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Power load forecasting (PLF) has a positive impact on the stability of power systems and can reduce the cost of power generation
enterprises. To improve the forecasting accuracy, more information besides load data is necessary. In recent years, a novel privacy-
preserving paradigm vertical federated learning (FL) has been applied to PLF to improve forecasting accuracy while keeping
diferent organizations’ data locally. However, two problems are still not well solved in vertical FL. Te frst problem is a lack of a
full data-processing procedure, and the second is a lack of enhanced privacy protection for data processing. To address it,
according to the procedure in a practical scenario, we propose a vertical FL XGBoost-based PLF, where multiparty secure
computation is used to enhance the privacy protection of FL. Concretely, we design a full data-processing PLF, including data
cleaning, private set intersection, feature selection, federated XGBoost training, and inference. Furthermore, we further use RSA
encryption in the private set intersection and Paillier homomorphic encryption in the training and inference phases. To validate
the proposed method, we conducted experiments to compare centralized learning and vertical FL on several real-world datasets.
Te proposed method can also be directly applied to other practical vertical FL tasks.

1. Introduction

Power load forecasting (PLF) has important signifcance in
the development of the power grid and its upstream and
downstream enterprises. Based on the temporal and spatial
distributions derived from PLF, the power grid can efec-
tively plan and make scientifc decisions to stabilize the
power system and avoid unnecessary grid connections.
Meanwhile, upstream power generation enterprises can
schedule the generator set to realize of-peak production and
reduce the cost [1].

Tanks to smart grid and big data technology, the
methods for PLF have been developed from a multivariate
linear model to a deep learning model. Meanwhile, re-
gardless of the methods, the performance highly depends on
the available data, which have been also changed from a
single source to multiple parties [2]. With the progress of

methods and federated data, EFL has been applied from
short-term forecasting to long-term forecasting and the
accuracy has been signifcantly improved. At the same time,
some new challenges have emerged. One of which is how to
ensure privacy and security when diferent parties provide
their data for federated data analysis [3].

Te top of Figure 1 demonstrates the basic pipeline of the
centralized PLF. At frst, the power grid collects the related
data, such as weather and power generation data, from other
industries. Ten, the power grid is responsible for data
processing. Finally, it trains the predefned model and uses it
for inference. Note that in the centralized EFL, all required
data have been collected before formal analysis. For example,
the power grid needs to collect enterprises’ production ef-
fciency, equipment status, loans, etc., to improve the pre-
diction accuracy of EFL. However, because the above-
mentioned information is sensitive and private, the
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enterprises are reluctant to provide the original data [4]. In
addition, many countries have enacted privacy regulations
to restrict and regulate data usage, such as the General Data
Protection Regulation of the European Union and the Data
Security Law of the People’s Republic of China. Terefore,
how to fulfl the data federation while ensuring all parties’
data privacy has important practical signifcance and sci-
entifc value.

As a novel privacy-preserving paradigm, federated
learning (FL) was formally proposed by Google in 2016 to
securely collaborate on massive mobile devices and then
applied to many practical scenarios. Generally, according to
the data distribution among diferent parties, FL is further
categorized as horizontal FL and vertical FL, where the
former is an extension of samples and the latter is an ex-
tension of features.Te paper considers a vertical FL for PLF,
whose pipeline is shown in the bottom box of Figure 1. Te
diference between vertical FL and centralized learning is
mainly refected in the following three aspects: (1) In vertical
FL, diferent parties cannot directly share the original data.
(2) In vertical FL, diferent parties must execute the addi-
tional private set intersection (PSI) to obtain the shared
sample ID. (3) In vertical FL, diferent parties only exchange
the ciphertext to prevent indirect privacy leakage.

Although there exist some investigations about how to
apply vertical FL to PLF, two problems are still not well
solved. Te frst problem is a lack of a full data-processing
procedure, and the second is a lack of enhanced privacy
protection in a full data-processing procedure. Existing
research focuses on model architecture selection and usually
assumes that the dataset has been well preprocessed.
However, in a practical scenario, several data pretreatments
are necessary before formal training. Besides, FL only
protects the original data ownership but cannot prevent
indirect privacy leakage by inferring intermediate
information.

To address it, according to the procedure in a practical
scenario, we propose a vertical FL XGBoost-based PLF
[5, 6], where multiparty secure computation is used to
enhance the privacy protection of FL. Te reason for
choosing XGBoost rather than LSTM is that we focus on
the short-term PLF rather than the long-term EFL. In such
cases, XGBoost has a faster computation speed. Besides,
XGBoost prefers category data, which cannot be dealt by
LSTM. Te considered scenario is that power grid,
weather bureau, and electric enterprises are trying to
jointly improve the prediction accuracy of EFL, with the
restriction of privacy protection. Diferent from the
existing vertical XGBoost study, which just proposes the
vertical XGBoost algorithm, we here consider a full data-
processing vertical PLF, and multiparty secure compu-
tation is introduced to enhance the security of full data
processing. Te main contributions are as follows:

(i) We propose a full data-processing vertical XGBoost
method for PLF, which consists of data cleaning,
PSI, feature selection, feature binning, federated
training, and inference. Te proposed method can
also be applied to other vertical FL tasks.

(ii) We further use RSA encryption in private set in-
tersection and Paillier homomorphic encryption in
the training and inference phases to enhance the
security of the full data-processing procedure.

(iii) We evaluate the proposed method on three real-
world datasets to compare centralized learning,
two-party, and three-party scenarios. Experimental
results show that FL can signifcantly improve
forecasting accuracy, and three-party FL outper-
forms two-party FL.

Te organization is as follows: Section 2 introduces the
related work, and Section 3 introduces preliminary
knowledge. We introduce the main method in Section 4 and
validate the proposed method in Section 5. We give a brief
summary and future work in Section 6.

2. Related Work

2.1. Centralized Learning. In centralized learning, the main
work for PLF is how to establish the model. Te existing
models include three aspects. Te frst aspect is using tra-
ditional statistical models, such as multivariate linear model
[7] or Bayesian model [8]. López et al. [9] estimated the
ARIMA parameter based on the frequency domain and the
Bayes method and used the ARIMA for short-term EFL.Te
second aspect is using data-drivenmethods, such asmachine
or deep learning models. For example, Chen et al. [10]
proposed a deep random forest for short-term PLF, and
Singh and Dwivedi [11] introduced a neural network for
EFL. Te third aspect is using the combinational method.
For example, Zhang and Wang [13] simultaneously used
singular spectrum analysis, support vector machine, aver-
aging regression model, and cuckoo searching for short-
term PLF. Liang et al. [14] fulflled EFL based on empirical
mode decomposition, MIRMR, linear regression network,
and fruit fy optimization algorithm.

2.2. Federated Learning. To mitigate privacy leakage caused
by direct data sharing, FL has been applied to many ap-
plications in the smart grid [15–17]. Hudson et al. [18]
proposed a deep recurrent network for nonintrusive load
monitoring via FL.Wang et al. [19] proposed a horizontal FL
approach to study electricity consumer characteristic
identifcation, where privacy-preserving PCA is used to
reduce the dimension. On the same topic, Lin et al. [20]
proposed a hybrid model combining CNN and LSTM to
learn consumer features and used an asynchronous strategy
to improve the training speed. Cao et al. [21] used local
diferential privacy to enhance the security of FL, where
users are divided into regular and sensitive groups, each with
a diferent privacy budget. Su et al. [22] proposed a secure
and efcient FL-enabled AI of things scheme for private
energy data sharing, where a reinforcement learning-based
incentive algorithm is used to improve the model’s utility.
However, all the above work only considered the horizontal
FL framework, which cannot be extended to the scenario
considered in the paper.
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Taı̈k and Cherkaoui [23] considered a similar application
to ours, where an FL is used for household load forecasting.
However, they also considered the horizontal FL, which
cannot be extended to the vertical scenario considered in the
paper. Te work most similar to ours is [24], where vertical
FL XGBoost is applied to power consumption forecast. Te
diference is that the study [24] only discusses how to use an
encryption scheme to enhance the training phase, but we
give a complete vertical FL framework based on a practical
data processing procedure.

3. Preliminary Knowledge

As discussed above, we aim to propose the full data pro-
cessing procedure for PLF. For a comprehensive under-
standing, we introduce the core concepts in this section,
including the vertical FL framework and XGBoost
algorithm.

3.1.VerticalFederatedLearning. FL is a special framework of
distributed learning, which consists of multiple parties.
Apart from distributed learning, FL focuses the parties’
privacy and the curator (if one exists) cannot access any
party’s raw data. Te basic idea of FL is that transmitting the
intermediate information will replace the raw data. Te
intermediate information is usually model parameters or
gradients, in plain text or ciphertext.

Vertical FL is adapted to the scenario where the sample
features overlap more than the sample IDs. Figure 2 shows
a case of two parties’ data, which satisfy the vertical FL. In
particular, party A owns four samples with
id1, id2, id3, and id5 and features f1 andf2. Party B owns
four samples with id1, id2, id3, and id4 and three features
f3, f4, andf5. Clearly, the purpose of federation in such a
case is to enlarge the feature space. However, the before-
hand step is to fnd the overlapped IDs id1, id2, and id4,
meanwhile, without revealing other exclusive IDs. After
this step, parties A and B will apply the federated algorithm
to the intersection. Diferent algorithms correspond to
diferent procedures. For example, the core of XGBoost is

to compare the gain of all possible values of features, where
the gradients can be independently computed by the party
who owns labels. However, for the CNN model under the
vertical FL, neither party can derive full gradients, and the
core problem is how to securely exchange partial infor-
mation to compose lossless gradients. In summary,
whatever the algorithm, all parties in vertical FL need to
compute the intersection at frst, which is called the private
set intersection (PSI).

3.2. XGBoost Algorithm. XGBoost [5] is an improved ver-
sion of GBDT. For example, XGBoost uses the second ex-
pansion to approximate the loss function to improve the
prediction accuracy and introduces a regular term to avoid
overftting. Besides, XGBoost utilizes blocks storage struc-
ture to fulfl parallel computation.

Te objective function of XGBoost consists of loss function
and regularization. Assume the training dataset is
D � (x1, y1), (x2, y2), . . . , (xn, yn)􏼈 􏼉, with loss value l(yi, 􏽢yi)

and regular term Ω(fk). Ten, the objective function is

L(ϕ) � 􏽘
K

k�1
l yi, 􏽢yi( 􏼁 + 􏽐

k

Ω ft xi( 􏼁( 􏼁, (1)

where k denotes the tree index and 􏽢yi is the prediction value
of input xi. Tat is, 􏽢yi � 􏽐

t
k�1 fk(xi). Te core idea of

XGBoost is that based on the frst t − 1 trained trees, the total
loss value can be expressed as 􏽢yi � 􏽐

t
k�1 fk(t) � 􏽢y

(t−1)
i +

ft(xi). To train the t-th tree, the objective is

L
(t)

� 􏽘
n

i�1
l yi, 􏽢y

(t−1)
i + ft xi( 􏼁􏼐 􏼑 + 􏽐

k

Ω fk( 􏼁. (2)

Taking the quadratic approximation of the above
function and removing the constant factor, we obtain the
following expression of objective function:

L(t) � 􏽘

T

j�1
Gjwj +

1
2

Hj + λ􏼐 􏼑w
2
j􏼔 􏼕 + cT, (3)
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Figure 1: Pipeline of centralized learning pipeline and federated learning.
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where Gj � 􏽐i∈Ij
gi andHi � 􏽐i∈Ij

hi with gi and hi are the 1
st

and 2nd derivations of sample i and the purpose is to
minimize (2) with respect to wj. It is observed that (2) is a
summation of T independent quadratic functions. Trough
a basic calculation, we obtain the optimal argument wj �

Gj/Hj + λ and the minimal value L
(t)
min � −1/2􏽐

T
j�1

G2
j/Hj + λ + cT. Te remainder problem is how to generate

the tree. Te principle is to select a feature split, which
ensures the fastest descend of (2). Assume Il and Ir are the
left and right sets based on a given split. Ten, the corre-
sponding loss function is

Lsplit �
1
2

G
2
L

HL + λ
+

G
2
R

HR + λ
−

GL + GR( 􏼁
2

HL + HR + λ
􏼢 􏼣 − c. (4)

Based on the maximal value selection principle, we select
the corresponding feature value to split tree and write the
feature name and value into the splitting nodes. Ten, the
depth of the tree increases by one. Repeating the above
procedure until the tree grows to the given depth.

4. Main Methods

Tis section introduces two main methods, private set in-
tersection and vertical XGBoost, for full data-processing
vertical PLF.

4.1. Basic Idea. Te paper proposes a lossless, full data-
processing vertical PLF. Te basic idea is to separate op-
erations among participants based on the data/information
fow, which also encrypts the exchanged information for
enhanced privacy protection. In concrete, participants are
divided into the active party (i.e., the server) and passive
party (i.e., the client), where only the server owns the label.

Assume that the participants consist of one server and
multiple clients. For a simple explanation, we assume in this
section that the server has a dataset uA

1 , uA
2 , uA

3 , uA
4􏼈 􏼉, where

uA
i � idi, fA

i , yi􏼈 􏼉 is composed by the sample ID idi, feature
fA

i , and label yi. Te client has uB
1 , uB

2 , uB
4 , uB

5􏼈 􏼉, where uB
i �

idi, fB
i􏼈 􏼉. Note that the client does not have the label.

4.2. Private Set Intersection. Private set intersection (PSI) is
used for searching the sample ID intersection between the
server and client, without revealing the individual’s ID. Te
main procedure is shown in Figure 3, where the hash
function and blind signature are used for ensuring private
and correct information communication. Te details are as
follows:

(1) Client generates the public and private keys (n, e, d)

and sends public key (n, e) to the server
(2) Server maps the sample ID XA to F(u) through a

hash function and then sends the blind YA to the
client

(3) Client obtains ZA through the blind signature of YA

and DB by handling XB through hash-signature-
hash operation, where ZA is sent to the server

(4) Server unblinds ZA and uses hash mapping to obtain
DA

(5) Server fnds the intersection between DA and DB and
then sends the intersection to the client

(6) Client receives the intersection

4.3. Vertical XGBoost. XGBoost is an improved version of
GBDT. XGBoost consists of multiple trees, and the pre-
diction result is the summation of all the trees. Te purpose
of XGBoost is to generate the t-th tree to ft the residual of
the frst t − 1 trees. We use XGBoost for regression pre-
diction, where the loss function is defned as

l(y − 􏽢y) � 􏽘
n

i�1
l yi − 􏽢yi( 􏼁􏼂 􏼃

2
. (5)

Te frst derivation gi and the second derivation hi are
gi � |yi − 􏽢yi|, hi � 1. Denote by I the set of samples ID.
Based on (4), the gain of a splitting node is

Lsplit �
1
2

G
2
L

HL + λ
+

G
2
R

HR + λ
−

GL + GR( 􏼁
2

HL + HR + λ
􏼢 􏼣 − c, (6)

where GR � 􏽐i∈IR
gi, HR � 􏽐i∈IR

hi, GL � 􏽐i∈IL
gi, andHL �

􏽐i∈IL
hi, with IR and IL are sets of sample ids which are,

respectively, split into the right and left sides of the splitting
node. Te growth of the tree depends on the selection of the
splitting node, which corresponds to the maximal value Lsplit.
Once a node is selected in a tree, the following growth is
restricted to the subsets IR or IL.

When the growth of a tree is complete, its structure will
only be restored only on the server. For protecting all
participants’ privacy, each party maintains herself/himself
lookup table, which has the information of splitting feature
and value. Te splitting node contains two messages. One is
the party identity who owns the splitting feature, and the
other is the sample index of the lookup table.Terefore, even
if the server owns the complete structure, he or she cannot
complete the inference independently. Figure 4 shows the
procedure of vertical XGBoost:

(1) Te server computes the frst-order and second-
order derivations (G, H) based on labels yi􏼈 􏼉i∈I,
where G andH are sets which consist of gi and hi

shown as (4). Ten, the server sends the encryption
of (G, H) to the client. Meanwhile, the server obtains
the optimal splitting node SA by computing all
splitting gains on its own feature values.

(2) Te client receives the encrypted (G, H), which is
used for computing the splitting gains of the client’s

ID
Party A Party B

f1 f2 f3 f4 f5

id4

id2

id1

id5

id3

id2

id1

id4

ID

Figure 2: Data split of parties in vertical FL. Te horizontal axis
denotes sample ID, and the vertical axis denotes feature.
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feature values. Ten, the client sends all splitting
gains to the server.

(3) Te server receives the splitting gains sent by the
client and obtains the optimal splitting node SB of
client. By comparing SA and SB, the server obtains
the globally optimal splitting node from SA, SB􏼈 􏼉.

(4) Te participant who owns the optimal splitting node
writes the corresponding information into the
lookup table and generates a new node.

Remark 1. Te proposed vertical PFL can be easily extended
to multiple clients. Due to the fact that all clients concur-
rently calculate their own splitting gains, the local compu-
tation time is almost the same as for a single client when they
are homogeneous. Note that only the server needs to ag-
gregate more intermediate information uploaded from
multiple clients; therefore, the proposed method can be
applied to multiple clients. Tis is validated by the experi-
mental results in Section 5.4.

5. Evaluation

Based on a real-world dataset, the experimental results show
that the proposed federated XGBoost can signifcantly im-
prove the performance of the centralized XGBoost, in terms
of root mean square error (RMSE) and R2 score.

5.1. Dataset. We validated the proposed full data processing
FL method on three real-world datasets, which were loaded
from the Kaggle website: (1)Te frst dataset ismade for project
hourly electricity consumption prediction of Homestead city
(available at https://www.kaggle.com/datasets/unajtheb/
homesteadus-electricity-consumption). (2) Te second data-
set is made for optimizing the electricity production of the
Electrolysia company (available at https://www.kaggle.com/
datasets/utathya/electricity-consumption). (3) Te third data-
set is made for forecasting electricity load or power price
(available at https://www.kaggle.com/datasets/nicholasjhana/
energy-consumption-generation-prices-and-weather). More
information is listed in Table 1, and detailed information about
three datasets can be found on the above websites.

5.2. Experimental Settings

5.2.1. Simulated Scenarios. For PLF using XGBoost, we
consider three modes, including centralized learning, two-
party vertical FL, and three-party vertical FL. In each mode,
we take the input as consecutive t data (such as electric load,
weather, etc.) and output the power load from the timestamp
t + 1 to t + p. Furthermore, we set t as 6, 12, 24, and p as
1, 2, 3, 4, 5, 6. For example, t � 6, p � 1 in centralized mode
denotes that we use the consecutive 6 power loads to predict
the 7-th power load. Te considered modes are described as
follows:

(1) Centralized learning: the power grid only uses the
historical power load for PLF.

(2) Two-party FL: participants include the power grid
and weather bureau. Model inputs consist of his-
torical power load and weather information.

(3) Tree-party FL: participants include power grid,
weather bureau, and power generation enterprises.
Model inputs consist of power load, weather in-
formation, and power generation values.

5.2.2. Platform Parameters. We used three microservers to
simulate the active server and two passive clients. Te
confguration of each microserver was as follows: Intel Xeon
CPU E5-2650 and network card RTL8111 with bandwidth
1000Mb/s. Te operating system version was Ubuntu 18.04.
All experimental codes were written in Python 3.7.

5.2.3. Algorithm Parameters. We used grid search to tune
the main parameters. Five key parameters of XGBoost were
set as follows: the tree number was 40, left sampling weight
was 1, and initial label value was 0.5 for all three datasets.Te
maximum depth was set as 5, 3, and 2, and the regularization
was set as 10, 15, and 40, for dataset-1, dataset-2, and dataset-
3, respectively. Besides, the learning rate was 0.1, and the
ratio of training to test dataset was 9: 1.

5.3. Experimental Procedure. In this section, we take dataset-
3 as example to introduce the standard FL procedure, which
can be applied to other similar vertical FL XGBoost tasks:

Party B (Passive Client)
XB:{id1, id2, id4, id5}

Party A (Active Server)
XA:{id1, id2, id3, id4}

Public key (n, e)
① RSA: (n, e, d)

Signature: ZA ← YA;
Hash-Signature-Hash:
DB ← XB

⑥ Receive U

YA

ZA

U: {u1, u2, u4}

Hash Map: F (u) ← XA;
Blindness: YA ← F (u)

④ Unblind: DA ← ZA

Intersection:
I = DA∩DB = {F(F(u1)d), F(u2)d}

③

②

⑤

Figure 3: Demonstration of private set intersection.
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(1) Data cleaning: we replaced the categorical data with
integers and removed the null data, including the
weather main, weather description, weather icon,
and city name, with integers, which ranged from 1 to
the domain size. We removed eight null features
from the energy dataset. Te cleaned dataset size is
descripted in Table 1.

(2) Private set intersection: we used the private set in-
tersection to obtain and align the common sample
IDs among the used datasets. Te basic procedure is
descripted in Figure 3, where the sample ID is the
timestamp. Te dataset size after aligning is
descripted in Table 1.

(3) Feature selection: considering some features are ir-
relative to PLF, we calculated the related coefcients
between features and label, and removed the features
whose value was less than 0.3. Te fnal remaining
features have been listed in Section 5.2 and Table 1.

(4) Federated training: participants collaboratively
compute the splitting gains of all candidate values to
grow the tree according to Figure 4. Due to that only
the server has the label, the computation of the frst-
order and second-order derivations are computed by
the server. Ten, the crypted derivations were sent to
clients who computed their own gains by splitting
the ciphertext. Finally, the server obtained the op-
timal splitting value by comparing the union set of
splitting gains.

(5) Federated inference: the server and client collabo-
ratively used themselves to predict the power load. If
the split feature belongs to the server, then the server
judges where the data fow goes, into the left or right

child nodes. Else, it is the client’s turn to make the
judgement based on splitting information stored in
the lookup table, which is owned by the server.

5.4. Experimental Results. Based on the experimental set-
tings descripted in Section 5.1, the comparison results are
shown in Figure 5 and Table 2. From this, we obtain the
overall conclusion that FL outperforms centralized learning.
More detailed results are as follows:

(1) Two-party federated learning versus centralized
learning: Figure 5 shows R2 on three datasets when
input size t was set as 6, 12, 24 and prediction length
p was set from 1 to 6. In centralized learning, we only
used the electricity consumption data. However, in
two-party FL, we collaboratively used electricity and
weather data. Tree conclusions were observed from
Figure 5.
Firstly, it is observed from each subfgure that FL
outperforms centralized. Te advantage increases
with the horizontal axis, i.e., the prediction length.
Te reason is that FL utilizes weather information,
which is related to power consumption. Secondly, it
is observed that R2 increases with input parameter t.
Taking p � 6 on dataset-3 as example (Figures 5(g)–
5(i)), R2 of centralized learning when t � 6, 12, 24 is
0.54, 0.88, 0.89, respectively. Meanwhile, R2 of FL in
the same setting is 0.84, 0.90, 0.92, which also
presents an increasing trend. Te reason is that we
observe a clearer tendency from more historical
power load data. Similar conclusions are also ob-
served from other fgures. Tirdly, it is observed that

Table 1: Descriptions of three used real-world datasets.

Dataset Party Original size After cleaning After aligning After selecting Experiment

Dataset-1 Electricity 26496.2 26496.2 26496.2 26496.2
Centralized
Two-party FL

Weather 26496.6 26496.6 26496.6 26496.5

Dataset-2 Electricity 22200.2 22200.2 22200.2 22200.1
Weather 22200.16 22200.16 22200.16 22200.13

Dataset-3
Electricity 35017.2 35017.2 35017.2 35017.2 Centralized

Two-party FL
Tree-party FL

Energy 178396.17 178396.17 35017.17 35017.14
Weather 35017.28 35017.21 35017.21 35017.9

Party B (Passive Client)
XB:{u1

B, u2
B, u4

B}

Calculation:
Q ← f 1

B, f 2
B, f 4

B 

updates lookup table;
node information.

Ciphertext of (G, H)

Gain set Q

Party A (Active Server)
XA:{u1

A, u2
A, u4

A}

Derivate-Encryption:(G, H);
Calculation : SA

Decrypt-Calculation : SB ← Q;
Selection: 𝒮 ← {SA,SB}

If 𝒮 = SA: updates lookup table
and node information;
Else IF 𝒮 = SB: send 𝒮 to party B;

Split node 𝒮

②

⑤

①

③

④

Figure 4: Demonstration of the splitting node in vertical XGBoost.
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compared to centralized learning, the advantage of
FL decreases as t. For example, when t � 6 on
dataset-3, the increasement is 0.3. However, the
increasement is only 0.03 when t � 24. Te reason is
that the information gain of weather data decreases
as more historical load data are available.

(2) Tree-party federated learning versus two-party
federated learning: we further conducted three-party
FL where additionally used energy dataset to validate

the advantage of more data collaboration. Te dif-
ferences between three-party FL and two-party FL
refect two parts. Te frst diference is that the three
parties have to consequently aligned the sample ID
one by one. Te second is that there are two passive
parities in three-party FL but one passive party in
two-party FL.Te comparison of R2 and runtime are
listed in Table 2, from which it is clearly observed
that three-party FL achieved a higher R2 than two-
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Figure 5: Comparison of centralized learning and two-part federated learning when t � 6, 12, 24. (a) Dataset-1, t� 6. (b) Dataset-1, t� 12.
(c) Dataset-1, t� 24. (d) Dataset-2, t� 6. (e) Dataset-2, t� 12. (f ) Dataset-2, t� 24. (g) Dataset-3, t� 6. (h) Dataset-3, t� 12. (i) Dataset-3,
t� 24.

Table 2: Comparison of R2 and runtime between centralized learning and three-party FL on dataset-3.

p � 1 2 3 4 5 6 Average runtime

k � 6
Centralized 0.987 0.947 0.886 0.803 0.665 0.540 —
Two-party 0.988 0.953 0.933 0.922 0.874 0.843 66m
Tree-party 0.992 0.975 0.957 0.938 0.921 0.911 79m

k � 12
Centralized 0.992 0.974 0.951 0.933 0.918 0.887 —
Two-party 0.992 0.977 0.956 0.943 0.920 0.906 84m
Tree-party 0.994 0.981 0.968 0.952 0.938 0.926 98m

k � 24
Centralized 0.993 0.980 0.970 0.952 0.921 0.895 —
Two-party 0.993 0.985 0.976 0.964 0.940 0.924 108m
Tree-party 0.994 0.984 0.973 0.963 0.952 0.944 122m
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party FL, at the cost of little more computation time.
Te reason is that the additional energy data can
provide more useful information for PLF, while the
active server in three-party FL has to aggregate more
information than two-party FL. In particular, it is
observed that the runtime is mainly determined by
client number, which is consistent with the remark in
Section 4.3.

6. Conclusion

Considering data silos in the power load forecast, we pro-
pose a vertical federated learning method to collaboratively
collect more data to improve the forecast accuracy. Fur-
thermore, according to data processing procedure, we design
a full data-processing XGBoost algorithm, where we use
homomorphic encryption for protecting privacy. Experi-
mental results on real-world datasets show that the proposed
method can outperform the traditional centralized learning
method. Terefore, the proposed vertical federated learning
XGBoost algorithm with full data processing consideration
can be directly applied to improving the utility of power load
forecast.

However, due to the fact that the server has to send the
encrypted frst-order and second-order derivations of each
sample to clients, the communication cost increases linearly
with database size. Tere will be a barrier to applying
XGBoost when the database size is huge in practice. Tis can
be mitigated by clustering derivations and only the clustered
results, instead of each of derivations, are sent to clients.
Meanwhile, the batch-crypted method, which encrypts a
batch at a time, can also be utilized. We will investigate these
strategies to further reduce the communication cost in our
future work [12].
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