and accuracy of the
algorithm.

(3) To enhance the extraction capability of the method
for the fame smoke features generated by lithium
battery combustion as well as to improve the gen-
eralization capability and robustness of the method.
Te CBAM [34] is added after the backbone feature
extraction network to signifcantly improve the
method’s ability to detect fames and smoke with
only a small amount of code added.

2. Methods

2.1. K-Means Algorithm-Based Flame Smoke Anchor Frame
Planning. Te frst step of the YOLO series algorithm in the
process of target detection is to generate candidate regions
(anchor box). In the combustion process of lithium battery,
the state changes are complex and dramatic, with great
uncertainty, so this method uses the K-means algorithm to
recluster the target location of the features in the dataset to
get the anchor box based on the lithium battery combustion
feature dataset and used for training. Firstly, the cluster
centres are selected, and K samples are then counted as
cluster centres c1, c2, ..., ck  from the dataset.Ten, for each
sample xi in the dataset, we calculate the distance dik to
each of the K cluster centres and assign it to the category
corresponding to the cluster centre with the smallest dis-
tance. For each category ck, we recalculate the coordinates
of its cluster centre, i.e., the centre of the mass of all samples
belonging to that category. We repeat the above steps until
the cluster centre positions no longer change.

dik � 1 − IOU(bboxes, anchors), (1)

where dik is the distance from sample xi to the cluster centre
K and IOU is the intersection ratio between the two samples,
which has a smaller error compared to the traditional Eu-
clidean formula.

Te clustering results are shown in Figure 2.Temaximum
values of the horizontal and vertical coordinates represent the
image input size for this algorithm. Clustering is based on all
the marked fame positions in the dataset, and 9 clustering
centres are obtained, which are represented by asterisks.

Table 1 shows the preselected box positions obtained
after clustering the target positions within the dataset using
the K-means algorithm, compared to the preselected box
positions obtained from training based on the COCO

dataset. Te use of clustered preselected boxes is more
benefcial to improve the training accuracy and detection
results.

2.2. YOLOv5 Network Model. Te YOLO series target de-
tection algorithms solve the problem of target detection by
regressing the anchor frames into which the images are
divided and have good real-time performance as an end-
to-end detection algorithm. Te network structure of the
unimproved YOLOv5 algorithm is shown in Figure 3.

Te YOLOv5 target detection algorithm can be divided
into four parts: input, backbone, neck, and head. Using
Mosaic data enhancement in the input section, four images
are stitched together to form a new image by random scaling,
cropping, and random rows. Tis reduces the GPU memory
required for training while greatly enriching the dataset and
improving the robustness of the network.Te backbone part
is the backbone network for extracting the burning features
of lithium battery during the charging process. Te YOLOv5
algorithm adds a focus structure and a cross-stage partial
network (CSPNet) structure, which extracts a picture based
on its width and height, one pixel apart, and fnally obtains
four independent feature layers, which are then stacked to
concentrate the picture’s width and height information into
the channel space, quadrupling the input channel without
losing the picture information, as shown in Figure 4. Te
CSPNet structure splits the feature map into two parts: one
part is convolved and the other part is spliced and fused. It
enhances the feature extraction and maintains accuracy
while being lightweight, while reducing computational
bottlenecks and memory costs.

KmeansDataSet OutputBackbone

Channel
Attention
Module
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Figure 1: Structural diagram of algorithm.
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Figure 2: Location of K-means cluster centre.
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Te neck part consists of path aggregation network
(PANet) and spatial pyramid pooling (SPP) module. Te
PANet enhances the feature representation of the feature
extraction network by fusing bottom-up and bottom-down
paths. Te SPP structure can use diferent sizes of pooling
and tensor stitching to efectively increase the model per-
ceptual feld and separate signifcant contextual features. It
avoids image distortion caused by cropping and scaling of
image regions and solves the problem of repeated feature
extraction, saving computational costs. Te head part will
output three feature layers of diferent depths depending on
the detection target of the dataset.

2.3. CBAM. Adding an attention mechanism module is
a common optimization process in the feld of deep learning
that allows the model to simulate the focus information
observed by the human eyes. CBAM is used to assign dif-
ferent weights to the picture features extracted from the
backbone network, which suppresses useless information
and improves the utilization of efective features in the
neck part.

Te CBAM is a simple and efective feedforward con-
volutional neural network attention mechanism module,
which innovatively accesses the spatial attention module
after the channel attention module compared to squeeze-
and-excitation network (SENet) and efcient channel at-
tention module networks (ECANet) and uses the summa-
tion and stacking of maximum pooling and average pooling
to make the feature map obtain adaptive feature refnement
with corresponding weight proportion. CBAM incorporates
efective suppression of the fame and smoke background
information and emphasizes the target feature information.
In this paper, after the backbone network, the output feature
vectors are fed into the CBAM, which is a lightweight
general-purpose module that can efectively improve the
detection accuracy with little impact on the detection speed.
Te CBAM is shown in Figure 5.

Table 1: Comparison of anchor frame positions after clustering of fame and smoke dataset K-means.

K-means clustering before and after anchor box position
COCO 10 13 16 30 33 23 30 61 62 45 59 119 116 90 156 198 373 326
Fire and smoke 48 90 102 87 89 175 177 164 157 332 307 243 302 409 469 326 522 466

Input

Focus

CBS

CSP1_3

CBS

CSP1_9

CBS

CSP1_9

CBS

SSP CSP2_1

CBS

Up-
sampling

CSP2_3 CBS

CSP2_3

CBS

Conv

CSP2_3 Conv

CBS Conv

CBS Conv BN SiLU

CBS CBS ADD

CSP1_X CBS Res
unit

Res
unit

Conv

Conv

BN SiLU CBS

Feature
Fusion

Feature
Fusion

Feature
Fusion

608*608*3

76*76*255

38*38*255

19*19*255

X residual
components

Up-
sampling

Feature
Fusion

Feature
Fusion

Figure 3: YOLOv5 network structure diagram.

1 22

2 21 1
1 1

11

1

3 4 3 4

3 4 3 4

Figure 4: Schematic diagram of focus structure.

4 Journal of Electrical and Computer Engineering



Te channel attention mechanism is to pass the input
feature information through global maximum pooling and
global average pooling, respectively, through the multilayer
perceptron multilayer perceptron (MLP) and then add the
results obtained from the two pooling counterparts and
output the results after multiplying the corresponding
weights with the original input feature map by the Sigmoid
function, as shown in Figure 6. Equation (1) is given by

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F))),

(2)

where F is the input feature map, MLP() is the multilayer
perceptron, AvgPool() is the mean pooling, MaxPool() is the
global pooling, and σ is the Sigmoid operation.

Among them, the spatial attention mechanism is to use
the feature map output from the channel attention mech-
anism module as the input feature map. Firstly, global
maximum pooling and global average pooling based on the
number of channels are performed.Ten, the two results are
concatenated based on the number of channels. After
a convolution operation, they are reduced to one channel,
and fnally, the results are passed through the Sigmoid
function to generate the channel attention features and
multiplied with the input feature map to obtain the fnal
generated features, with the following equation. Te spatial
attention mechanism in CBAM is shown in Figure 7.

Ms(F) � σ f
7∗7

([AvgPool(F);MaxPool(F)]) , (3)

where σ is the Sigmoid operation and 7∗ 7 denotes the
convolution kernel size.

2.4. Improvement in the Number of Residual Components and
Convolutional Kernels. Te YOLOv5 algorithm is divided
into networks with diferent weights and detection capa-
bilities by using diferent numbers of residual component
modules and diferent numbers of convolutional kernels, so
that its networks have diferent depths and widths. For the
YOLOv5 algorithm with diferent widths and depths, the
depth and width of the network as well as the number of
residual components and the number of convolutional
kernels are controlled by two parameters, namely,
Depth_multiple and Width_multiple, which can be classi-
fed as YOLOv5-s, YOLOv5-m, YOLOv5-l, and YOLOv5-x

according to the commonly used parameters, and the cor-
responding parameters are shown in Table 2.

2.5. Improved YOLOv5 Algorithm. Finally, we adjusted the
number of residual structures and the number of convolution
kernels in the YOLOv5 algorithm to select the parameters
most suitable for lithium battery combustion feature de-
tection, achieving better recognition results compared to the
unimproved algorithm. A CBAM attention mechanism
module was also added after the feature extraction network to
increase the weights of valid features, allowing the algorithm
to focus more on important features and suppress un-
necessary features, eventually greatly improving the detection
accuracy without afecting the detection speed.

Te improved network structure is shown in Figure 8.
Compared with Figure 3, the diferences between the im-
proved algorithm and the unimproved algorithm are
marked in Figure 8, with a blue background.

3. Experimental Procedure andResults Analysis

3.1. Dataset Acquisition and Preprocessing. Te initial
characteristics of electric vehicle lithium battery fres are often
dominated by white smoke, open fames of booming com-
bustion, and then gradual ignition of other body structures
which produces black smoke, continuous fames, etc. Despite
being extremely complex, the features and background share
some similarities, so we focus on selecting images with the
above features to build the dataset. Figure 9 shows the
schematic diagram of some of the images in the fame smoke
dataset, where (a) represents the image of an electric vehicle
catching fre during charging at a charging station; (b) and (c)
represent the images of a sudden lithium battery fre during
the use of an electric vehicle; and (d) represents the image of
an electric vehicle when it catches fre at night. LabeImg
software is used to annotate the fame and smoke parts in the
above dataset and generate XML fles with target location
information to form a dataset following the VOC annotation
specifcation. In the real scenario, there are situations such as
partial masking of fames and fusion of smoke with the sky
background. For diferent situations, rectangular boxes of
diferent sizes are used for annotation to improve the accuracy
of the dataset content. Te fnal composition consists of 3391
images, as the experimental dataset.
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Module Spatial

Attention
Module

Refined feature

Figure 5: Schematic diagram of CBAM.
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Table 2: Comparison table of YOLOv5 algorithm structure diferences under diferent parameters.

Depth_multiple Width_multiple Residual component bases Convolution kernel bases
YOLOv5-s 0.33 0.50 1 32
YOLOv5-m 0.67 0.75 2 48
YOLOv5-l 1.00 1.00 3 64
YOLOv5-x 1.33 1.25 4 80
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Figure 8: Schematic diagram of improved YOLOv5 network structure.
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3.2. Experimental Platform and Model Training. Tis ex-
periment is conducted in the same environment with an
Intel(R) Xeon(R) Gold 6130H CPU, an NVIDIA RTX3060
GPU (24GB), 32 GB of running memory, and a Windows
software environment with PyTorch deep learning frame-
work. To verify the practicality and efectiveness of this al-
gorithm, the YOLOv5 algorithm with diferent widths and
depths, diferent backbone networks, and diferent attention
mechanisms is compared, and the progress of the algorithm is
verifed compared to the previous generation YOLOv4 al-
gorithm. For the classifcation problem of detecting targets,
the samples can be classifed into four cases: true positive
(TP), false positive (FP), true negative (TN), and false negative
(FN), by the true classifcation situation of the target and the
classifcation situation obtained by the model detection. Te
mean average precision (mAP), accuracy (Precision), recall
(Recall), and the summed mean of accuracy and recall (F1)
were used as the evaluation metrics for this experiment:

Precision �
TP

(TP + FP)
,

Recall �
TP

(TP + FN)
,

F1 �
Precision∗Recall

2∗ (Precision + Recall)
.

(4)

In the initial stage of weight model training, the training
weights obtained by YOLOv5 based on the COCO dataset
are used for migration training, which can improve the

convergence speed of the model for the fame smoke dataset,
reduce the model training time, and improve the training
results. Te whole experiment lasts for 100 training rounds
(epoch), the confdence (confdence) is set to 0.5, in the frst
50 training rounds, the batch size is 8; in the last 50 training
rounds, the batch size is 4, the data input size is 416× 416,
and Adam is used as the optimizer.

3.3. Comparison of Diferent Widths and Depths. Te same
validation set was tested during experiments using the
diferent algorithms mentioned above to detect combustion
feature targets in electric vehicles. Te results are shown in
Table 3. Te comparison of YOLOv5 detection results under
diferent parameters is shown in Figure 10.

From the data in Table 3 and from Figure 10, it is known
that when Depth_multiple and Width_multiple are 1.00 and
1.00, respectively, the CSP1_X structure with 3, 9, and 9
residual components, the CSP2_3 structure with 3 residual
components, and the network with 64, 128, 256, 512, and
1,024 convolutional kernels in the CBL structure have the best
feature extraction efect. It has the best detection efect and the
highest accuracy for the intense smoke and fame burning
phenomena generated by electric vehicle combustion.

3.4. Comparison of Detection Efects of Diferent Backbone
Feature Extraction Networks. Based on the experiments in
Section 3.3, YOLOv5-l was chosen as the basis for network
improvement, and then the YOLOv5 algorithm with dif-
ferent backbone networks was used to compare and test the

(a) (b)

(c) (d)

Figure 9: Schematic diagram of fame and smoke dataset. (a) Fire during charging, (b) electric vehicle fre side, (c) electric vehicle fre front,
and (d) fre at night.

Journal of Electrical and Computer Engineering 7



efect of feature extraction when the lithium battery of an
electric vehicle burned. Te comparison of YOLOv5 de-
tection results under diferent backbone networks is shown
in Figure 11.

According to the data in Table 4, the average FPS is only
10.86. When using CSPDarknet as the backbone feature
extraction network, the mAP is only 2.11 percentage points
lower, but the average FPS is signifcantly higher at 25.04,

Table 3: Comparison of YOLOv5 algorithm detection indicators under diferent parameters.

Network models
Precision Recall F1

mAP (%)
Fire (%) Smoke (%) Fire (%) Smoke (%) Fire Smoke

YOLOv5-s 92.27 93.73 80.88 91.22 0.86 0.92 92.67
YOLOv5-m 89.96 93.85 83.07 93.13 0.86 0.93 93.77
YOLOv5-l 89.74 94.12 83.67 91.60 0.87 0.93 93.99
YOLOv5-x 83.48 90.28 76.49 85.11 0.80 0.88 87.08

YOLOv5-s

(a)

YOLOv5-m

(b)

YOLOv5-l

(c)

YOLOv5-x

(d)

Figure 10: Comparison of YOLOv5 detection results under diferent parameters. (a) YOLOv5-s. (b) YOLOv5-m. (c) YOLOv5-1.
(d) YOLOv5-x.
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which can extract more efective and comprehensive feature
information and has better real-time detection performance.

In Figure 11, the YOLOv5 algorithm, which uses
CSPDarknet as the backbone network, has the best detection
performance, detecting smaller targets and being more re-
sistant to interference than others.

3.5. Comparison of YOLOv5 Algorithms Using Diferent At-
tention Mechanisms. From the comparative experiments in
Section 3.4, it is clear that the YOLOv5-l algorithm based on
CSPDarknet as the backbone network has the best recognition
results, so further improvements are made based on this. Te
addition of attention mechanisms allows the model to locate
interesting information and suppress useless information. Te
commonly used attention mechanisms include SENet, CBAM,
ECANet, etc. In this paper, we embed each of these three at-
tention mechanisms at the same location to improve the de-
tection accuracy during the experiment. Before the neck part,
the three sizes of image feature information output from the
backbone network are input into the attention mechanism
module so that their features are given weight information.Te
YOLOv5 algorithm with the addition of CBAM increases the
number of computational parameters by less than 0.01%, has
the highest detection accuracy, and has the best detection efect
on the features generated during the combustion of lithium

battery. Te comparison of picture detection results using
SENet, ECANet, and CBAM attention mechanisms is shown in
Figure 12.

Te data in Table 5 obtained by comparing the algorithm
models based on diferent backbone networks, diferent
residual structure techniques, and convolutional kernel
bases and adding diferent attention mechanisms using the
same dataset in the same experimental environment are
shown in Table 5, which shows that the YOLOv5 algorithm
based on the CSPDarknet backbone network with residual
structure base 3, convolutional kernel base 64, and em-
bedded CBAM is the best. Te network model has the best
results for monitoring electric vehicle charging safety.

3.6. Comparison of Improvement Results. Due to the rapid
reaction of lithium batteries when burning, the temperature
rises sharply, which can easily ignite the surrounding ma-
terials and cause the whole car to catch fre. Terefore, we
have selected images of the relevant cars burning to conduct
comparative experiments again and to test the universality
and robustness of the algorithm.

Figure 13 shows a comparison of the detection results of
the original, unimproved, and improved algorithms, re-
spectively. Te improved algorithm can more accurately
mark the location of the fames and detect smoke features

CSPDarknet

(a)

ConvNext-Tiny

(b)

ConvNext-Small

(c)

Swin-Transfomer

(d)

Figure 11: Comparison of YOLOv5 detection results under diferent backbone networks. (a) CSPDarknet. (b) ConvNext-Tiny.
(c) ConvNext-Small. (d) SwinTransfomer.

Table 4: Comparison table of evaluation index parameters of diferent backbone feature extraction networks.

Backbone network
Precision Recall F1

mAP (%) FPS
Fire (%) Smoke (%) Fire (%) Smoke (%) Fire Smoke

CSPDarknet 83.48 90.28 76.49 85.11 0.80 0.88 87.97 25.04
ConvNext-Tiny 88.54 95.63 55.38 66.79 0.68 0.79 83.19 27.58
ConvNext-Small 83.33 94.34 59.76 57.25 0.70 0.71 82.55 19.69
SwinTransfomer-Tiny 88.44 92.95 70.12 80.53 0.78 0.86 90.08 10.86
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(a)

(b)

(c)

Figure 12: Comparison of picture detection results using SENet, ECANet and CBAM. (a) SENet. (b) ECANet. (c) CBAM.

Table 5: Comparison table of evaluation index parameters of diferent backbone feature extraction networks.

Attentional
mechanisms

Precision Recall F1
mAP (%) Params

Fire (%) Smoke (%) Fire (%) Smoke (%) Fire Smoke
SENet 91.81 92.95 84.86 92.75 0.88 0.93 93.88 47.229M
ECANet 89.57 94.16 82.07 92.37 0.86 0.93 94.00 47.057M
CBAM 88.51 95.31 82.87 93.13 0.87 0.94 94.09 47.401M

(a) (b) (c)
Figure 13: Continued.
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that the original algorithm could not detect. Te accuracy of
detection is also signifcantly improved compared to the
unimproved algorithm.

4. Conclusions

A feature target detection algorithm that realises the real-
time monitoring of targets including fame and smoke in
complex scenes of the charging process of electric vehicles is
proposed for the potential safety issues with electric vehicle
charging. In addition, the best target detection model for EV
charging safety monitoring scenarios is derived after ex-
perimental comparison and analysis, and CBAM is added to
the model to improve it. Finally, the enhanced algorithm
mAP is able to surpass a number of well-known target
detection algorithms in terms of evaluation index perfor-
mance, detection accuracy (94.09%), anti-interference ca-
pability, and real-time performance. It can be inexpensively
ported tomobile devices for real-timemonitoring, providing
a creative and practical solution for the safe operation of
electric vehicle charging stations.

In addition, the algorithm can also be applied in the
future to unmanned charging stations, the production,
transport and storage of lithium battery, and other real-time
safety monitoring scenarios, as well as the burning char-
acteristics of lithium battery in public areas to provide se-
curity for lithium battery-related use scenarios.

Abbreviations

YOLO: You Only Look Once
CBAM: Convolutional block attention module
mAP: Mean average precision
F1: F1-score
FPS: Frames per second
R-CNN: R-convolutional neural network
RPN: Region proposal network

SSD: Single shot multibox detector
RepVGG: Re-param visual geometry group
CSPNet: Cross-stage partial network
PANet: Path aggregation network
SPP: Spatial pyramid pooling
SENet: Squeeze-and-excitation networks
ECANet: Efcient channel attention module networks
MLP: Multilayer perceptron.
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