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Te development of the ffth generation (5G) and sixth generation (6G) wireless networks has gained wide spread importance in
all aspects of life through the network due to their signifcantly higher speeds, extraordinarily low latency, and ubiquitous
availability. Owing to the importance of their users, components, and services to our everyday lives, the network must secure all of
these. With such a wide range of devices and service types being present in the 5G ecosystem, security issues are now much more
prevalent. Security solutions, are not implemented, must already be envisioned in order to deal with a range of attacks on
numerous services, cutting-edge technology, and more user information available over the network. Tis research proposes the
dual integrated neural network (DINN) for secure data transmission in wireless networks. DINN comprises two neural networks
based on sparse and dense dimensions. DINN is designed for any presence of deep learning-based attack in a physical security
layer. DINN is evaluated considering the various machine learning attack such as basic_iterative_method attack, momentu-
m_iterative_method attack, post_gradient_descent attack, and C&W attack; comparison is carried out on existing and DINN,
considering attack success rate and MSE. Performance analysis suggests that DINN holds a higher level of security against the
above attacks.

1. Introduction

Te introduction of the frst generation of cellular networks in
the 1980s marked the beginning of the growth of wireless
communication technology (1G).Te development of 2G, 3G,
and 4G cellular networks has led to substantial improvements
in the telecommunications and networking sectors. In 2020,
initially the ffth-generation (5G) wireless technology came
into light, whilst software development goes on until 2025.
Te cloudifcation of networks built utilizing a microservices
architecture is the most crucial aspect of 5G. As a result,
management functions may be automatically learned and
applied as needed. Tis permits the abstraction of physical
resources to logical and virtual contexts.

Te development of next-generation networks, also
known as 5G and beyond, as well as the growing demand for
new communication technologies have both been widely
watched in recent years by researchers, corporations, and the
general public. ITU predictions [1] predict that NextG-based
mobile data trafc would eventually reach tens of thousands
of exabytes annually. Next-generation networks, which aim to
connect billions of devices, systems, and applications, will
enable future applications including delay-sensitive Internet
services like digital twins, virtual reality, the metaverse, in-
dustry 4.0, autonomous cars, online education, and eHealth
services. Tese applications are made possible by NextGen
networks’ [2] improved communication, processing, and
artifcial intelligence (AI) capabilities. AI is one of the 34
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signifcant NextG network technical advancements that must
be addressed to overcome upcoming 6G networks consist of
issues with security and privacy [3]. Te recently proposed
innovative 6G architectural framework is prone to a number
of security vulnerabilities. To solve security and privacy issues,
6G intelligent networking concepts make use of existing
technologies such as blockchain, VLC, TeraHertz (THz), and
quantum computing. Physical layer security (PLS), network
information security, application security, and deep learning-
related security should all be considered while analyzing 6G
security challenges.Tere are several methods [4] that may be
used to address the security and privacy concerns in 6G
networks. Te unusual 6G design framework may provide
several security issues, as was previously mentioned. Tere is
a lot of interest in incorporating straight-forward technology
into wireless intelligent networking paradigms, including as
blockchain, VLC, TeraHertz (THz), and quantum computing,
to solve security and privacy problems [5]. Deep learning
security, network information security, application security,
and physical layer security are all required for 6G security
(PLS) [6]. Te motivation’s objective [7] is to further in-
vestigate the past security system faults in preparation for the
upcoming security system. It is simple to learn about the many
security challenges that mobile networks confront since these
attacks commonly undermine the system or protocol that the
authors are unaware of throughout the design process. Tese
shortcomings [8] have been looked at in prior attacks on
previous generations. Te core network must often undergo
updates and various sorts of maintenance in order to address
security issues. Moreover, the buyers oppose this kind of re-
placement technique resulting in higher costs. In the initial
stage, these issues are not fxed in [9], and hence they become
the primary target for upgrading the system in the core network
and there are a lot of ways to fx it. Mostly, the vendors here
oppose the replacement at a great cost. Tese issues are not
fxed; henceforth, the primary target upgrades the wireless
network systems, which forms the basis for future research.

Future security systems [10] should often be upgraded in
response to security concerns to avoid the exploitation of old
vulnerabilities. Tese attacks typically expose vulnerabilities in
protocols or systems that their developers have not addressed.
Learning from such attacks may facilitate understanding of
how successive mobile network security developments are
leveraged to address known vulnerabilities highlighted by
attacks in earlier generations. Basic network operations must
frequently be modifed, for instance, to fx faws in the au-
thentication protocol that have been uncovered by security
intrusions. Yet, because of the huge cost, the vast majority of
suppliers are opposed to such a replacement. As a result, these
disclosed vulnerabilities suggest potential targets for wireless
networks or act as a foundation point for additional research.
Hence, considering the security vulnerabilities based on the
deep learning phenomena, this research aims to develop
a secure framework. Furthermore, the research contribution is
given as follows:

(i) Tis research work designs and develop DINN (dual
integrated neural network) for a secured wireless

network against various machine learning-based
attacks.

(ii) DINN comprises two distinctive neural networks,
a frst neural network is densely connected in nature
and the second neural network is based on sparse
connection. Furthermore, these both are inter-
connected to predict the attack.

(iii) DINN is evaluated on attack success rate and mean
square error considering the major deep learning
attack such as basic_iterative_attack, momentu-
m_iterative_attack, post_gradient_descent attack,
and C&W attack.

(iv) Comparison is carried out with the existing network
to prove the DINN efciency against the diferent
attacks mentioned above.

Tis research is organized as follows. Section 1 starts
with the background of the wireless network along with the
security and its signifcance towards the data transmission.
Furthermore, obstacles and criteria for designing the secured
network concerning the physical layer are discussed. Section
2 presents a discussion of various existing secured mecha-
nisms along with its shortcoming. Section 3 presents the
security framework of dual integrated neural network ar-
chitecture along with mathematical modeling and algo-
rithm. Furthermore, DINN is evaluated in Section 4
considering attack success rate and mean square error. In
Section 5, conclusions are drawn.

2. Related Work

In cellular networks, security and privacy have been a major
concern due to the variety of uses for data transmission such
as video, audio, or text. A recent survey has mainly focused on
5G security and major research has been on the physical layer
security with active eves discussed in [11–14], pilot spoofng
attack was carried out for MMS (multigrain multicasting
system) with particular downlink strategy. In [15], imperfect
radio frequency impact has been studied on a particular
adjustable secrecy rate. Furthermore, the authors in [16]
develop secure transmission considering the spatially corre-
lated channels; the authors in [17] focused on analyzing
through utilizing the artifcial noise inclusion in transmission
and trying to achieve a particular secrecy rate. In general, Aps
induces the artifcial noise sequence in given downlink signals
for preventing the eves from any kind of wiretapping without
any MTs [18] having an aware sequence. Moreover, a se-
quence transmission tends to decrease the achievable rate;
however, it provides security due to the use of artifcial noise
sequence though it has a huge negative impact on less rate.
Furthermore, the authors in [19] developed a novel algorithm
for secrecy rate maximization, whereas in [20] power transfer
along with wireless transmission is assumed for eves har-
vesting the energy and violating the confdential message at
the same time. Furthermore, the author also claimed it for
being immune towards active eavesdropping. Moreover,
a recent study has been divided into three distinctive
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categories on the wireless network thus researcher believed
that increasing the signal strength among the users through
observer channels is very much important for the prevention
of eavesdropping and various attacks. In [21], the transmitter
shares the information signals with the receiver for learning in
advance about the communication channel and should have
major secrecy about CSI (channel state information). Fur-
thermore, unpredictablemodulation is another popular attack
that makes it more difcult for an observer for predicting the
next signal. Various methodologies like in [22, 23] used
similar mechanisms with an improvised version of it. For
instance in [24], ofers a method in which the sender employs
several random frequency shifts in addition to the standard
pilot sequence or frequency hopping to prevent eavesdrop-
ping. A novel covert communication technique called friendly
jamming deceives listeners on the transmission channel by
inserting fake interference signals into the null space of a real
user channel. In [22, 23], the physical key generation of
communication-specifc secret keys (CSI) is made possible by
channel state information, which makes advantage of the
entropy of unpredictability in transmit-receive channels [24].
To authenticate the broadcast against unreliable partners, the
authors of [25, 26] suggest a physical key exchange between
the broadcasted and authorized users. Nevertheless, including
the encryption and decryption inside the precoding may
decrease the efcacy of the transmission and raise the pos-
sibility of internal assaults (i.e., the eavesdropper is one of the
legitimate users). Although the majority of systems still
struggle with excessive energy consumption, using AI/ML
technologies (such reinforcement learning [27]) to comple-
ment CSI knowledge and apply pertinent defense methods,
such as channel hopping, is an emerging prospect. It should
be stressed that raising the level of secrecy might greatly
limit jamming attacks. It is difcult for an attacker to cause
congestion in a communication channel without precise
knowledge about communication signals between the
transmitter and the authorized receiver given the extremely
high cost of overriding all frequencies in modern broadband
wireless channels [28, 29]. Frequency-specifc assaults have no
impact on the functionality of the receiver or inclusive
transmitter due to the frequent frequency changes (frequency
hopping). Te surveys like [30–32] ofer further information
on jamming attacks and viable defense.

3. Proposed Methodology

A dual neural network comprises two diferent neural net-
works, i.e., frst neural network is designed based on the dense
and the second neural network is on the sparse dimension.

Figure 1 shows the proposed workfow of dual integrated
neural network architecture which comprises two neural
networks. In the above workfow, following components are
used:

(i) Input: the input data are taken.
(ii) First Neural Network: the frst neural network is

responsible for extracting features from the input
data.Tis is carried out using a series of convolution
and pooling layers. Convolution layers perform

mathematical operations on the input data to ex-
tract features. Pooling layers reduce the size of the
feature maps while preserving the most important
features.

(iii) Loss Function: the loss function is used to measure
the accuracy of the model’s predictions. Te loss
function is minimized during the training process.
Tere are many diferent loss functions that can be
used, such as the cross-entropy loss function and the
mean squared error loss function.

(iv) Second Neural Network: the second neural network
takes the features extracted by the frst neural
network and classifes the data. Tis is carried out
using a SoftMax layer. Te SoftMax layer outputs
a probability distribution for each class. Te class
with the highest probability is the predicted class.

(v) Prediction: the model outputs a prediction for the
input data.

(vi) Deployment: the model is deployed at a base station.
Tis allows the model to be used to make predictions.

3.1. Problem Statement. Te research aims to address the
pressing security concerns in next-generation wireless
networks by proposing a novel security framework called
dual integrated neural network (DINN).Te goal is to secure
data transmission while maintaining high efciency in
communication for applications like digital twins, virtual
reality, metaverse, industry 4.0, driverless cars, online ed-
ucation, and eHealth services. DINN combines two neural
networks, densely connected and sparse connection-based,
to efectively predict and counter machine learning-based
attacks, such as basic_iterative_attack and C&W_attack.Te
research focuses on evaluating DINN’s performance against
various attacks, comparing it with existing security mech-
anisms, and exploring the potential of AI/ML technologies
like reinforcement learning for dynamic threat adaptation.
Ultimately, this study seeks to contribute to the development
of robust and efcient security solutions to meet the chal-
lenges of 6G networks and beyond.

3.2. System Modeling and Preliminaries. As depicted in
Figure 1 which is a single-cell wireless network, where the
base_station N onverses with an authenticated user M, amidst
the occurrence of the attacker Z. In this instance, the attacker
and the authorized user each send a single signal to the
base_station. Te base_station here is equipped with Z signals,
in midway where the authenticated user and the attacker
consist of a same single signal. Appropriately, we can defne
that μ � M, Z{ }. Te transmissions here amid the authenti-
cated user and the base_station are in synchronization with
each other. Te base_station here is responsible to determine
the uplink transmission in the presence of the training symbol.
Te training symbol set of the index is denoted as Ww in the
framew. Let È the list of the training signals for uplink training.
Similarly, the assumption of È in aN shift keymechanismwith
N training signals is shown as follows:
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È � lj2k/N: k ∈ ƿ, 0≤ k ≤N − 1􏽮 􏽯. (1)

Here, the training is done by the g ∈Ww, upon as-
sumption of the authenticated user to transmit a random
signal eM,w,k ∈W, which is not probable by an attacker. Te
standard applications, the collection of training signals set W

used by the authenticated users that deals with technical
stipulations. Te assumption made here such that attacker
has previous knowledge of W. Tis is necessary for training
signal transferred to the authenticated user by a training
measure. One specifc approach that this attacker can apply
transmission of a signal selected from W, depicted as
eM,w,k ∈W that contaminate the uplink training trans-
mission, to reduce the accuracy of channel state information
derived from the base_station.

eM,w,k � eM,w,ke
∗
M,w,keM,w,k � ew,keM,w,k. (2)

Here, ew,k � eM,w,ke∗M,w,keM,w,k ∈W and eM,w,ke∗M,w,k ∈W

3.3. Proposed DINN Algorithm for Secured Transmission.
Te main aim of the proposed model is to present the se-
cured network termed as ƿ, in coordination with the
adversarial machine learning defense. Te model was de-
veloped in defense of the ML platform to augment the
strength of the classifcation model. In the frst phase, the
neural network α along with a temperature (T) through
a parameter to soften the probability of outputs fed to the

deep learning model. Tis is carried out in a specifc way as
shown follows:

Ƥsm(Υ, 5) �
h
Υ/5

􏽐
n
x�1h
Υ(x)/5

. (3)

Here, n is the number of labels and Υ’s the output of the
last layer fed to the model. Here, WMn. fn−1 + en, where
WMn is the weight matrix and fn−1 is to activate the last
layer. In the second step, the neural network [33, 34] is
trained using the output from the SoftMax probability
function α through a low-temperature parameter. Te main
objective of this function is as follows:

Γα(5) �
1
N

􏽘

N

x�1
􏽘

n

y�1
sxy. logƤsm Υxy, 5􏼐 􏼑

�
1
N

􏽘

N

x�1
􏽘

n

y�1
sxy. log

h
Υxy/5

􏽐
n
x�1h
Υxy/5

.

(4)

Here, N denotes how many training samples there are,
sxy is employed in training and Υxy is the log function. Te
neural network β and neural network’s objective function is
given by the following equation:

Γα(5) � −
1
N

􏽘

N

x�1
􏽘

n

y�1
sxy. log

h
Υxy/5

􏽐
n
x�1h
Υxy/5

. (5)
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Figure 1: Proposed workfow.
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Te ƿ is a method wherein the model is trained that is
developed for a defense that in turn augments the strength of
the models, which in turn is trained by the target generated
by the α neural network model. To minimize the objective of
the function the model is trained on this basis. Te α neural
network model is a typical extended deep neural network
model whereas the neural network β is a small and narrow
neural network. Te ƿ consists of the following two phases:

(1) To train the neural network α
(2) ƿ from neural network α to neural network β

Te ƿ procedure is carried out through the neural
network α capability, the neural network α’s activations, or
the midway representation of the neural network α.
Computer vision tasks involved deep learning mechanisms
for many diferent processes such as image classifcation,
object and action detection, segmentation of the scene and
image generation. Deep neural networks need a large
amount of training data that is not available for new phases
or mechanisms. Various techniques are suggested below to
address the issue that can train a smaller neural network β
to imitate the prediction of a wide range of appropriate
neural network β. ƿ has been widely applied in the domain
of smart systems like that as knowledge-based and rule-
based systems that reduce the model’s size and enhance
system performance by raising the standard of the systems
knowledge. In the neural network α and neural network β,
the diferences are distinguished in the form of regulari-
zation which is a necessary measure for over ftting. Te
complete step by step approach has been discussed in the
Algorithm 1.

3.4. Detection through DINN. Te detection region used is
based on a scalar matrix Gh,x towards the base_station,
enhancing the system performance by raising the standard
of the systems. Here, Gh,x is the sum obtained by the N −

phase shift keying scaled by fDx,0,w with Gaussian noise
along the mean 0 and variance denoted by σ2Dx,0,w. Te
base_station previous to the training phase, has not had
access to crucial information on the small-scale fading
coefcient. However, this states that the fDx,0,w and σ2Dx,0,w

before analyzing the decision of the jamming signals. Te
authenticated user and the attacker do not get along ahead
of time, for justifcation which focuses that the base_station
precisely determines the large-scale coefcient αα and αα,O,
given the modulation for N − phase shift keying is large
enough for Z signals, the detection region determines the
circle of radius for σ2Dx,0 amongst the centers that are scaled
for N − phase shift keying with the relevant factor as��

W
√

fDx,0,m. Te efects here are minimized for detecting
accuracy, and we also state the Z, where Z≥ 2, the training
symbols utilized for attacker detection. Te detection re-
gion is based on N − phase shift keying for Z training
symbols.Te step by step approach of detecting the attacker
has been discussed in Table 1.

Te main focus here is levied on the relevant attacker
detection decision, the advantages, the cost of overhead, and
related processing complexity. Te pairs of training symbols
utilize temporal diversity.

3.5. Analysis of Probability Detection. Te probability of the
proposed method with Z signals at the base_station expands
broadly in order to obtain the characteristics of the efect
placed on the channel model. Te equation obtained is
shown as follows:

Gh,x � eM +
nw,m

Dw,m

. (6)

Te proposed detection region is proportional with
VDx,0,m � σ2Dx,0,w/|fDx,0,m|2. Te probability detection mech-
anism is equalized to zero where VDx,y,m,w ≤VDx,0,m,w this
enhances the ratio of VDx,y,m,w/VDx,0,m,w is large and wide. We
can conclude that VDx,y,m,w/VDx,0,m,w � VDx,y,m,m/VDx,0,m,m

for all w. Te efciency of the proposed model allows fexible
signal jamming detection.

4. Performance Evaluation

Security is considered one of the major concerns in network
functions especially with the development of AI domains
such as deep learning. Tis research work designs an ar-
chitecture for providing security against diferent types of
attacks at the physical layer. Tis section of the research
evaluates the proposed model DINN; evaluation is carried
out considering the system confguration of 16GB RAM,
16GB NVIDIA CUDA enabled graphics along with deep
learning libraries.

4.1. Evaluation Parameter and Model Training. DINN is
evaluated considering the ASR (attack success rate) and MSE
(mean squared error); ASR is defned as the test sample to
mispredict the attack. A higher attack success rate indicates
the model is less secure. Figure 2 shows the training of
nonsecured wireless network, Figure 3 shows the MSE of
nonsecure network. Figures 4–7 are the extensions of Figure 3
which elaborates the entire concepts of proposed training loss
and MSE of frst and second training datasets.

4.2. Attack Evaluation

4.2.1. Basic_Iterative_Mechanism_Attack. Tis is considered
as one of the basic attack which tends to compute the loss
function with respect to given input. Figure 8 shows the
comparison of existing unsecured network and proposedDINN
model over various power attack (0.5, 1, 2, and 3) considering
the attack success rate.Trough Figure 8, it is observed that rise
in attack power increases the attack success rate.

Figure 9 shows the MSE comparison of existing wireless
network and DINN WN (wireless network); higher MSE
(mean square error) indicates the less secured network.
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Trough Figure 9, it is observed that as the attack power
increases, MSE increases in existing wireless network,
whereas MSE for proposed DINN remains stable.

4.2.2. Momentum_Iterative_Method_Attack.
Momentum_iterative_method_attack is inherited from the
basic_iterative_mechanism which further introduces the
momentum term and late integrate it to compute the loss
functions. Figure 10 shows the comparison of existing
network and proposed DINN WN over the various power
attacks as it shows the increase in power attack increases the
attack success rate whereas proposed DINN remains stable
over diferent power attack.

4.2.3. Projected_Gradient_Attack. Projected_gradient_attack
is considered as one of the hazardous attack in the network
which is based on the gradient; after making an efort to
determine the loss function with regard to the input, the
attacker creates a duplicate by integrating the gradient sign.
Figure 11 contrasts attack success rates while accounting for
the anticipated gradient attack.

Figure 12 shows the MSE comparison over the post
gradient descent attack over various attack power.

4.2.4. C&W Attack. C&W attack is another important attack
based on the zero-sumgame approachwhere total value is fxed
and winner of the games gets the total value and loser gets

Input: neural network α, neural network β, loss function �, learning parameter Ѓ Total number of epochs È
Output: neural network β
(1) Start
(2) Neural network β�weight-Initialization
(3) for h � 1 to H do
(4) Rearrangement of the Dataset
(5) for x � 1 to | Dataset | do
(6) Extract the xth sample (ax, bx) from Dataset
(7) Forward propagation of the sample ax by the neural network α to determine the output probabilities bx evaluate the loss

through the output probability bx Backpropagate the loss through the neural network β.
(8) Weight-updating of the neural network β by the learning parameter Ѓ.
(9) end for
(10) end for
(11) return neural network β

ALGORITHM 1: DINN.

Table 1: Detection approach.

Step 1

Te base_station here chooses an appropriate subset of Z radio signals through one
or more radio frames that are active at the same time.Te base_station, respectively,
consists of the number of Z training symbols selected from a set. Te maximum
pairs for training symbols are
Z(Z − 1)/2

Step 2

Here, each pair necessary for the training signals, the training signal h for the radio
frame w in frame Z and training symbol x in radio frame m, i.e., h ∈Ww and
x ∈Wm, the base_station here is responsible for performing the following steps:
(1) Evaluation of the scalar metric Gh,x

(2) Evaluate Vz � |Gh,x −
��
W

√
fDx,0,m

exz2Π/N
| by considering each

∈ 0, 1, · · · , N − 1 ∈ 0,1, · · ·,N − 1, the Vz is the distance from the scalar-valued to
receive signal to the Zth scale N-phase shift keying
(3) Te minimum distance that is defned is given by Vmin � min0≤z≤(N−1)Vz

(4) If Vmin < σ2Dx,0, the base_station here trains the symbols that are not being
contaminated, else it states that the signals are contaminated, and there an attacker
exists

Step 3 Te major consideration for the detection of results for pairings, the base_station
evaluates the presence of jamming signals

Step 4
Te base_station decides whether the attacker is present on the entire range of the
frames which are widely focused on the attacker detection system parallel with the
formed pairs
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nothing. Figure 13 shows the attack success ratio comparison of
existing network and DI_NN_network. It presents the per-
formance comparison between the nonsecured” network and
the “DINN_secured_network.” Te “nonsecured” network
achieves a performance of approximately 0.079803, while the
“DINN_secured_network” demonstrates a higher performance
of approximately 0.00693. Tis indicates an improvement in

performance for the “DINN_Secured_network” over the
“nonsecured” network, suggesting that the security measures
implemented by the “DINN_secured_network” have positively
impacted its overall performance.

Figure 14 shows the mean square error comparison of
existing network and proposed secured wireless network. It
presents the performance comparison between the “non-
secured” network and the “DINN_secured_network.”
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Figure 2: Training of nonsecured model on loss.
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Figure 4: Proposed frst training graph of Loss.
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Figure 5: Proposed frst training graph of MSE.
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Te “nonsecured” network achieves a performance of ap-
proximately 0.116435, while the “DINN_secured_network”
demonstrates a higher performance of approximately
0.00693. Tis indicates an improvement in performance for
the “DINN_secured_network” over the “nonsecured” net-
work, suggesting that the security measures implemented by
the “DINN_secured_network” have positively impacted its
overall performance.

4.3. Comparative Analysis and Discussion. Table 2 displays
the attack success rate improvisation (in percentage) for four
diferent attack mechanisms, namely, basic iterative

mechanism attack, momentum iterative method attack,
projected gradient attack, and projected gradient attack. At
each attack power level (0.5, 1, 2, and 3), the “attack success
rate improvisation” column demonstrates the percentage
diference between the attack success rates of the respective
attack mechanism and the baseline attack mechanism.
Negative values indicate that the corresponding attack
mechanism exhibits lower attack success rates compared to
the baseline mechanism. MSE is used to quantify the average
squared diference between the original input and the
adversarial perturbation generated by the attack mechanism.
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Figure 6: Proposed the second training of Loss.

0 200 400 600 800 1000 1200
Epochs

MSE

M
SE

0.05

0.10

0.15

0.20

0.25

0.30

Train last value: 0.0236
Test last value: 0.0253

Figure 7: Proposed the second training of MSE.
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It provides insights into the distortion introduced by the
attacks and helps in evaluating the robustness of the
defended model.

5. Conclusion

Tis research designs and develops a DINN for securing the
physical layer for data transmission in the network. DINN
integrated the two architectures: frst neural network archi-
tecture are based on the sparse connection and second one is
based on the dense connection, both are interconnected to
optimize the loss fucntion. DINN based wireless network is
evaluated consideirng the two security parameter, i.e., attack
success rate and MSE considering the diferent attack such as
basic_gradient_mechanism, momentum_iterative_mehod_a
ttack, projected_gradient_descent attack, and C&W attack.
Moreover, the performance evaluation suggests that proposed
DINN provides the higher security than the existing wireless
network consideirng the evaluation parameter of attack
success rate andmean square error.Te proposed consistently
show improved performance, with improvisation percentages
ranging from approximately 80.48% to 93.14% compared to
the baseline attack. DINN observes the better security and
higher performance rate against the high adversial attack, and
there are other types of deep learning-based attack which
needs to be considered for future work.
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