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In order to prevent the economic losses caused by large-scale power outages and the life safety losses caused by circuit failures, the
main purpose of this paper is to improve the efficiency, accuracy, and reliability of transmission line defect detection, and the main
innovation is to propose a transmission line defect detection method based on YOLOv7 and the multi-UAV collaboration
platform. First, a novel multi-UAV collaboration platform is proposed, which improved the search range and detection efficiency
for defect detection. Second, YOLOV7 is used as a detector for multi-UAV collaboration platform, and several improvements
improved the efficiency of defect detection under complex backgrounds. Finally, a complete transmission line defect images
dataset is constructed, and the introduction of several defect images such as insulator self-blast and cracked insulators avoids the
problem of low application value of single defect detection. The results indicate that the proposed method not only enhances the
detection range and efficiency but also improves the detection accuracy. Compared with YOLOv5-S, which has good detection
performance, YOLOvV7 improves accuracy by 1.2%, recall by 4.3%, and mAP by 4.1%, and YOLOv7-Tiny achieves the fastest speed
1.2 ms and the smallest size 11.7 Mb. Even if the images contain complex backgrounds and noises, a mAP of 0.886 can still be
obtained. Therefore, the proposed method provides effective support for transmission line defect detection and has broad
application scenarios and development prospects.

1. Introduction

To ensure the safe operation of transmission lines, power
departments must regularly inspect transmission lines and
power systems [1]. Insulators are the key components in
transmission lines, and they are mainly used for electrical
insulation and mechanical fixation of power systems [2].
Affected by mechanical structure damage, material aging,
and natural factors, the insulators often suffer from self-
blast, damage, pollution, chip shedding, and other failures
[3]. Wire, iron wire, vine, thatch, cloth, and excrement are
commonly used materials for birds to build nests, leading to
insulator flashover and short-circuit fault. In extreme

weather, insulator defects often lead to instability of
transmission lines and even lead to power outages and safety
accidents. Therefore, the detection and identification of
transmission line defects is important.

The traditional manual inspection methods are low
inefficient and high risky and have low accuracy [4]. In
recent years, unmanned aerial vehicle (UAV) technology has
been applied to the inspection tasks of high-voltage trans-
mission lines and power equipment [5]. By equipping
various sensors and carrying appropriate object detection
models, the transmission line monitoring equipment can
complete the inspection tasks such as image acquisition,
defect detection, and defect location for transmission lines
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[6]. However, the UAV system is limited by the impact of
flight costs, endurance, and complex environments, and the
detection results rely on human subjective experiences. Since
the video and image data of transmission lines can be ef-
fectively collected, UAV image acquisition, image processing
[7], image fusion [8], and object detection have gradually
become commonly used transmission line defect detection
methods. Therefore, the main research content of this paper
is to propose an efficient multi-UAV coordination system to
reduce flight cost and improve data collection efficiency. In
addition, an accurate and reliable defect detection model is
also the main research content of this paper.

The transmission line defects detection methods based
on the object detection algorithm can identify the trans-
mission line defects, which is convenient for power workers
to detect power failures early and reduce the occurrence of
power accidents. Han improved the semantic feature ex-
traction capability of the U-Net segmentation by embedding
efficient channel attention (ECA-Net) module [9]. Zhang
reconstructed the convolutional layer of the inception
network through interleaved group convolution [10], which
improves the generalization of insulator defect detection.
Although the abovementioned methods can identify the
types of insulator fault, the location of insulator defects
cannot be accurately located. Many scholars use two-stage
detection methods such as the region-based convolutional
neural network (R-CNN), Faster R-CNN [11], and Cen-
terNet [12] to detect and locate defects and faults in
transmission lines. Lei and Sui proposed an insulator and
bird’s nest identification method based on the Faster R-CNN
with the regional proposal network [13]. Liu et al. used the
Faster R-CNN as the detector to achieve the slippage fault
diagnosis of dampers in aerial images [14]. Xia et al. in-
troduced a spatial and channel attention mechanism con-
volutional block attention module (CBAM) into CenterNet
to improve the prediction accuracy of insulator and replaced
the ResNet-50 by the lightweight MobileNet to speed up
detection speed [15]. In addition, single shot detector (SSD)
and you only look once (YOLO) are the most commonly
used transmission line defect detection algorithms. Com-
pared with the two-stage method proposed above, the
methods do not have the step of extracting candidate regions
through a regional proposal network (RPN), so it is fast and
less accurate, and the YOLO series is a typical representative
of them. Xin et al. proposed a small object detection algo-
rithm named FA-SSD to solve the problem of the umbrella
disc shedding occupying only a small proportion of an aerial
image, in which deep features and shallow features are
combined, and attention mechanisms are introduced [16]. Li
et al. proposed an SSD based on the improved dual network
for the images of insulators and spacers taken by UAVs [17],
which realized the high-precision detection of electrical
equipment. Aiming at the problem of different self-blast
areas and complex backgrounds, He et al. proposed the
Mina-Net based on YOLOv4, which fused shallow feature
maps with more detailed texture information into the fea-
ture pyramids, and used improved squeeze-and-excitation
networks (SENet) to calibrate the features of different levels
[18]. Deng et al. proposed an improved YOLOv4 object
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detection algorithm based on the MobileNetv3 backbone
and parametric rectified linear unit (PReLU) activation
function and detected insulator defects through this light-
weight model [19]. Xing and Chen processed images
through Gaussian filtering, mosaic data enhancement, and
k-means++ clustering and replaced the YOLOv4 backbone
with MobileNet, which improved the detection speed and
accuracy [20]. Li et al. reduced the negative impact of uneven
lighting on YOLOv5-based insulator defect detection results
through multiscale gradient-domain guided filtering and
two-dimensional adaptive gamma transform [21]. Souza
et al. proposed a hybrid YOLO model based on ResNet-18
and YOLOv5-X, which can detect faulty components in
transmission lines by combining with a single UAV system
[22]. Dai solved the uncertainty problem of insulator defect
detection by applying a Gaussian function in front of the
inspection head of YOLOX [23]. It can be seen that SDD,
YOLOV4, YOLOV5, and YOLOX have all been used to detect
defects and faults in transmission lines. In actual trans-
mission line defect detection experiments, these methods
have high requirements on image quality and cannot detect
small-target insulators and defects in complex backgrounds,
and the detection accuracy and efficiency of these methods
need to be further improved.

Therefore, the existing defect detection methods for
insulators of high-voltage lines are still difficult to meet the
practical application requirements. The main reasons and
research gaps are summarized as follows: (1) The trans-
mission line passes through plateaus, mountains, valleys,
etc., so the power inspection covers a wide range and the
terrain and background are particularly complex. However,
most of the existing transmission line defect detection
methods based on a single UAV only detect insulator defects
or bird’s nests and the situation where multiple defects occur
simultaneously is ignored. (2) Due to the influence of
shooting angles, background noises, and lighting conditions,
it is difficult to ensure the reliability of transmission line
defect detection. In addition, the YOLOv4-based and
YOLOv5-based detection methods cannot meet the re-
quirements of precision and speed. (3) The existing defect
detection methods for transmission lines only detect a single
fault or defect, such as insulator self-blast, breakdown, or
bird nest. The reasons for the abovementioned problems
depend largely on the lack of image samples and the low
quality of small samples. In the actual detection tasks, the
same images or lens may contain multiple defects, which
brings great challenges to the current transmission line fault
detection.

In view of the abovementioned problems, we proposed
a transmission line defect detection method based on
YOLOvV7 and the multi-UAV collaboration platform. The
main contributions and innovations are shown in Figure 1.

(1) To address the problems of low efficiency and small
search range caused by the existing research using
only a single UAV to detect defects in transmission
lines, we constructed a multi-UAV cooperation
platform. Through the integration of the multi-UAV
module, positioning module, path planning module,
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and detection module, multi-UAV can not only plan
flight paths autonomously through the control of the
DJI mobile SDK module but also detect and locate
defective components and positions through
YOLOvV7 and coordinate calibration. This platform
can not only detect and locate defects well in
transmission lines, but also flexibly connect several
UAVs. Therefore, the proposed multi-UAV collab-
oration platform can not only increase the search
range per unit time but also improve the defect
detection reliability.

(2) In order to improve detection accuracy and effi-
ciency as much as possible, we proposed a defect
detection module based on YOLOv7, and it is used as
a detector and integrated into the multi-UAV
module through the DJI mobile SDK module. Af-
ter detecting targets and defects on the transmission
line, the actual location of the defects can be located
through the corresponding relationship between the
calibrated parameters and the coordinate system,
and the problems of low accuracy caused by complex
backgrounds, single UAV, and shooting lighting
have been reduced.

(3) To comprehensively consider the types of defects in
real transmission line scenarios, we built a trans-
mission line defect detection dataset by combining
web crawler datasets, public datasets, and live
shooting datasets, which contains three types of most
common transmission line defect images, including
cracked insulators, insulator self-blast, and bird
nests, and the problems of lack of data and low
quality of samples have been solved.

The rest of this paper is arranged as follows. Materials
and methods are described in Section 2, including the multi-
UAV collaboration platform and the YOLOv7 detection
algorithm. The results of the transmission line defect de-
tection are analysed in Section 3. Some useful experimental
analyses and conclusions are summarized in Section 4.

2. Transmission Line Defect Detection Method
Based on YOLOv7

2.1. Multi-UAV  Collaboration Platform. We proposed
a multi-UAV collaboration platform, of which the multi-UAV
module, positioning module, path planning module, and de-
tection module are the most critical components. The multi-
UAV module we built is an open interface platform, and
several DJI UAVs can flexibly access the platform through the
open interface. DJI-branded UAV's are not only cheap but also
have good performance and high scalability. In the proposed
multi-UAV module, an effective DJI mobile SDK module is
used to control the flight of the UAVs, and the work of the pan
tilt and camera is well coordinated. The DJI mobile SDK
consists of six main parts, including gimbal, cameral, remote
controller, airlink, light controller, and battery, which are
inherited from DJIBase component. For each submodule, the
most detailed feature descriptions are shown in Figure 2.

Then, we establish a suitable path-planning method for
each UAV in the collaboration platform. The flight path
planning method connected to the platform can be divided
into two modes; one is to divide a global flight area based on
the flight path and search range, and the other is to plan and
receive the flight path and area of each UAV through map
annotation. In this paper, we divide flight points and mis-
sions based on the actual situation and search scope of the
transmission line, using map markers. First, the geographic
coordinates that the UAV's on the transmission line need to
reach are sequentially marked as array coordinates. Then, we
plan specific flight point coordinates for each specific UAV,
and all UAVs connected to the platform have corresponding
paths and flight point coordinates. Under the control of the
DJI mobile SDK, all UAVs within the collaboration platform
fly according to preplanned flight paths, expanding the
search range and improving search efficiency. The steps of
the multi-UAV collaboration platform are as follows.

(1) Division of search area on transmission lines. We
divide the search area of the 4G or 5G signal base
station where the transmission line is located as
a reference centre. First, we are centred on a 5G
signal base station and preliminarily determined by
the UAV’s maximum flight distance as the radius. In
the divided search area, each UAV gradually shoots
video along the transmission line from the inside out.
When the range of each UAV is accurately de-
termined, we can plan the specific flight path of each
UAYV based on the perspective of each UAV’s camera
and maximum flight distance. Generally speaking,
those UAVs that can fly longer are allocated more
grid search areas, while those UAVs with smaller
camera fields are allocated to a higher flight path. In
this way, the coordinated operation of multiple
UAVs has greater security and reliability.

(2) Route planning for transmission line defect de-
tection. Transmission lines often span a variety of
different terrains, and the autonomous flight of
UAVs is often affected by complex terrain. In order
to display the high lines in real time in the map of the
detection system, we embed a digital elevation model
(DEM). We plan the aerial photography path of the
UAVs between 20m and 30 m above the contour
line; the UAVY lifting requirements have been re-
duced, and the efficiency of image collection has been
improved.

(3) Marking of inspection areas. To avoid duplication
and omissions in the inspection area of the trans-
mission line as much as possible, we abstract the
perspective of the UAVSs camera into a convex
quadrilateral, and the search area of each UAV is
visually marked. To solve the problem of discreteness
between videos collected by multiple UAVs, we add
each calculated polygon area to the polygons in the
search area. Through the abovementioned methods,
the same inspection area will neither be repeatedly
photographed nor be missed or ignored.
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(4) Target positioning. With the embedded YOLOv7
detection model, device defects in transmission lines
can be detected. However, how to locate the detected
defects or the true location of the target is a key issue.
The corresponding relationship between the WGS84
coordinate system and the pixel coordinate system
can be obtained through the calibrated UAV pa-
rameters and the homologous video stream. More
information can be found in our publication [24].

(5) Collaboration platform testing. To verify the effec-
tiveness of the proposed collaboration platform, we
build a simple coordination system by using two DJI
Mavic 2 Pro UAVs, and the preliminary test results
are shown in Figure 3.

We test the proposed method in Dajianshan, Kunming,
and we first select the lowest contour line of Dajianshan as
the flight path. As shown in Figure 3, the orange UAV flies
clockwise from the start to the end along the orange-marked
aerial route. At the same time, the purple UAV flies
counterclockwise from the start to the end along the aerial
shooting route marked in purple. In this way, video data
from the area around this contour line are collected and
saved by UAVs. After both UAVs reach the finish line, both
UAVs fly to a second contour line at a higher level. The
orange UAV then flies counterclockwise from the finish
point to the start along the orange-marked aerial route. At
the same time, the purple UAV flies clockwise from the
endpoint to the starting point along the aerial photography
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route marked in purple. In this way, video data from the area
near the second contour line are collected and saved by the
UAVs. It is worth noting that the scope of UAV inspection
has been significantly increased by this combination of
horizontal and vertical path planning. After the two UAVs
collect nonoverlapping video signals, the detection module
obtains these video streams through real-time message
protocol (RTMP) and data transmission servers and detects
defects in the transmission line. As shown in “UAV1” and
“UAV2” in Figure 3, the targets that appear in the videos
collected by the two UAV's can be accurately detected by the
YOLOvV7 model, and the collaborative detection of multiple
UAVs videos improves the efliciency and reliability of target
detection.

As shown in Figure 3, the area near the two contour lines
in Kunming’s Dajian mountain is completely inspected by
two UAVs working together in real time. In fact, more than
two UAVs can be embedded into our collaborative platform,
the energy consumption requirements of a single UAV are
reduced, and the search range and search efficiency are
significantly improved. To sum up, some useful information
about the multi-UAV collaboration platform can be sum-
marized as follows.

(1) Normally, the same inspection range in Figure 3
requires a set of independent UAV to patrol twice
along two different contour lines. Alternatively, two
sets of independent UAVs patrol along two different
contour lines once. In addition, independent in-
spection methods face the risk of overlapping in-
spection scopes. In the method proposed in this
paper, two UAVs are integrated into a control sys-
tem, and the implementation of inspection tasks is
completed simultaneously, and there is no overlap in
the inspection area. Detection and location of
transmission line defects can be completed on

a computer with low configuration and energy
consumption and hardware requirements of the
UAVs are further reduced.

(2) If a single UAV is adopted, the path planning

method lacks flexibility, and some key points may be
ignored or overlapping inspections may occur.
Through the DEM-based path planning method, the
effectiveness of multi-UAV path planning and the
accuracy of target positioning have been improved to
a certain extent. By capturing video streams from
UAVs equipped with monocular cameras, the target
positioning system can locate the target from the
video stream to the world geographic system 1984.
Therefore, through the multi-UAV collaborative
system, the problems of omission and overlap in the
inspection area, the accuracy of coordinate trans-
formation, and defect localization can be solved to
a certain extent.

(3) The speed of defect detection depends on the speed

of image acquisition, the speed of image trans-
mission, and the execution speed of the object de-
tection algorithm. When the transmission rate is
equal, the image acquisition speed based on multiple
UAVs is faster than that based on a single UAV, and
the object detection speed based on multiple video
streams is faster than that based on the single video
stream. From the experimental results, it can be seen
that the speed of the defect detection module based
on two UAVs in this paper is much greater than that
of the defect detection module based on a single
UAV. The accuracy of defect detection depends on
the image quality and the performance of object
detection algorithms. In our experiment, multiple
UAVs can improve the quality of images by reducing
omission and overlap issues, thus invisibly



improving the accuracy of defect detection. In ad-
dition, many literatures have proven that YOLOV7 is
a fast and accurate detection algorithm, so the ex-
periments in this article achieved the expected de-
tection performance compared to methods such as
YOLOV5 under the same parameters and structure.

2.2. YOLOv7-Based Defect Detection Method. The accuracy
of defect detection is a prerequisite for defect location. To
meet the accuracy and real-time requirements of defect
detection, we choose the newly released YOLOv7, which
includes input, backbone, neck, and prediction, and it is
currently the fastest detector with the highest accuracy. The
several improvements of YOLOvV7 can be summarized as
follows.

(1) Extended efficient layer aggregation networks: In
YOLOv7, the author proposed an extended-efficient
long-range attention network (E-ELAN), which can
converge more effectively by controlling the shortest
longest gradient path. The main architecture of
E-ELAN is shown in Figure 4. The E-ELAN enhances
the learning ability of the network through expan-
sion, shuffle, and merge cardinality without dam-
aging the original gradient path. Through the group
convolution strategy in E-ELAN, the channels of
computational blocks are expanded, and the same
channel multiplier and group parameter are used for
all the computational blocks.

(2) Model scaling: For the concatenation-based model,
we cannot analyse the effects of different scale factors
on the amount of parameters and computation
separately. In YOLOV7, a corresponding compound
model scaling method is proposed. When we scale
the depth factor of a computational block, the change
in the output channel of the block should also be
calculated. Then, the width factor scaling with the
same amount of change on the transition layers can
be performed. The compound scaling up depth and
width for the concatenation-based model is shown in
Figure 5. When the model is scaled, only the depth
the computational block needs to be scaled, and the
remaining of the transmission layer performs the
corresponding width scaling.

(3) Planned reparameterized convolution: In view of the
problem that RepConv reduces the detection accu-
racy, the authors design planned reparameterized
convolution in YOLOv7. By analysing the combi-
nation of RepConv and different structures, we find
that the RepConv provides more diversity of gra-
dients for different feature maps. In YOLOV7,
RepConvN is used to design the planned repar-
ameterized convolution; an example is shown in
Figure 6.

(4) Coarse for auxiliary and fine for lead loss: Deep
supervision improves the performance of the model.
For the issue of label assignment, researchers use the
quality and distribution of the prediction output and
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consider with the ground truth to generate a reliable
soft label. YOLO uses the IOU between the pre-
diction bounding box and the ground truth as the
soft label of the object. As shown in Figure 7, the lead
head guided label assigner is based on the prediction
result of the lead head and the ground truth. The lead
head has a strong learning capability, so the strategy
should be more representative of the distribution
and correlation between the data and the target.
Coarse-to-fine lead head-guided label assigner
generate the coarse label and fine label, where the
fine label is the same as the former and the coarse
label is generated by allowing more grids to be
treated as the positive target. To avoid losing target
information, we will focus on optimizing the recall of
auxiliary heads in the object detection task.

3. Transmission Line Defect Detection Results
and Analysis

3.1. Experimental Preparation. To verify the real time and
effectiveness of the proposed defect detection method based
on YOLOvV7, we evaluated the detection performance of
various inspection methods through a series of experiments.
As shown in Table 1, we analyse the experimental results and
verify the effectiveness of the method through the hardware
and software configurations in the following.

In this paper, two methods are used to collect trans-
mission line defect datasets, crawling insulator images on the
network through web crawlers and taking insulator images
of transmission lines in the Yuxi section of Yunnan power
grid, and then the data enhancement method is used to
optimize the datasets. Finally, a comprehensive dataset
consisting of five types of transmission line defect images,
including normal glass insulators, normal ceramic in-
sulators, insulator self-blast, cracked insulator, and bird
nests, is obtained, which contained a total of 4835 images.
There are significant differences in the shooting angle,
lighting, and image background of defect targets on these
transmission lines, and the background and size trans-
formation of defect targets are particularly complex in most
images, as shown in Figure 8. It is thus clear that the complex
backgrounds and size transformation bring great difficulties
and challenges to the research of transmission line defect
detection. Therefore, we divide 4835 images into training
sets and test sets according to the ratio of 8:2 and propose
a multi-UAV collaboration platform based on YOLOV7 to
improve the accuracy and efficiency of transmission line
defect detection in complex backgrounds.

3.2. Evaluation Methods. We compare and analyse various
defect detection algorithms through evaluation indicators
such as precision (P), recall (R), F1 score (F1), mean average
precision (mAP), model size and speed, and the detection
accuracy, generalization performance, computing efficiency,
and storage size of the algorithms are well compared and
analysed. Several key evaluation indicators are listed in the
following:
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. TP where TP, FP, and FN represent true positive, false positive,
Precision = -0, and false negative, respectively. The closer F1 is to 1, the
better the detection accuracy and generalization perfor-
Recall = TP mance of the model. Average precision (AP) is a definite
TP + FN’ integral, which can be represented by the closed interval of
o (1) the precision recall curve. In addition to the above 4
F,=2x Precision X Recall’ equations, the average recognition precisions of all defect
Precision + Recall categories in transmission lines can be represented by mAP.
1 K
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TABLE 1: Experimental environment.

Parameters Configurations

GPU Nvidia GeForce GTX 2080Ti (24 G)

CPU Intel Core i7-10700F, RAM 32 GB, CPU 2.90 GHz
Operating system Ubuntu 18.04

Visual studio system Python 3.6, Pytorch1.7.1

Accelerated environment cuDNNS8.0.5, CUDA 11.1

where K represents the total class of the target sample, AP;  In addition, the storage size of the trained model can be
represents the detection accuracy of the model for the typei ~ expressed as “size,” and the sum of preprocessing time,
sample, and mAP represents the average detection accuracy =~ nonmaximum suppression time, and inference time can be
of the model for all class samples, i.e., the average of all APs.  expressed as “speed.”
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FIGURE 8: Transmission line defects in different backgrounds. (a, b) Bird nest. (¢, d) Cracked insulator. (e) Normal glass insulator. (f) Normal

ceramic insulator. (g, h) Insulator self-blast.

3.3. Comparison of Parameters in Training. The datasets
obtained by the multi-UAV collaboration platform and data
enhancement processing greatly expand the number of
datasets, and then we train 5 state-of-the-art YOLO-based
defect detection algorithms through the obtained datasets. In
order to ensure the comparability and fairness of experi-
mental results, all datasets, parameters, and experimental
environments are the same, and the detection performance
of YOLOV5-S, YOLOvV5-X, YOLOv7-Tiny, YOLOv7-X, and
YOLOV7 on defective targets is fully released. The training
parameters are shown in Table 2.

Figure 9(a) clearly shows that the training precision curves
of almost all detection models converge to a fixed value after
300 epochs. Specifically, YOLOV7 converges to the highest
training accuracy after 240 epochs. The training precision
curves of YOLOv5-X and YOLOV7 are not only smoother but
also have higher training convergence precision and faster
convergence speed. At the end of the training, YOLOv7
achieved the highest precision, indicating that YOLOvV7 has
the best convergence speed and convergence accuracy
compared to other methods. As shown in Figure 9(b), the
recall curve obtained by YOLOv7 not only has the fastest
convergence speed, convergence occurs after 200 epochs, but
also has the largest recall value and the highest smoothness.
The experimental comparison results show that the precision
curve and the recall curve obtained from YOLOv7 in the
training phase have the fastest convergence speed and the
highest convergence accuracy, indicating that the trained
YOLOv7 model has better performance than the other ver-
sions of YOLOv5 and YOLOvV?. In addition, the smoothness
of the precision and recall curves of the YOLOv7 model is the
best, indicating that YOLOV?7 has the best robustness to defect
samples in transmission lines.

3.4. Test Performance Comparison. We tested these trained
models through 1101 real scene images from the proposed
transmission line defect datasets, in which the threshold for

IOU is 0.7. The precision (P) and recall (R) of the five
transmission line defect detections, including normal glass
insulator, normal ceramic insulator, cracked insulator, in-
sulator self-blast, and bird nest, are shown in Table 3.
Compared with normal insulators, there are fewer images
and cases of bird nests, insulator self-blast, and cracked
insulator. In the three fault cases, the detection of the in-
sulator self-blast is the most difficult, and the detection
difficulty of the cracked insulator is only second to the
insulator self-blast. YOLOv7-X obtained the best precision
in bird nest, insulator self-blast, and cracked insulator defect
detection, and YOLOv7 achieved the second highest de-
tection accuracy among these types of defect samples.
YOLOV7 received the best recall in four types of defect
detection except insulator self-blast. In real transmission line
defect detection experiments, YOLOv7 obtained the best
precision (P) and recall (R) in almost all categories of defect
object detection. Compared with the YOLOv5 and YOLOv7
series, YOLOV7 have better performance for insulator defect
detection in complex backgrounds.

To compare these transmission line defect detection
models more comprehensively and verify the high efficiency
and low complexity of the YOLOv7-based transmission line
defect detection models, we provide the precision (P), recall
(R), mAP, Fl-scores, speed, and size obtained from these
models in the test phase, as shown in Table 4. It should be
noted that the test environment and hardware devices of
various models are shown in Table 1, and the test set contains
1101 images in real scenarios, of which the threshold value of
the IOU is 0.7, and the other common parameters and
working conditions of the model are the same. The reason
why different models are tested with the same hardware
environment, model parameters, and working conditions is
to ensure the fairness and effectiveness of model perfor-
mance comparison.

As shown in Table 4, YOLOv5-X achieved the highest
precision 0.893 and the best F1 score 0.877, YOLOv?
achieved the highest recall 0.868 and highest mAP 0.886, and



10

Journal of Electrical and Computer Engineering

TaBLE 2: Training parameters.

Batch size Size Epochs Learning rate Gamma Weight decay Momentum
8 640 * 640 500 le-5 1.5 0.001 0.98
0.9
0.8 A
0.7
0.6
g = 0.5 -
Kz S
o & 04 -
&
0.3
0.2
0.1
0.0
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
— YOLOV5-S —— YOLOv7-X — YOLOV5-S —— YOLOv7-X
— YOLOvV5-X — YOLOv7 —— YOLOv5-X — YOLOV7
—— YOLOvV7-Tiny —— YOLOvV7-Tiny
(a) (b)
FiGure 9: Comparison of precision and recall during training. (a) Precision curves. (b) Recall curves.
TaBLE 3: The precision (P) and recall (R) for defects detection.
YOLOV5-S YOLOvV5-X YOLOv7-Tiny YOLOv7-X YOLOv7
Classes Labels
P R P R P R P R P R
birdNest 131 0.901 0.907 0.901 0.905 0.876 0.923 0.906 0.893 0.903 0.924
Cracked 467 0.864 0.833 0.876 0.859 0.818 0.794 0.891 0.844 0.88 0.863
normalCeramic 4841 0.867 0.764 0.907 0.83 0.83 0.673 0.881 0.783 0.874 0.842
normalGlass 1803 0.888 0.734 0.918 0.784 0.79 0.702 0.895 0.743 0.908 0.788
selfBlast 271 0.851 0.889 0.864 0.934 0.864 0.889 0.872 0.952 0.865 0.926

TaBLE 4: Transmission line defect detection results obtained by
different methods.

Models P R mAP F1 S(Il’lf:)d &‘Zt‘:)
YOLOV5-S  0.874 0.825 0.845 0.848 1.9 13.7
YOLOv5-X  0.893 0.862 0.878 0.877  10.3 166
YOLOV7-Tiny 0.836 0.796 0.821 0.815 12 11.7
YOLOV7-X ~ 0.889 0.843 0.883 0.865 6.3 135
YOLOvV? 0.886 0.868 0.886 0.876 6.2 71.3

YOLOvV7-Tiny has the fastest speed 1.2 ms and smallest size
11.7 Mb, which indicates that YOLOv7 and YOLOV5-X are
more suitable for offline detection or servers that require
higher transmission line defect detection accuracy and
YOLOv7-Tiny is more suitable for online monitoring or
embedded devices that require higher detection speed and
smaller model size. In addition to YOLOv7 and YOLOV5-X,
YOLOV5-S and YOLOv7-X also achieved good results on
various evaluation indicators. Compared with other

detection models, the recall, mAP, and F1 indicators ob-
tained from YOLOV7 all achieved the best values, while
precision, speed, and size all ranked third and had a small
difference from the top two. That is, YOLOv7 achieved the
best performance in the most critical indicators and also
ranked among the top in other indicators, and the accuracy
and speed of defect detection meet the actual needs.
According to the actual situation of transmission line defect
detection scenarios, YOLOv7 undoubtedly achieved the best
performance in comprehensive evaluation and is, therefore,
the best candidate to be added as a detector to the multi-
UAV collaboration platform.

To demonstrate the performance of various models in
real transmission line defect detection more intuitively, the
detection results of each type of defects obtained by the five
defect detection methods are shown in Figure 10. For the
cracked insulator, the five models have successfully detected
two cracked insulators and other normal ceramic insulators;
YOLOV7 received the highest confidence, with YOLOv5-X
coming in second. For the normal insulator, YOLOvV7 has
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FiGure 10: Comparison of detection effects of different models.
the highest confidence and the next is YOLOv5-X. In the TaBLE 5: Transmission line defect detection results.
insulator self-blast and bird nest images, YOLOV7 received ] el
the highest confidence, and YOLOV5-S and YOLOv5-X have C asses Labels P R mAP  Fl
error detection. The results show that YOLOv7 is more birdNest 131 0.903 0925 0915 0.912
accurate than the existing YOLOv5 and some YOLOv7- Crackelcé ) :;}71 00587%1 ggig 822431 gg;;
based models in defect detection under complex back- norma - eramic : ’ : ’
ds, and several improvements to YOLOvV7 are effec- normalGlass 1803 0508 0788~ 0.845  0.843
grounds, a : p / selfBlast 271 0.865 0926 0911  0.894
tive. From four different types of defect detection results, All 7513 088 0868  0.886  0.876

YOLOvV7 achieved the best confidence, and there are no
cases of missed detection or false detection. The practical
results and various evaluation indicators achieved by
YOLOv7 demonstrate the high superiority of the trans-
mission line defect detection method based on YOLOV7.
Therefore, it is introduced into a multi-UAV collaborative
system to detect various defects in transmission lines.

3.5. Transmission Line Defect Detection Results. It can be seen
from the comparative experiments of training and testing
that YOLOV7 has the highest precision and recall in training,
YOLOV7 achieved the best recall and mAP in testing, and
YOLOV5-X has the highest precision and F1 score. In terms
of time, YOLOvV7-Tiny got the fastest speed in training and
testing. Transmission line defect detection is critical to the
safety of transmission lines and personnel, and it places
particular demands on precision. Therefore, we use the

YOLOvV7 model to detect transmission line defects in various
scenarios in the real world, and the testing performance is
shown in Table 5.

For insulator self-blast and cracked insulator faults with
few samples and high identification difficulty, YOLOv7 has
made good breakthroughs in the four evaluation indicators,
and several improvements of YOLOV7 are significant. For
“birdNest,” which has the smallest sample, the YOLOv7-
based method obtains the best mAP 0.915 and the best F1
0.912, respectively. In addition, for “selfBlast” with fewer
samples, the YOLOv7-based method obtains the best recall
0.926 and other indicators are also very impressive, in-
dicating that the YOLOv7-based detection model has good
generalization performance for small samples and un-
balanced samples. Overall, the detection model based on
YOLOV7 achieved a precision of 0.886 and recall of 0.868 on
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FIGURE 11: Detection performance testing of proposed methods in different real scenarios.

all samples, which can meet the actual needs of transmission
line defect detection.

According to different environments in actual trans-
mission line inspection and insulator defect detection, we
divide the test dataset into four most common scenarios,
including green land, transformer substation, high-voltage
tower, and other complex environment, as shown in Fig-
ure 11. “Greenland” means that the background of the
picture is a green space. “Transformer substation” means
that the image data are collected from the substation or the
picture contains the background of the substation. “Tower”
refers to the high-pressure tower in the background of the
image. “Complex environment” refers to images collected
from extreme weather such as foggy or rainy days or poor
image quality. The size, illumination, shooting angle, and
image background of transmission line defect images in
different real scenes are quite different, and many defect
detection methods are difficult to achieve satisfactory results.
However, the YOLOv7 model we trained can successfully
detect the five most common transmission line defects in
four different complex scenarios, and has achieved very good
performance in each type of defect detection; the confidence
has reached the practical application requirements. In
“Greenland,” the proposed method accurately detects bird
nest, normal glass insulator, normal ceramic insulator, and
insulator self-blast, with confidence levels ranging from 0.85

to 0.91. In “Transformer substation” and “Tower,” the
proposed method accurately detected all defect targets that
appeared, with confidence levels ranging from 0.83 to 0.95.
Even in the “Complex environment” with low image quality,
missed detection, and false detection did not occur, with
confidence levels ranging from 0.82 to 0.95. In addition, we
also test and analyse the transmission line defect dataset
constructed based on real scenarios through the multi-UAV
collaborative platform and YOLOv7 model, and the de-
tection time of a single image is 6.5ms and the detection
accuracy is very high, and the results show that the proposed
defect detection method can ensure the detection accuracy
and detection efliciency of multiple video streams.

4. Conclusion

A transmission line defect detection method based on
YOLOvV7 and the multi-UAV collaboration platform is
proposed. Multiple UAVSs can flexibly access the collaborative
platform through the same control system. The practical
results indicate that the multi-UAV collaboration platform
can patrol a wider range within the same time and can ef-
fectively avoid path omissions and overlap issues, which
improve the efficiency and reliability of inspection. Second,
several improvements of YOLOv7 have effectively improved
the error detection problem caused by the aerial shooting
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angle, changing lighting, and complex background. Com-
pared with the detection results obtained by YOLOV5-S, the
YOLOv7-based defect detection method improves accuracy
by 1.2%, recall by 4.3%, and mAP by 4.1%. Compared with
other detection models, the recall 0.868, mAP 0.886, and F1
0.876 obtained from YOLOV7 all achieved the best values,
while precision 0.886, speed 6.2ms, and size 71.3Mb all
ranked third and had a small difference from the top two. The
proposed defect detection method based on YOLOv7 has
undoubtedly achieved the best results in experimental and
comprehensive evaluation, meeting the accuracy, speed, and
size requirements for various defect detections in trans-
mission lines. The defect detection dataset we proposed covers
almost all the most common defect types such as normal
insulators, insulator self-blast, cracked insulator, and bird
nests, and more types of transmission line defect images can
be added to this dataset. By expanding the dataset, our
proposed method can simultaneously detect multiple defects
in transmission lines, without being limited to single defects
or certain defects, and the detection efficiency and reliability
are improved. In addition, the defect detection method
proposed by us has a high level of automation and in-
telligence, and the labor intensity of transmission line in-
spectors is reduced and the safety is further improved.
However, the flight path of multiple UAVs is set in advance
according to the contour line, and the image data collected by
the system in the undulating areas of the Yunnan Plateau have
the problem of omission, overlap, or low quality. Therefore, in
the near future, we will study how to make the collaborative
system have the functions of autonomously planning paths
and dynamically adjusting paths. At the same time, the
YOLOV7 detection algorithm is difficult to detect low-quality
small targets caused by altitude changes, extreme weather, and
object occlusion, so we will study more accurate and faster
object detection algorithms and embed the algorithm into
multi-UAVs through embedded devices to improve the ac-
curacy and speed of defect detection.

Abbreviations

UAV: Unmanned aerial vehicle

YOLO: You only look once

ECA-Net: Efficient channel attention module
CNN: Convolutional neural network

R-CNN: Region-based convolutional neural network
Faster R- Faster region-based convolutional neural
CNN: network

CenterNet:  Objects as points

CBAM: Convolutional block attention module
ResNet: Residual network

SSD: Single shot detector

RPN: Regional proposal network

SENet: Squeeze-and-excitation networks
PReLU: Parametric rectified linear unit

DJI: DJ Innovations

DEM: Digital elevation model
RTMP: Real-time message protocol
E-ELAN: Extended-efficient long-range attention

network
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P: Precision

R: Recall

Fl: F1 score

Map: Mean average precision.
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