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Tis paper proposes modifed Karhunen–Loeve transform with total least square estimation of signal parameters using rotational
in-variance technique (MKLT-TLS-ESPRIT) to approximate the low-frequency oscillatory modes. MKLTdecreases the impact of
highly correlated additive colored Gaussian noise (ACGN) from the signal by diferentiating the correlation matrix w.r.t from the
fnal time instance. A quantitative study of the suggested method with other estimation methods is used to evaluate the ef-
fectiveness of the proposed method. Monte Carlo simulations with 50,000 runs are conducted to test the robustness of the
estimation scheme for MKLT-TLS-ESPRIT. Te evaluation of the efciency of the proposed method in real-time perspective, the
two-area system, and New England sixty-eight bus test system has been considered. Te analysis shows that the suggested
methodology correctly measures the interarea modes and lowers their mean and standard deviation to a minimum value.

1. Introduction

Wide-area integrated regional power networks are com-
monly afected by interarea oscillations (IAOs) when they
are exposed to shedding of load, line loss, and fault. Such
oscillations will lead to instability within the [1] inter-
connected networks. Small signal stability analysis (SSSA)
utilizes state equations to approximate this IAOs by line-
arizing the power system. But, this technique sufers with
heavy numerical burden, inconsistency in parameter esti-
mation, and large computational time. Ten, IAO modes
need to be defned directly from the measured signal
employing online techniques [2].

Te use of measuring instruments, particularly wide area
measurement systems (WAMSs), is drastically increased in
the few last decades [3]. Tis allows higher precision IAOs
estimates in both of and online. Te online estimation
methods are categorized as parametric and nonparametric
approaches. Frequency estimation approaches, i.e., wavelet

transform (WT) and continuous WT [4, 5] whose behavior
is the same as a band-pass flter. In WT, changing the
window size allows formultiresolution for both slow and fast
frequency response. Multidimensional rotating frame
measurements for synchronous machines during operations
are available for mode estimation in [6]. Although WT can
identify both long- and short-duration disturbances, its
accuracy is dependent on the decomposition levels used and
the mother wavelet used. Tere is currently no defned
methodology for selecting the mother wavelet. Approaches
addressed in the [7] like robust modifed prony (RMP) and
augmented prony (AP) [8] approximate the entire signal
parameters by a provided sampled sequence, i.e., duration,
direction, intensity, attenuation factor, and damping ratio.
However, RMP and AP have a signifcant computing time
problem, and AP does have a certain latency in large power
system statistical analysis. Data-driven stochastic subspace
identifcation (data-SSI) state space technique proposed in
[9], which functions well under both ringdown and ambient
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oscillations in power system. Since data-SSI concentrated on
both estimation of the mode and selection of the model
order, its computational time period is signifcant, which can
contribute to the loss of synchronization.Te authors of [10]
proposed a new notch fltering approach along enhanced
phase-locked loop to identify the damping factor. Another
robust subspace, i.e., signal parameter estimation using
rotational in-variance technique (ESPRIT) and its higher
variants like modifed TLS-ESPRIT [11, 12] are quite ef-
fective in terms of time-frequency resolution, fast compu-
tational time, and less sensitive to outliers. It is also possible
to use the KLT-TLS-ESPRIT subspace-based technique [13],
which is used for IAO dynamic phasor estimation.

Tis paper proposed an estimation method that fully
denotes the signal as well as maximally compressed the
information held by the signal. Tis proposed MKLT-TLS-
ESPRIT technique can be extended to probing signals as well
as for ringdown and ambient oscillations. It may work for
small as well as huge power systems. Te MKLT can be
applied to estimate stationary as well as nonstationary
signals.

For an efcient and precise measurement of the phase,
the signal measured from a PMU must be held noise free.
But because of the existence in outliers, the higher order
harmonics, as well as unwanted spikes, get devolved in the
signal. Employing a Hampel flter (HF), this spikes, and
higher-order frequency components can be from a signal
without smoothing the data. Te remaining components of
the noise are converted into highly correlated ACGN.
Figure 1 describes the steps for MKLT implementation.

Te contributions of the paper are as follows:

(i) Te proposed technique efectively eliminates the
infuence of ACGN and compresses the information
carried out by the signal maximally using samples
decomposition onto a set of correlation matrix
eigenvectors

(ii) Among various signal and noise subspace ap-
proaches presented over here, this proposed ap-
proach is more robust to outliers with the fastest
computation

(iii) MKLT-TLS-ESPRIT performs more efciently than
the above methods when the signal strength buried
with noise is very low or at SNRs 30 dB and 10 dB

(iv) Te efcacy of the proposed approach for small and
midsize power system is verifed using IEEE
benchmark two-area and IEEE sixteen-machine
sixty-eight bus systems

(v) Te proposed technique is evaluated under diferent
complex conditions to check its robustness, such as
the power system’s unexpected detached load and
three-phase short-circuit failure

Te rest of the paper is structured according to the
description. Section 2 discusses with the correct signal model
the LFOs, also defnes the impact of outliers in the power
system, and also demonstrates the use of HF to eliminate
outliers from the power signals. Section 3 discusses the use of
MKLT-TLS-ESPRIT for estimation of inter-area mode.

Section 4 sets out a step-by-step formulation of MKLT and
TLS-ESPRIT for estimation of mode. Section 5 describes the
results and discussions. Section 6 presents the functional
applicability of the proposed technique using the IEEE
benchmark two-area system. Section 7 includes the expla-
nation of the efcacy of the proposed technique for IEEE
sixteen-machine sixty-eight bus system, and the paper ends
Section 8.

2. Problem Formulation for LFOs in
Power System

Te MKLT-TLS-ESPRIT proposed a new technique, which
incorporates the [14] KL transformation theory and TLS-
ESPRIT rotational invariance principles to estimate
LFO modes.

2.1. Modeling of Power Grid Oscillations. Te oscillations
which address the dynamic conditions of the power grid
represented using sinusoids which are exponentially dam-
ped. We called the active power, i.e., r(n) fows in the IEEE
benchmark two-area network tie-lines and also the IEEE
sixteen-machine sixty-eight bus system. Te oscillations
from the power grid modeled are as follows:

r(n) � 
K

k�1
ake

bkn cos nωk + ϕk( . (1)

Two deterministic quantities ( ωk ) and ( ak ) convey
frequencies and amplitudes. Te phases ϕk  are un-
correlated random variables, evenly spread over (0, 2π),
where attenuation component bk  and total sinusoid count
K if the AWGN sequence, i.e., w(n), infuences the sinu-
soids, where E[|w(n)|2] � σ2ω of zero mean and variance.Te
noise-component signal can be described as

R(n) � r(n) + w(n) � 

L

j�1
αje

βjn
+ w(n), (2)

where βj � bj + iωj, αj � (aj/2)eiϕj , and L � 2K.

2.2. Efect of Outliers in Power System. Te building of au-
tomated, interconnected regional electric power networks
results generation of diverse and complex outlier data in the
power system. Major causes of outlier are as follows:

(1) Signal acquisition capability: the limited potentiality
of the sensors and WAMSs

(2) Power system failures: the power system failures
such as transmission line outage and faults in the
transmission lines

(3) Human infuences: the involvement of the human in
the signal measurement and control process may lead
to the production of outlier data signal measurement

For a single out-of-scale measurement, the sample
means of the estimation can be afected when the data se-
quence includes the outliers.
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2.3. Removal of Outlier Using Hample Filter. Te HF is
a segment of the group of decision flters which uses the
Hample identifer (HI) to remove the outliers from the input
data sequence. Te HI works on the principle of the three-
sigma rule of statistics [15]. Te width of the measurement
window also plays a vital role outliers removal. Te steps
followed for the removal of outlier are described by the
Algorithm 1.

3. Steps to Implement Proposed Approach to
Estimate the Power Grid Oscillations

Let N1 be the recent power measurements received from the
tie-line using PMU. It can be expressed by a signal and noise
vector using (2).

R(n) � [R(n)R(n + 1) . . . R(n + M − 1)]
T

� r(n) + ω(n),

(3)

whereω(n) and r(n) describe noise and signal vectors. Data
matrix (Y) can be constructed by using the vector R(n).

Y � RT
(n)  �

R(0) R(1) · · · R(M − 1)

⋮ ⋮ ⋮ ⋮

R(n) R(n + 1) · · · R(n + M − 1)

⋮ ⋮ ⋮ ⋮

R(N − 1) R(N) · · · R(N + M − 2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

Signal vector r(n) can be descried using time-window
frequency vector V given as follows:

R(n) � 
L

k�1
αkv fk( e

βkn
+ W(n) � VΦnα + W(n), (5)

where the time-window of length-M of the frequency vectors
holds by the matrix V with L no. of columns.

V � v f1(  v f2(  . . . v fL(  , (6)

where v(f) � [1 eβ1 . . . e(M− 1)β1]. α contains the complex
sinusoid vectors αk for k � 1, 2, 3, . . . , Lϵfk. Te unitary
diagonal matrix Φ having phase-shifts between the adjacent
time samples of R(n) used to estimate the frequency given as
follows:

Φ � diag e
β1e

β2 . . . e
βL  � diag ϕ1, ϕ2, . . . , ϕL , (7)

where ϕk � eβk for k � 1,2,3, . . ., L.
Te signal vector r(n) can be described with the sub-

windowing process as rM−1(n) � VM−1Φnα.
Te formulation of matrix VM−1 is similar as that of the

V. Te matrix VM−1 can be represented as vM−1(f).
Using TLS-ESPRIT, the following matrices can be de-

fned using RM−1(n).

V1 � VM−1Φ
n andV2 � VM−1Φ

n+1
, (8)

where unstaggered and staggered windows are expressed as
V1 and V2. Frequency vectors of two subtime-window
correlate as V2 � V1Φ.

4. Application of Modified KLT for Interarea
Oscillating Mode Estimation

Te numerical code implementation of basic KLT approach
[16, 17] is limited due to its larger computational burden and
time. Te idea behind the MKLT is to diferentiate the
“dominant eigenvalue” of the autocorrelation matrix with
respect to the fnal instant “N” of the basic KLT approach.
Te basic KLT approach fxes up the fnal time instant to
N� 1, which restricts the basic novelty of KLT that described
by the fnite, positive real N as a new continuous variable
[12, 18].

Following steps need to be carried out to implement the
modifed KLT approach, i.e., the fnal variance of the pro-
jection coefcients.

Step 1 Consider the KLT of R(n) from (7) where
(0< n<N).

R(n) � 
∞

i�1
CiΨi(n). (9)

Step 2 First, using KLT the autocorrelation of sequence
(9) can be expressed at diferent time instants, i.e.,

E R n1( R n2(   � 
∞

j�1


∞

i�1
Ψj n1( Ψi n2( E CjCi . (10)

Step 3 Te independence property of the random
variable Ci, i.e., E(CjCi) � λiδji, where δji denotes the
Kronecker delta, defned as δji � 0 for j≠ i and δjj � 1,
and λi is the new positive number sequence which is
related to the variance of the corresponding random
variable Ci as follows:

Power System

PMU PDC Take a block of N1
most recent samples

TLS-ESPRIT

Outliers removal using
Hample Filter

Down sampling

Formulation of
data matrix

Generate the
autocorrelation

matrix R

Estimated the
order using

SVD

Perform Modified
Karhunen-Loeve to

Differentiate the
autocorrelation matrix

w.r.t. final time instant N

Figure 1: Steps for implementation of the proposed approach.
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σ2Ci
� λi � E C2

i > 0. (11)

Step 4 Using statistical orthogonal property of the
random variable Ci, i.e., E(CjCi) � λiδji and taking the
summation of both the time instant in one place, i.e.,
i � j, (10) reduced to

E R n1( R n2(   � 
∞

j�1
λjΨj n1( Ψj n2( , (12)

where E(CjCi) � λiδjj.
Step 5 As the random function R(n) has zero mean
value in the fnite time interval, we can replace the
instant n1 � n2 � n to get the variance from the au-
tocorrelation and indexing it by i, and (12) can be
expressed by referring (11)

E R2
(n)  � 

∞

i�1
λiΨ

2
i (n). (13)

Step 6 Using the property of orthogonality, Ψi(n)

should be normalized to one by integrating (13) on both
sides with respect to n for 0 to N


N

0
E R2

(n) dn � 
∞

i�1
λi 

N

0
Ψ2i (n)dn � 

∞

i�1
λi. (14)

Step 7 For this given zeromean random processR(n), it
can introduce the variance σ2R(n) of the R(n), i.e.,

σ2R(n) � E R2
(n)  − E

2 R(n){ } � E R2
(n) . (15)

Substituting (15) into (14) gives


N

0
σ2R(n)dn � 

∞

i�1
λi. (16)

Step 8 (16) shows that the right side of the summation
of eigenvalues λi must be the few functions of the fnal
instant N as left side, i.e., λi ≡ λi(N).

Step 9 Now, diferentiating both side of (16) with re-
spect to the fnal instant N yields

σ2R(N) � 
∞

i�1

zλi(N)

zN
. (17)

Te above result σ2R(N) is called the fnal variance
theorem. It shows that the fnal variance of any random
stochastic process depends upon the fnal instant N.
Sum of the series of frst-order partial derivatives for
eigenvalues λi(N) provides the fnal variance σ2R(N) with
respect to the fnal instant N.

4.1. Minimization of Complete Error by Utilizing Proposed
MKLT-TLS-ESPRIT Technique. Algorithm 2 can be
employed for estimation of modes by minimizing the total
error between estimated subspace and actual signal subspace
as suggested in [19].

5. Results and Discussion

Te recent N1 samples provided by the PMU and phasor
data concentrator (PDC) are considered for the IAO mode
estimation using the proposed approach. Te LFOs with
nonlinearity may have approximately a stationary signal to
achieve improved estimation. Te MKLT-TLS-ESPRIT
minimizes the SD and the bias of estimated modes. Te
approximation as an AWGN is regarded as a good analogy
for modeling the measurement uncertainty received from
the PMU’s. However, some ACGN is detected in mea-
surements because of the existence of an antialiasing flter
(AAF) (with cut-of frequency between 400 and 1000Hz)
and signal processing algorithms that use convolution to
estimate the phasors. At the performance, the ACGN is often
ignored. A down-sampler then holds those quantities for
further processing.

Additionally, a 10.24 s time window was used, referring
to the PMUwith the data rate of 512 samples (assuming data
rate of 50 phasors/second). Usually, the variance in PMU

(1) Consider the N1 samples of signal R(n) from (2).
(2) First, chose a moving window with odd length, which is composed of the current sample of the input signal and make the window

centers around the current sample.
(3) Next, for the each current window data, its standard deviation σi and local median mi would be computed.

medi an (mi) � R(i − l), R(i − l + 1), . . . , Ri, . . . , R(i + l − 1), R(i + l) 

StandardDeviation(σi) � κ×

median(|R(i − l) − mi|, . . . , |R(i + l) − mi|)

where κ is the scale factor which is given by κ � 1/
�
2

√
efrc1/2 ≈ 1.4826.

σi/k describes the median absolute deviation (MAD). For a normally distributed data, the scale factor (k) is equal to 1.4826, which
makes the standard deviation estimate a unbiased for Gaussian data.

(4) Recent sample would be compared with tσσi, where threshold value is given by tσ .
(5) If the flter identifes the current sample, Pi, then the HF replaces the median with current samples as follows:

y(i) �
R(i)|R(i) − mi|≤ tσσi

mi|R(i) − mi|> tσσi



With the increase of t, we can reduce the efect of HF over the signal. If t is 0, then the HF behaves as a regular median flter.

ALGORITHM 1: Steps for removal of outlier.
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measurements is assumed to be of 10− 4 p.u. [21]. Te North
American SynchroPhasor Initiative (NASPI) ofers stan-
dards for PMU and synchroPhasor measurements in dif-
ferent dynamic environments, such as energy variance
0.61 × 10− 4 p.u.

5.1. Test Signal Corresponding to Interarea Mode.
Simulations are conducted with a test signal having
frequency � 0.4Hz, magnitude� 1, and
attenuationfactor� −0.07.

Figure 2 shows the efect of HF to above-mentioned test
signal, i.e., interarea mode to minimize the outliers from the
signal and fnal fltered signal further carried out for the
process of frequency estimations. Figure 2(a) shows the
signal with 10 dB, and Figure 2(b) 30 dB noise afected test
signal and fnally fltered out with less variance using HF.

A statistical comparison of theMKLT-TLS-ESPRIT, QR-
TLS-ESPRIT, KLT-TLS-ESPRIT, RMP, and data-SSI for
SNRs 10 dB and 30 dB is mentioned previously. Te fre-
quency and attenuation factor distribution of a test signal are
shown in Figure 3. From Table 1, it is analyzed that the
MKLT-TLS-ESPRIT method approximated the standard
deviation and mean for the estimated frequency corre-
sponding to interarea oscillating modes are 60.02% and
98.92%, respectively, of that obtained from the data-SSI
approach and 60.51% and 99.47% for the KLT-TLS-
ESPRIT approach with SNR 10 dB. It is also found that the
standard deviation and mean of the estimated attenuation
factor for the proposed MKLT-TLS-ESPRIT approach are
approximately 76.99% and 54.93%, respectively, of that
obtained in case of data-SSI and 63.12% and 70.31% for KLT-
TLS-ESPRIT with SNR 10 dB. From Table 2, it is analyzed
that the MKLT-TLS-ESPRITmethod approximated that the
standard deviation and mean for the estimated frequency
corresponding to interarea oscillating modes are 59.68% and
99.4%, respectively, of that obtained in case of data-SSI and
55.02% and 99.67% for KLT-TLS-ESPRITwith SNR 30 dB. It

is also found that the standard deviation and mean of the
estimated attenuation factor for the MKLT-TLS-ESPRIT
approach are approximately 56.6% and 88.53%, re-
spectively, of that obtained in case of data-SSI and 36.31%
and 78.03% for KLT-TLS-ESPRIT with SNR 30 dB.

5.2. Test Signal Corresponding to Local Area Mode.
Simulation is conducted with a test signal having
frequency � 1.5Hz, maginitude� 1, and
attenuationfactor� −0.1

Figure 4 shows the efect of HF to test signal, i.e., local-
area mode to minimize the outliers of the signal and fnal
fltered signal further carried out for the process of frequency
estimations. Figure 4(a) shows the signal with 10 dB, and
Figure 4(b) shows the signal with 30 dB noise afected test
signal and fnally fltered out with less variance using HF.

A statistical comparison of theMKLT-TLS-ESPRIT, QR-
TLS-ESPRIT, KLT-TLS-ESPRIT, RMP, and data-SSI for
SNRs 10 dB and 30 dB is mentioned as follows.

Te frequency and attenuation factor distribution of
a test signal are shown in Figure 5. From Table 3, it is
analyzed that the MKLT-TLS-ESPRIT method approxi-
mated the standard deviation and mean for the estimated
frequency corresponding to interarea oscillating modes are
46.29% and 99.81%, respectively, of the corresponding
values obtained with data-SSI and 71.22% and 99.89% with
KLT-TLS-ESPRIT for SNR 10 dB. It is also found that the
standard deviation and mean of the estimated attenuation
factor for the MKLT-TLS-ESPRIT approach are approxi-
mately 48.9% and 79.52%, respectively, of the obtained in
case of data-SSI and 76.64% and 78.02% with ESPRIR +PM
for SNR 10 dB. From Table 4, it is analyzed that the MKLT-
TLS-ESPRIT method approximated that the standard de-
viation andmean for the estimated frequency corresponding
to interarea oscillating modes are 61.21% and 99.80%, re-
spectively, of the corresponding values obtained by applying
data-SSI and 97.38% and 99.91% with KLT-TLS-ESPRIT for

(1) Initially, signal vector R(n) from (3) is used to form a correlation matrix RR ∈ RN×N.
(2) Defnes MKLT of R(n) for a specifed data matrix Y as Ci � ΨT

i
Y

(3) Signal and noise subspaces can be obtained by disintegrating the Ψi i.e. Ψi � Ψs |Ψn , where Ψs represents signal subspace.

(4) Te sub-space of the signal is then decomposed into two smaller subspaces (M-1) as dimension Ψs �
Ψ1
∗ ∗ ∗ ∗  �

∗ ∗ ∗ ∗
Ψ2

  where unstaggered and staggered subspaces, i.e., Ψ1 and Ψ2 describe in the same way as V1 and V2.

(5) Tese could be mapped as: V1 � Ψ1T andV2 � Ψ2T. V1 and V2 are related as: V2 � V1Φ andΨ2 � Ψ1Ψ Substituting Ψ2 and V1 in
V2 gives: V2 � Ψ2T � Ψ1ΨTorV2 � V1Φ � Ψ1TΦ

(6) Te correlation between both the subspaces provided by Algorithm 2 ΨT � TΦ orΨ � TΦT− 1

Te Ψ eigenvalues are diagonal elements of Φ, where ϕk k�1,2,3...L. T columns represent the eigenvectors of Ψ.
(7) Terefore, the frequency is given by fk � ∠ϕk/2π where ∠ϕk is the phase of Φk.
(8) Te TLS presents the exact response by minimizing the Frobenius norm of the V1,2 true subspace and Ψ1,2 estimated subspace by

reducing the errors E1,2 [20] E1 E2
����

����F

(9) Compute the matrix Ψ of right singular vectors of Ψ1 Ψ2  � LΣΨH

(10) Te matrix separation can be done using Ψ∈ R2p×2p in compliance with Ψ∈ Rp×p gives Ψ �
Ψ11 Ψ12
Ψ21 Ψ22

 

(11) Te singular values are computed using σ1, σ2, . . . , σM of the matrix Ψtls � 0Ψ12 Ψ−1
22

(12) Algorithm 2 gives the frequency estimates using Algorithm 2.

ALGORITHM 2: Computational algorithm of TLS-ESPRIT.
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SNR 30 dB. It is also found that the standard deviation and
mean of the estimated attenuation factor for the MKLT-
TLS-ESPRIT approach are approximately 19.06% and
91.50%, respectively, of that obtained in case of data-SSI and
59.88% and 79.74% with KLT-TLS-ESPRIT for SNR 30 dB.

5.3. Computational Time for Proposed MKLT-TLS-ESPRIT,
QR-TLS-ESPRIT, KLT-TLS-ESPRIT, RMP, and Data-SSI.
Figure 6 and Table 5 illustrate the comparison of the pro-
posed MKLT-TLS-ESPRIT with QR-TLS-ESPRIT, RMP,
data-SSI, and KLT-TLS-ESPRIT on the basis of their

Test signal with an amplitude=1, frequency=0.4 Hz, attenuation factor= −0.07 at SNR=10 dB
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Test signal with an amplitude=1, frequency=0.4 Hz, attenuation factor=−0.07 at SNR=30 dB
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Figure 2: Test signals for interarea oscillating modes in power system using SNR 10 dB and 30 dB: (a) a test signal corresponds to interarea
mode and (b) a test signal corresponds to interarea mode.
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Figure 3: Interarea mode distribution utilizing Monte Carlo simulation at SNR 30 dB and 10 dB: (a) distribution of frequency using with
SNR 30 dB, (b) distribution of attenuation factor using with SNR 30 dB, (c) distribution of frequency using with SNR 10 dB, and (d)
distribution of attenuation factor using with SNR 10 dB.
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Table 1: Statistical analysis for RMP, QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data SSI, and MKLT-TLS-ESPRIT at SNR� 10 dB.

SNR� 10 dB
Frequency (Hz) Attenuation factor

Std. dev. Mean Variance Std. dev. Mean Variance
RMP 5.7577×10−3 0.4289 3.3151×10−5 1.6238×10−2 −0.0216 2.6367×10−4

QR-TLS-ESPRIT 1.4825×10−3 0.3845 2.1978×10−6 5.6437×10−3 −0.1593 3.1851×10−5

KLT-TLS-ESPRIT [12] 1.3823×10−3 0.4022 1.9107×10−6 3.3461×10−3 −0.0997 1.1196×10−5

Data-SSI 1.3893×10−3 0.3958 7.7601×10−8 2.7434×10−3 −0.1276 7.5262×10−6

MKLT-TLS-ESPRIT 8.3647×10−4 0.4001 6.9968×10−7 2.1123×10−3 −0.0701 4.4618×10−6

Table 2: Statistical analysis for RMP, QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data-SSI, and MKLT-TLS-ESPRIT at SNR� 30 dB.

SNR� 30 dB
Frequency (Hz) Attenuation factor

Std. dev. Mean Variance Std. dev. Mean Variance
RMP 1.5286×10−3 0.4201 2.3366×10−6 1.3173×10−2 −0.0201 1.7352×10−4

QR-TLS-ESPRIT 1.2671×10−3 0.3886 1.6055×10−6 3.1347×10−3 −0.1513 9.8263×10−6

KLT-TLS-ESPRIT [12] 7.1862×10−4 0.4013 5.8139×10−7 3.1178×10−3 −0.0897 9.7206×10−6

Data-SSI 7.6249×10−4 0.3976 5.8139×10−7 2.3799×10−3 −0.1173 5.6639×10−6

MKLT-TLS-ESPRIT 3.9543×10−4 0.4000 1.5636×10−7 1.1322×10−3 −0.0700 1.2818×10−6

Test signal with an amplitude=1, frequency=1 Hz, attenuation factor= −0.1 at SNR=10 dB
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Figure 4: Test signals for local-area oscillating modes in power system using SNR 10 dB and 30 dB: (a) a test signal corresponds to local-area
mode and (b) a test signal corresponds to local-area mode.
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Figure 5: Continued.
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computational time used for IAO modes estimation. It is
observed that for 2000 Monte Carlo simulation, the mean
computational time taken by the MKLT-TLS-ESPRIT is
0.00501 sec for SNR� 30 dB and 0.00507 sec for
SNR� 10 dB, whereas for the data-SSI is 0.0064 sec for
SNR� 30 dB and 0.0067 sec for SNR� 10 dB. All tests are
performed using Intel(R) Core(TM) i7-4790S CPU @
3.20GHz processor with 8Gb RAM.

5.4. Variance Response to Diferent SNRs Using Proposed
MKLT-TLS-ESPRIT, KLT-TLS-ESPRIT, RMP, and Data-SSI.
Due to the accurate estimation of the signal frequency,
variances of the data-SSI and MKLT-TLS-ESPRIT esti-
mates are somewhat less than the ones for the two dif-
ferent estimates. Figure 7 shows that, for low SNRs, this
process well predictable, where the variation by the es-
timation accuracy is less as compared to the variance by
the noise.

6. LFO Modes Estimation for IEEE Benchmark
Two-Area Grid System Using
Proposed Algorithm

Figure 8 illustrates a test system [22] refers to IEEE
benchmark two-area grid system. It includes two diferent
areas, each are having two synchronous machines connected
through eleven buses, via bus7 and bus9. Tere are three
loads applied to the bus7, bus8, and bus9 of the test system.
Tere are also two shunt condensers mounted at bus7 and
bus9. Te test system operates with fundamental frequency
of 60Hz.

Case 1. IAO mode estimation using data from IEEE
benchmark two-area grid system for tie-line short-
circuit fault.

Employing the SSSA, the IAO modes of the power
system are analyzed. For a period of 1.2 seconds, starting at
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Figure 5: Local-area mode distribution utilizing 50,000Monte Carlo simulation at SNR 30 dB and 10 dB: (a) distribution of frequency using
with SNR 30 dB, (b) distribution of attenuation constant using with SNR 30 dB, (c) distribution of frequency using with SNR 10 dB, and (d)
distribution of attenuation constant using with SNR 10 dB.

Table 3: Statistical analysis for RMP, QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data-SSI, and MKLT-TLS-ESPRIT at SNR� 10 dB.

SNR� 10 dB
Frequency (Hz) Attenuation factor

Std. dev. Mean Variance Std. dev. Mean Variance
RMP 1.2267×10− 2 1.5105 1.5047×10− 4 1.5478×10− 2 −0.0547 2.3956×10− 4

QR-TLS-ESPRIT 5.0381×10− 3 1.4957 2.5382×10− 5 5.9367×10− 3 −0.1901 3.5244×10− 5

KLT-TLS-ESPRIT 5.4368×10− 3 1.5017 2.9558×10− 5 6.3465×10− 3 −0.1283 4.0278×10− 5

Data-SSI 8.3643×10− 3 1.4973 6.9961×10− 5 9.9432×10− 3 −0.0796 9.8867×10− 5

MKLT-TLS-ESPRIT 3.8721×10− 3 1.5001 1.4993×10− 5 4.8643×10− 3 −0.1001 2.3661×10− 5

Table 4: Statistical analysis for RMP, QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data-SSI, and MKLT-TLS-ESPRIT at SNR� 30 dB.

SNR� 30 dB
Frequency (Hz) Attenuation factor

Std. dev. Mean Variance Std. dev. Mean Variance
RMP 9.7643×10− 4 1.5098 9.5341×10− 7 1.0328×10− 2 −0.0403 1.0667×10− 4

QR-TLS-ESPRIT 6.1631×10− 4 1.4951 3.7983×10− 7 2.8643×10− 3 −0.1914 8.2042×10− 6

KLT-TLS-ESPRIT 6.0531×10− 4 1.5014 3.6640×10− 7 3.6481×10− 3 −0.1254 1.3308×10− 5

Data-SSI 9.6289×10− 4 1.4971 5.8200×10− 7 1.1462×10− 2 −0.0915 1.3137×10− 4

MKLT-TLS-ESPRIT 5.8947×10− 4 1.5001 3.4747×10− 7 2.1847×10− 3 −0.1000 4.7729×10− 6
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Figure 6: Computational time for diferent estimation algorithm: (a) computational time with SNR 30 dB and (b) computational time with
SNR 10 dB.

Table 5: Computational time for RMP, QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data-SSI, and proposedMKLT-TLS-ESPRITat diferent SNRs.

Estimation algorithms
Computational time (sec)

SNR� 30 dB SNR� 10 dB
RMP 0.0089 0.0091
QR-TLS-ESPRIT 0.0185 0.0189
KLT-TLS-ESPRIT 0.01561 0.01593
Data-SSI 0.0064 0.0067
MKLT-TLS-ESPRIT 0.00501 0.00507
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Figure 7: Variance comparison using proposed approach.
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1 second, a disturbance is provided by applying a short-circuit
fault of three phases at tie-line close to bus8. Figure 8 shows the
real power fow between lines 10 and 9 provided by the PMU
located at bus9. Te statistical SD, mean, and variance of the
IAOmodes extracted usingMonte Carlo simulation for 50,000
runs are shown in Table 6. Te SD calculated to express the
statistical diference of the estimated attenuation factor and
frequency from the actual SSSA using MKLT-TLS-ESPRIT by
adding a noise of SNR 30dB is given as 4.155 × 10− 3 and
3.4867 × 10− 4. Te statistical mean extracted by proposed
MKLT-TLS-ESPRIT technique related to IAO mode, i.e.,
0.6328Hz, is nearly same that of the obtained in case of SSSA.

7. LFO Modes Estimation for IEEE Sixteen-
Machine, Sixty-Eight Bus Test System Using
Proposed Algorithm

Figure 9 shows the IEEE benchmark sixteen-machine sixty-
eight bus grid system is considered to verify the efcacy of
the proposed approach. Tis system’s detailed parameter is
listed within [23].

Te grid comprised of fve diferent areas: Area[1] and
Area[2] with generators (Gen1 − Gen9) and
(Gen10 − Gen13), Area(3), Area[4], and Area[5] comprise
with generators (Gen14), (Gen15), and (Gen16). Diferent
IAOs modes occurred in this power grid evaluated using
SSSA are M(1), M(2), M(3), and M(4). Generators of
Area[1] and Area[2] oscillates toward generators in Area[3],
Area[4], and Area[5] with 0.3893Hz correspond to M(1).
Generators of Area[1], Area[3], and Area[4] oscillate
against the generators of Area[5] and Area[2] at 0.5166Hz
corresponds to M(2). Generators of Area[1], Area[4], and
Area(5) swing against generators of Area[2] and Area[3] at
frequency 0.5893Hz corresponds to M(3). Generator in
Area[4] oscillates against generators in Area[3] and Area[5]

at the frequency of 0.7923Hz corresponds to M(4).
Te statistical behavior of MKLT-TLS-ESPRIT is de-

scribed in Table 7 using 2000 Monte Carlo runs, i.e., the SD
of the estimated frequency and AF is given as (Freq.Std.)

and (Attn.fact.-Std), the mean of the Frequency and the AF
is given as (Freq mean), and the mean of the frequency and
the AF is given as (F (Attn.factor.-mean). Te IAO mode

Table 6: Statistical analysis of the IAOs for IEEE benchmark two-area grid system with three-phase line short-circuit fault using RMP,
QR-TLS-ESPRIT, KLT-TLS-ESPRIT, data-SSI, and MKLT-TLS-ESPRIT at SNR� 30 dB.

SNR� 30 dB
Frequency� 0.6366Hz Attenuation factor� −0.25

Std. dev. Mean Variance Std. dev. Mean Variance
RMP 8.8334×10− 4 0.6229 7.1122×10− 7 7.3275×10− 3 −0.2120 5.369×10− 5

QR-TLS-ESPRIT 8.4935×10− 4 0.6138 7.2139×10− 7 2.5488×10− 2 −0.2257 6.4963×10− 4

KLT-TLS-ESPRIT 5.1392×10− 4 0.6373 1.2977×10− 6 8.9327×10− 3 −0.2143 7.9793×10− 3

Data-SSI 8.1013×10− 4 0.63893 6.5631×10− 7 8.9487×10− 3 −0.2293 8.0079×10− 5

MKLT-TLS-ESPRIT 3.4867×10− 4 0.63728 1.2157×10− 7 4.1550×10− 3 −0.2364 1.7264×10− 5
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Figure 9: One line diagram of the 16-generator Sixty-Eight bus test system.

Table 7: Statistical analysis of the IAOs for sixteen-machine sixty-eight bus IEEE system using MKLT-TLS-ESPRIT at SNR� 30 dB.

SNR� 30 dB
Frequency (Hz) Attenuation factor

True Mean Std. dev. True Mean Std. dev.
Mode-1 0.3893 0.3899 0.00018 −0.1200 −0.1339 0.0039
Mode-2 0.5160 0.4971 0.00013 −0.2100 −0.2104 0.0041
Mode-3 0.5893 0.6693 0.00018 −0.1900 −0.1976 0.0054
Mode-4 0.7923 0.7804 0.00015 −0.2300 −0.2187 0.0017
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calculated using MKLT-TLS-ESPRIT is found to be similar
to the values corresponding to those measured using SSSA.

8. Conclusion

In this paper, we proposed a new interarea mode estimation
approach based on subspace decomposition, to estimate the
power system’s IAO modes. Te proposed estimation
scheme of the IAOs is found to be more robust and also
provides a precise mode estimation when the estimates are
slightly afected by the highly correlated ACGN. It has also
been examined that the MKLT-TLS-ESPRIT has improved
estimation efciency in reference to the QR-TLS-ESPRIT,
RMP, KLT-TLS-ESPRIT, and data-SSI in aspects of standard
deviation, variance, and the mean of the estimated IAO
modes for given frequency and attenuation factor. More-
over, on IEEE benchmark two-area grid system and IEEE
sixteen-machine sixty-eight bus system, the estimated per-
formance of the proposed technique is evaluated. Te
performance of the MKLT-TLS-ESPRIT at SNR 30 dB with
a case of short-circuit failure in three-phase line is analyzed.
Te observations made using the MKLT-TLS-ESPRIT
technique is much similar to the estimated results ob-
tained with SSSA.

Data Availability

Te data supporting the current study are available from the
corresponding author upon request.
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