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Ensuring compliance with safety regulations regarding wearing is essential for the safety and security of those working on substation
construction sites. However, relying on supervisors to monitor workers in real time on the work site or through remote surveillance
videos is both unreasonable and inefcient. A deep learning network approach named FFA-YOLOv7 is presented in this study that
utilizes an improved version of YOLOv7 to detect violations of worker wearing in real time during power construction site surveillance.
In YOLOv7, the feature pyramid network (FPN) of the neck stage is constructed through continuous upsampling and skip connections
for feature fusion, after continuous downsampling of the backbone. However, this process can result in the loss of precise shallow
position information. To tackle this issue, we have introduced a novel feature fusion pathway to the FPN architecture, enabling each layer
not only to fuse feature maps from the same level during the downsampling course but also to fuse feature maps from shallower levels.
Tis approach combines precise positional information from shallow layers with rich semantic information from deep layers. Ad-
ditionally, we utilized attention after feature fusion in each layer to optimize the feature map fusion efect and achieve better detection
accuracy performance. In order to conduct comparative experiments, we trained six variations of the YOLO model as detectors using
a dataset gathered from realistic construction sites. Te experimental results indicate that our proposed FFA-YOLOv7 attained
a detection precision of 95.92% and a recall rate of 97.13%, demonstrating a high level of accuracy and a low rate of missed detections.
Tese outcomes efectively satisfy the requirements for robust and accurate detection of real-world power construction violations.

1. Introduction

Te construction of electric power infrastructure is a crucial
component for ensuring the smooth transmission and
distribution of energy in substations. Te safe and efcient
construction of these sites is essential for maintaining re-
liable power grids. Unfortunately, accidents resulting from
non-compliant wearing of work clothes are common oc-
currences in substation construction, jeopardizing the safety
of workers and disrupting the normal operation of the site.
Ensuring that workers wear the appropriate attire and
comply with safety regulations is therefore of utmost

importance. For managers overseeing these sites, identifying
and addressing violations of safety protocols are crucial for
maintaining a safe and productive work environment.

In the past, the assessment of workers’ attire and be-
havior at substation construction sites was primarily carried
out through manual inspections performed by security
personnel. Nevertheless, this method proved to be both
time-consuming and demanding in terms of labor. More-
over, manual inspections may not be able to cover all
workers in real time, especially in large-scale construction
sites. With the advancement of video surveillance tech-
nology, many power construction sites have installed
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monitoring systems to transmit video footage to the sub-
station’s monitoring and dispatching center through the
network. Security ofcers on duty can monitor workers’
activities in real time and identify violations through sur-
veillance video. Nevertheless, the present monitoring
methods still depend on manual inspections, neglecting to
fully exploit the capabilities ofered by intelligent video
surveillance technology. Tis limits the ability to efciently
and accurately identify violations in various construction
scenarios. As such, there is a need to utilize intelligent video
surveillance technology to develop a more efcient and
accurate method for identifying construction violations.

Tis paper aims to put forward a novel deep learning
approach that can detect wearing violations in substation
construction sites more efciently and accurately compared to
conventional methods. Te proposed network can identify not
only straightforward wearing violations but also more intricate
ones, by analyzing the distance between objects. Furthermore,
the network is trained in an end-to-end manner using
a comprehensive dataset that includes authentic images cap-
tured from actual power construction sites and synthetic
images generated through data augmentation.

Te main contributions of this paper are as follows:

(1) In this paper, an enhanced variant of YOLOv7 is
proposed, which introduces a new feature fusion
pathway within the FPN. Te objective is to efec-
tively integrate accurate position information from
shallow layers with rich semantic information from
deep layers. Additionally, attention mechanisms are
incorporated into these fusion layers to enhance the
feature representation after fusion.

(2) A deep learning approach is proposed for the real-
time detection of worker attire violations in sur-
veillance videos obtained from substation con-
struction sites. Additionally, a dataset has been
curated using a range of data augmentation tech-
niques. Te dataset consists of videos captured in
authentic power construction sites and encompasses
six commonly encountered targets for the detection
of attire violations.

Te remainder of this paper is organized as follows.
Section 2 provides an overview of the related work. In
Section 3, we present a detailed description of the proposed
network architecture. To assess the efectiveness of our
method, we design experiments in Section 4 and discuss the
results in Section 5. Finally, we present our conclusions in
Section 6.

2. Related Work

Advancements in video surveillance technology and
wireless mobile networks have facilitated real-time
monitoring of substations. However, the current video
surveillance systems used by electric power enterprises
have certain limitations, as examined by Jiangtao et al.
[1]. To address these shortcomings, the authors in-
troduced key technologies that can be incorporated into
a new substation security video surveillance system.

However, it is important to acknowledge that there are
still limitations in the current substation video moni-
toring systems. For instance, Yang et al. [2] highlighted
that the video sensor equipment layout on the con-
struction site of substations lacks scientifc guidance,
which results in incomplete three-dimensional moni-
toring coverage. Tey then proposed a video surveillance
system that can provide full coverage monitoring for
substation construction sites. Moreover, Lu et al. [3]
proposed an intelligent monitoring solution for power
substations, utilizing big data theory and intelligent
analysis algorithms. Te objective of this solution is to
assist monitoring personnel in comprehending alarm
signals and reducing the workload of substation per-
sonnel. However, existing video monitoring systems for
substations are constrained to basic functionalities such
as video capture, storage, and playback. Tey lack ef-
fective video data analysis capabilities. Furthermore, the
monitoring of substation workers continues to be con-
ducted manually, without fully capitalizing on the po-
tential of intelligent video surveillance technology.

Deep learning technology has witnessed continuous
advancements, particularly in convolutional neural net-
works (CNNs). Among the notable CNN series, You Only
Look Once (YOLO) stands out for its exceptional perfor-
mance in object detection, ofering high accuracy, efciency,
and real-time capabilities. Te YOLO series was initially
introduced in 2015 with the release of YOLOv1 [4]. Tis
pioneering single-stage detection network addressed the slow
reasoning speed issue encountered in two-stage detection
networks while maintaining commendable detection accuracy.
Subsequent versions, including YOLOv2 [5] and YOLOv3 [6],
further improved upon the original model. YOLOv3 in-
troduced the Darknet-53 residual module and the feature
pyramid network (FPN) architecture, enabling object pre-
diction at multiple scales and facilitating multiscale fusion.
YOLOv4 [7] and YOLOv5 have since incorporated various
enhancements based on YOLOv3. Te recent YOLOv7 in-
troduced in 2022 [8] introduces the innovative extended ELAN
architecture, which enhances the network’s self-learning ability
without disrupting the original gradient path. Furthermore,
YOLOv7 adopts a cascade-based model scaling approach,
generating models of diferent scales to accommodate practical
tasks and meet the detection requirements.

Previous research in safety constructionmonitoring has
predominantly concentrated on helmet detection. Several
studies have proposed helmet detection methods using
YOLOv5, a popular deep learning technology [9, 10].
Additionally, other researchers [11–15] have made ad-
vancements in helmet detection by refning networks based
on YOLOv5. Furthermore, CNNs have been employed to
detect safety vests [16–18], safety belts [19–21], and in-
sulators [22–24] worn by workers in surveillance videos of
power substations. While these studies have yielded
promising results, they have primarily focused on detecting
a single object and are unable to simultaneously detect
multiple objects. Consequently, these methods are not well-
suited for violation detection tasks in complex power
construction sites.
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3. Method

3.1. Architecture. Our improvement on the network is
based on the YOLOv7 base model. Compared with other
models of YOLOv7, the base model of YOLOv7 has fewer
parameters and demonstrates superior real-time per-
formance. Ensuring high accuracy is crucial for real-time
violation detection applications in substation construc-
tion. Te improved network structure, FFA-YOLOv7,
which is based on YOLOv7, is depicted in Figure 1. Our
proposed model incorporates two signifcant enhance-
ments. Firstly, we introduce a novel feature fusion path
within the FPN to efectively merge the rich semantic
information from the deep layers with the accurate lo-
cation information from the shallow layers. Tis
enables us to enhance the representation of features for
improved performance. Secondly, we add a new attention
module after each feature fusion path to extract inter- and
intra-relationships in each fusion source for refnement
of the fusion feature. More details about the feature
fusion path and attention are available in the next two
subsections.

3.2. Feature FusionPath. In the segmentation process, pixel-
level labels often lack global information, making it bene-
fcial to consider larger patches to obtain more compre-
hensive information. In contrast, object detection tasks
relying solely on image-level and bounding box-level labels
can obscure crucial information. Edge information in fea-
ture maps tends to diminish during continuous down-
sampling and upsampling. Te YOLOv7 model employs
extended efcient layer aggregation network (ELAN) to
enhance network learning by incorporating a gradient path.
However, the model contains numerous convolutional
layers, leading to a gradual dilution of location information
during continuous extraction of semantic information. In
subsequent feature pyramid network (FPN), the ELAN
module is repeatedly used to extract features, allowing
deeper networks to learn and converge efectively. However,
this process signifcantly weakens the edge position in-
formation, which is crucial for accurately generating anchor
boxes that ft the target size. Considering larger patches in
object detection tasks can also impact the calculation of
intersection over union (IoU) between predicted anchor
boxes and ground truth boxes, potentially reducing the fnal
detection accuracy, relying solely on image-level and
bounding box-level labels may result in the omission of
critical information, leading to a decrease in precision
during IoU evaluation.

To address the issue of location information loss
resulting from the extensive use of ELAN, we introduced
additional feature fusion paths in the FPN of YOLOv7 to
achieve better fusion of semantic and location in-
formation. Figure 2 illustrates the newly proposed fea-
ture fusion path. In the backbone network, the feature
maps at each scale level are frst extracted using the
ELAN block and then downsampled using the MPConv
block. We incorporated feature fusion paths in the

subsequent FPN process, allowing each layer of the FPN
to receive not only feature maps of the same size from the
previous FPN layer and downsampling process but also
feature maps from shallower layers that have not un-
dergone the ELAN block of that layer. Tis feature fusion
path enhances the aggregation of the initial feature
pyramid and provides the necessary details for co-
ordinate regression, thereby improving the accuracy of
the one-stage object detector.

3.3. Attention Module. With the exception of the top layer,
the feature maps in the FPN are obtained through a fusion
process involving the previous layer and the two adjacent
layers in the downsampling process. However, these three
sources exhibit distinct representations of semantic levels
and spatial locations due to their generation via diferent
skip connections and upsampling pathways. Te feature
maps from the shallow pathways contain precise location
information and fne-grained features, whereas those from
the deep pathways exhibit richer semantic information and
coarse-grained features. Consequently, a selective mecha-
nism is required to flter out and retain efective feature
information representations when fusing the three
feature maps.

To improve the selection of feature information
among each set of feature maps, a new select mechanism
called the Channel Refnement Attention Module
(CRAM) is proposed in this paper. CRAM is built upon
the Channel Attention Module (CAM) [25]. As depicted
in Figure 3, the three source feature maps are initially
concatenated, and then a CAM is employed to extract the
inter-group channel relationship. Subsequently, another
CAM is applied to capture the intra-group relationships
after summing the three feature maps. Te fnal refned
output is obtained by sequentially multiplying the con-
catenated feature map with the two CAMs. In summary,
the CRAM of feature map F ∈RH×W×C can be defned as
follows:

CAM(F) � σ(MLP(AP(F)) + MLP(MP(F))),

Mintra � CAM x
l+1
FPN + x

l
Down + x

l−1
Down􏼐 􏼑,

Minter � CAM x
l+1
FPN, x

l
Down, x

l−1
Down􏼐 􏼑,

CRAM � Minter ⊗ Mintra ⊗ x
l+1
FPN􏼐 􏼑 + Mintra ⊗ x

l
Down􏼐 􏼑􏽨

+ Mintra ⊗ x
l−1
Down􏼐 􏼑􏽩,

(1)

where σ is the sigmoid function and MLP represents the
multilayer perception layer. AP and MP denote average
pooling and max pooling operations, respectively. [·] de-
notes the concatenation operation, and ⊗ denotes the
element-wise multiplication between feature maps and at-
tention maps. l denotes the feature level, and the larger the l
value, the deeper the layer.

To complement the refned feature maps generated by
the CRAM, the Spatial Attention Module (SAM) [25] is
introduced. Te SAM is incorporated to specifcally
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emphasize the more accurate location of semantic and
spatial information on the feature map, leading to an
improved accuracy of feature representation. By in-
tegrating both CRAM and SAM, a feature map is
obtained that encompasses both channel refnement and
spatial refnement features. Tis feature map serves as an
efective input for subsequent detection and
recognition tasks.

4. Experiment

4.1. Dataset Construction. To comprehensively validate the
efectiveness and practicality of the data, the experimental
dataset used in this study comprises six distinct categories in
the power grid context: (1) Helmet-wearing, (2) Helmet-not-
wearing, (3) Seatbelt-wearing, (4) Seatbelt-not-wearing, (5)
Ladder, and (6) Insulator. Among these, the frst fve
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categories include original images sourced from the internet
or captured on-site during power operation activities. Te
images in the last category are exclusively obtained from real
construction sites of substations. Figure 4 showcases a se-
lection of image samples extracted from the dataset.

Data augmentation is commonly used to generate addi-
tional samples for detection objects in training data that are
insufcient. Its principle involves creating a new dataset by
applying various data augmentation methods to the existing
dataset. In this study, fve key data augmentation techniques
were employed, including (1) object segmentation and back-
ground fusion, (2) partial erasing, (3) afne transformation, (4)
brightness transformation, and (5) clarity transformation.
Tese operations simulate common imaging condition vari-
ations in real-world surveillance, such as changes in viewpoint,
distance, background, clarity, and illumination.

We generated a dataset consisting of 14,960 images (in-
cluding 30% data augmentation images) by applying image
augmentation techniques to each class of images. An 8 : 2 ratio
was employed to split the dataset into a training dataset and
a validation dataset. In order to maintain class balance, the
number of images in each class was adjusted accordingly.
Table 1 presents the parameters utilized for data augmenta-
tion. Furthermore, a separate testing dataset, consisting of 500

images captured from realistic power construction surveil-
lance scenarios, was assembled. Tis testing dataset encom-
passes all six classes. A comprehensive breakdown of the
dataset composition can be found in Table 2.

4.2. Evaluation Criteria. In this experiment, we employed
four commonly used evaluation metrics to assess the per-
formance of the detection model: precision (P), recall (R), F1
score (F1), and mean average precision (mAP). P, R, F1, and
mAP can be formulated as follows:

P �
TP

TP + FP

,

R �
TP

TP + FN

,

F1 �
2∗P∗R

P + R
,

APi � 􏽚
1

0
P(R)dR,

mAP �
1
N

􏽘

N

i

APi,

(2)
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where FP (false positive) denotes the number of objects that
were incorrectly detected, FN (false negative) is used to
represent the number of objects that were missed in the
detection, and TP (true positive) represents the number of
correctly detected objects. TP+ FP represent the total
number of detected objects, and TP+ FN represent the total
number of actual objects in the dataset. Te F1 score is the
harmonic mean of precision (P) and recall (R), providing
a balancedmeasure of themodel’s performance. AP (average
precision) is computed by calculating the area under the
precision-recall curve (PR curve), which describes the trade-
of between precision and recall at diferent thresholds. mAP
is the average of AP values across diferent classes. N rep-
resents the number of classes in the test samples. In object
detection, higher precision values indicate fewer false de-
tections, while higher recall values indicate fewer missed
detections. Terefore, achieving high precision and recall is
crucial for accurate and comprehensive object detection.

4.3. Experimental Confguration. Tis experiment was
conducted using the PyTorch deep learning framework on
an NVIDIA RTX-3090 GPU. Te experimental setup and
hyperparameters are as follows. We utilized the Adam
optimizer [26] to train ourmodel with an initial learning rate
of 1e− 3. Te momentum was set to 0.937, and the weight
decay was set to 5e− 4. Te weights of the convolutional
layers were initialized using the Kaiming normalization
method. Te remaining hyperparameters followed the de-
fault values specifed in the YOLOv7-s ofcial code. Te
model was trained for 400 epochs with a batch size of 16.

5. Results

Our proposed FFA-YOLOv7 aims to achieve high accuracy
and efciency in detecting violations in practical power
construction sites. To objectively evaluate the performance
of our proposed model, this study conducted a comparative
analysis with fve state-of-the-art object detection models.
Tese models include YOLOv5-s, YOLOv5-m, YOLOv5-l,
YOLOv7, and YOLOv7-x. We utilized pretrained weights
from the YOLO framework and trained the models on our
own constructed dataset. Te dataset consists of 14,960
images with 30% data augmentation. By comparing the
performance of diferent models on the same dataset, we are
able to provide an objective assessment of the performance
of our proposed model. We also utilized a separate testing
dataset consisting of 500 images captured from realistic
power construction surveillance scenarios. By comparing
the results obtained from these diferent models, we can
evaluate the efectiveness and performance of our proposed
approach in detecting objects accurately and robustly in the
specifc context of power construction surveillance.

Te detection results after 400 epochs of training are
shown in Table 3. YOLOv5-s, with its simple model
structure, achieves the best speed performance but the worst
precision performance. YOLOv5-m and YOLOv5-l, with
more complicated model structures, exhibit better precision
but slower speed. Te YOLOv7-based models, on the other
hand, generally perform better than the YOLOv5 models. In

Figure 4: Dataset of six classes of detection objects.

Table 1: Data augmentation parameter settings.

Parameter name Value
Rotation range ±15°
Translation range ±0.2
Scale range 0.8–1.2
Pixel intensity range 0.5–1.5 per channel
Contrast range 0.5–2 per channel
Horizontal fip probability 0.5
Gaussian distribution μ� 0, σ � 0.05× 255
Gaussian blur probability 0.5
Gaussian kernel size 3 pixels

Table 2: Composition of the dataset.

Class Value Validation Total
Ladder 3384 846 4230
Insulator 480 120 600
Helmet (with and without) 3680 920 4600
Safety belt (with and without) 4424 1106 5530
Total 11968 2992 14960
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comparison, our proposed model outperforms all of the
aforementioned models as for P, R, mAP, and F1.

In order to validate the efectiveness of the proposed
FFA-YOLOv7 model in this paper, we conducted a com-
prehensive evaluation on a dataset collected from real-world
power construction sites. Te dataset encompasses a wide
range of detection objects from all six classes. Te evaluation
aimed to measure the performance of our model in accu-
rately detecting these objects. Table 4 presents the test results
of the proposed method, providing a detailed list of metrics
for each class and an overall evaluation of the model’s
performance. Additionally, the corresponding detection
results are showcased in Figure 5, providing a visual dem-
onstration of the accuracy and efectiveness of our proposed
method. Te outcomes presented in Table 4 and Figure 5

highlight the excellent detection accuracy achieved by our
FFA-YOLOv7 model. It successfully detects objects from all
six classes across diverse practical power operation sites,
exhibiting both class-specifc and overall high-performance
capabilities. It is evident from the results that the method
proposed in our work demonstrates efectiveness in target
detection within the feld of power construction monitoring.

Furthermore, we conducted an evaluation of the de-
tection speed and concurrency of our proposed system using
the testing dataset.Te results demonstrate that our network
achieves a detection speed of 9.6ms per image, indicating its
high efciency in practical applications. Additionally, the
system exhibits remarkable concurrency, allowing it to si-
multaneously record and detect up to 30 diferent video
streams at a real-time frame rate of 30 FPS.

Table 3: Comparison of performance among state-of-the-art object detection models.

Model P (%) R (%) mAP (%) F1 (%) Speed (ms)
YOLOv5-s 94.62 95.32 96.45 94.93 8.6
YOLOv5-m 95.14 95.33 96.67 95.22 12.0
YOLOv5-l 95.18 96.02 96.71 95.53 14.0
YOLOv7 95.76 95.92 97.64 95.84 8.8
YOLOv7-x 95.55 96.45 97.82 96.00 11.5
FFA-YOLOv7 95.92 97.13 98.16 96.50 9.6

Table 4: Performance of FA-YOLOv7 on the power construction dataset.

Class P (%) R (%) mAP (%) F1 (%)
No safety belt 88.62 96.51 96.23 92.40
Safety belt 94.23 95.88 95.01 95.04
No helmet 95.58 96.72 96.32 96.15
Helmet 96.82 97.75 97.53 97.28
Insulator 85.83 82.45 88.57 84.10
Ladder 89.03 89.29 90.35 89.16
All 91.69 93.10 94.00 92.36

Figure 5:Te detection performance of the FFA-YOLOv7model.Te operators wearing safety helmets and safety belts are highlighted with
green bounding boxes. Tose who are not wearing safety helmets, not wearing safety belts, or violating safety regulations are marked with
red bounding boxes. Te insulators and ladders are, respectively, indicated by orange and blue bounding boxes.
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6. Conclusions

In this study, we propose FFA-YOLOv7, an improved
version of YOLOv7, for detecting worker-wearing violations
in substation construction. Te process of downsampling
and upsampling usually leads to location information loss,
and the edge positioning accuracy and detection perfor-
mance will be further afected. To address the issue, a new
feature fusion path is presented to synthesize rich semantic
information and precise location information from deep
layers and shallow layers, respectively. Additionally, atten-
tion modules are incorporated to refne the fused features.
Furthermore, we establish a dataset to compensate for the
limited training samples, enabling better detection perfor-
mance in realistic power construction scenarios. Compared
to other YOLO-based detection methods, our proposed
FFA-YOLOv7 achieves the highest detection accuracy
(96.5%) without compromising detection speed. Experi-
mental results on a dataset collected from realistic power
construction sites demonstrate that FFA-YOLOv7 exhibits
superior accuracy and robustness in detecting violations in
practical power construction scenarios.
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