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Rank distance codes are known to be applicable in various applications such as distributed data storage, cryptography, space time
coding, and mainly in network coding. Rank distance codes defned over fnite felds have attracted considerable attention in
recent years. However, in some scenarios where codes over fnite felds are not sufcient, it is demonstrated that codes defned over
the real number feld are preferred. In this paper, we proposed a new class of rank distance codes over the real number feldR. Te
real array rank distance (RARD) codes we constructed here can be used for all the applications mentioned above whenever the
code alphabet is the real feld R. From the class of RARD codes, we extract a subclass of equidistant constant rank codes which is
applicable in network coding. Also, we determined an upper bound for the dimension of RARD codes leading the way to obtain
some optimal RARD codes. Moreover, we established examples of some RARD codes and optimal RARD codes.

1. Introduction

Coding theory investigates the properties of codes and their
suitability for various applications. Codes are used for
a variety of purposes, including data compression, cryp-
tography, error correction, and, more recently, network
coding. Various scientifc disciplines, such as information
theory, electrical engineering, mathematics, and computer
science deal with codes in order to design efcient and
reliable data transmission methods [1–7].

Te “rank distance” measures the distance between two
matrices by the rank of their diference. Codes of matrices with
rank distance are called rank distance (rankmetric) codes.Te
applicability of rank distance codes [8–12] defned over fnite
felds in a wide variety of applications such as distributed data
storage, cryptography, and network coding attracted attention
in recent years. However, codes defned over the real number
feld [13–15] are advantageous in some applications, where
small perturbations or noise in the received data need to be
handled gracefully. Real rank metric codes are well suited for
applications involving analog signals or continuous data such
as audio and image transmission when the received signal may

not be perfectly quantized and may contain analog imper-
fections [16–20]. Also, in scenarios with interference from
multiple sources, real rank distance codes can be advantageous
for separating and decoding signals as they can exploit the
continuous nature of the received data to distinguish between
diferent sources more efectively.

In this work, we propose a new class of linear rank
distance codes over the real number feldR. We make use of
the concept of a rank distance code [6, 21, 22] and construct
the special class of real array rank distance (RARD) codes.
RARD codes are a versatile and powerful class of codes with
applications ranging from communications and network
coding to data storage and cryptography.

We begin by discussing the concept of a real array code,
which provides a systematic framework for efciently repre-
senting and transmitting some specifc real-valued data. Real
array codes go beyond traditional coding schemes by allowing
the encoding and decoding of an array of real numbers.

Our main focus is on the construction of the class of
RARD codes [23–26] and establishing the various properties
of these codes. In this process, we obtain a subclass of
equidistant constant rank codes also [27].
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We look into the dimension properties of real array rank
distance codes. Tis analysis sheds light on the trade-ofs
between code complexity and error correction capabilities
by providing valuable insights into the relationship between
rank distance and code dimensionality. We obtain an upper
bound for the dimension of the real array rank distance
codes, paving the way for defning an optimal RARD code.

We present illustrative examples of real array codes that
achieve the upper bound on code dimension. Tis example
demonstrates the feasibility and efciency of real array codes
in practical applications, reinforcing their real-world
implementation potential.

Te paper is organized as follows. In Section 2, we give
some defnitions and results as preliminaries. Section 3
introduces the construction of the proposed class of real
array rank distance codes and studies some properties of
these codes belonging to this class. Here, we obtain a subclass
of equidistant constant weight codes as a special case. Fi-
nally, we conclude the paper by giving an upper bound for
the RARD codes we proposed and give some examples.

2. Preliminaries

Let V � RN denote the N-dimensional vector space over the
real feld R. Consider the set

V
n

� R
N

􏼐 􏼑
n

� XT
1 ,XT

2 , . . . ,XT
n􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌Xi ∈ V􏼚 􏼛. (1)

Each element X ∈ Vn is expressed in the form of an n-
tuple X � [XT

1 ,XT
2 ,XT

3 , . . .XT
n ], where Xi ∈ RN. Let

MN×n(R) denote the collection of all N × n matrices overR.
We can defne a bijection T: Vn⟶MN×n(R) such that for
any X � [XT

1 ,XT
2 , . . .XT

n ] ∈ Vn, the associated matrix is
denoted by

T(X) �

α11 α12 · · · α1n

α21 α22 · · · α2n

⋮ ⋮ ⋱ ⋮

αN1 αN2 · · · αNn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

where the ith column represents the ith coordinate Xi of X

over R (w.r.t. the standard basis of RN ).

Defnition 1. Te rank of an element X ∈ Vn is the rank of
the associated matrix T(X) over R denoted by r(X).

Defnition 2. Te rank distance denoted by dR on Vn is
defned as follows:

dR(X, Y) � r(X − Y), ∀X, Y ∈ V
n
, (3)

where r(X) denotes the rank of X over R.
By the basic properties of the rank of a matrix, it can be

proved that dR defnes a metric on Vn. Te space Vn over R
equipped with the rank metric dR is defned as a “(Real) rank
distance space.”

3. Real Array Rank Distance (RARD) Codes

Let N, n be positive integers, where N≤ n. For our purpose,
we consider the rank distance space Vn as a vector space of
dimension N × n over R.

Defnition 3. A real array rank distance code of length n over
R is a subset of the rank distance space Vn over R. A linear
RARD code is a linear subspace of dimension k in the rank
distance space Vn. By C[N, n, k], we denote a linear [N, n, k]

RARD code.
Note that the dimension k of the code C[N, n, K] is

atmost Nn.

Defnition 4. LetC be a linear RARDcode.Teminimum rank
distance d of C is defned as d � min dR(X, Y) | X, Y ∈ C,􏼈

X≠Y}. In other words, d � min r(X − Y) | X, Y ∈ C, X≠Y{ },
i.e. d � min r(X) | X ∈ C andX≠ 0{ }.

3.1. Construction of a Class of RARD Code. For any given
positive integers N, n, and r with r≤N≤ n, we construct
a class of linear RARD codes and prove that, for this class of
codes, the dimension k is given by (n − r + 1)(N − r + 1)

and minimum distance r.
We start by constructing three sets B1, B2, B3⊆Vn. Te

union of these three sets forms a basis B for any code C

belonging to this class.

(i) Stage-I (construction of the set B1)

(1) Let s � n − N + 1 and t � N − r + 1
(2) Choose an element P � [XT

1 ,XT
2 , . . . ,XT

t ] ∈ Vt,
where Xi ∈ RN for 1≤ i≤ t, such that every t × t

submatrix of T(P) is nonsingular.
(3) Let T(P) � [aij]N×t

(4) Let

B1 � Mij : Mij ∈ V
n
; 1≤ i≤ s&1≤ j≤ t􏽮 􏽯,with

Mij � OT
1 ,OT

2 , . . . ,OT
i−1, a1jE

T
1 , a2jE

T
2 , . . . , aNjE

T
N,OT

i ,OT
i+1 . . . ,OT

n−N􏽨 􏽩,
(4)

where [a1j, a2j, a3j, . . . , aNj]
T is the jth co-

ordinate of P,Oi &Ej ∈ RN (Oi denotes the zero
vector of length “N,” 1≤ i≤ n − N and Ej � [0, 0,
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. . . , 0, 1, 0, . . . , 0], 1 is at the jth position, for
1≤ j≤N).

(ii) Stage-II (construction of the sets B2 and B3)

(1) Choose an element Ph � [XT
1 ,XT

2 , . . . ,

XT
(N−h)−r+1] ∈ V(N− h)− r+1 , h � 1 to N − r, where

Xi ∈ R(N− h) for 1≤ i≤ (N − h)− r + 1, such that
every [(N − h) − r + 1] × [(N − h) − r + 1] sub-
matrix of T(Ph) is nonsingular.

(2) Let T(Ph) � [aij](N−h)×(N−h−r+1)

(3) Let

B2 � Uij : Uij ∈ V
n
; 1≤ i≤N − r&1≤ j≤ (N − i) − r + 1􏽮 􏽯,with

Uij � OT
1 ,OT

2 , . . . ,OT
s+i−1, a1jE

T
1 , a2jE

T
2 , a3jE

T
3 , . . . , a(N−i)jE

T
N−i􏽨 􏽩,

(5)

where [a1j, a2j, a3j, . . . , a(N− i)j]T be the jth

coordinate of Pi, i � 1 to N − r, Oi&Ej ∈ RN

(Oi denotes the zero vector of length “N,”

1≤ i≤ n − r and Ej � [0, 0, . . . , 0, 1, 0, . . . , 0], 1
is at the jth position, for 1≤ j≤N − i).

(4) Let

B3 � Lij : Lij ∈ V
n
; 1≤ i≤N − r&1≤ j≤ (N − i) − r + 1􏽮 􏽯,with

Lij � a1jE
T
i+1, a2jE

T
i+2, a3jE

T
i+3, . . . , a(N−i)jE

T
N,OT

1 ,OT
2 , . . . ,OT

s+i−1􏽨 􏽩,
(6)

where [a1j, a2j, a3j, . . . , a(N− i)j]T be the jth

coordinate of Pi, i � 1 to N − r, Oi&Ej ∈ RN

(Oi denotes the zero vector of length “N,”
1≤ i≤ n − r and Ej � [0, 0, . . . , 0, 1, 0, . . . , 0], 1
is at the jthposition, for 1≤ j≤N − i).

(iii) Now, consider the set B � B1 ∪B2 ∪B3.

Te following results aid in the construction of the
code C.

Lemma 5. Te set B � B1 ∪B2 ∪B3, where Bi
′ s are the sets

constructed as above, is linearly independent over R.

Proof. Suppose

􏽘

t

j�1
􏽘

s

i�1
mijMij + 􏽘

(N−i)−r+1

j�1
􏽘

N−r

i�1
uijUij + 􏽘

(N−i)−r+1

j�1
􏽘

N−r

i�1
lijLij � OT

1 ,OT
2 , . . . ,OT

n􏽨 􏽩, (7)

where Mij ∈ B1, Uij ∈ B2, Lij ∈ B3, mij, uij, lij ∈ R, and Oi
denotes the zero vector of length “N.”

Let LHS � X � [XT
1 ,XT

2 , . . . ,XT
n ]. Equating the co-

ordinates, we get XT
i � OT

i , ∀i � 1 to n. For i � 1 to N,
comparing the ith coordinate of XT

i with OT
i , we get

m11a11 + m12a12 + · · · + m1ta1t � 0,

m11a21 + m12a22 + · · · + m1ta2t � 0,

⋮

m11aN1 + m12aN2 + · · · + m1taNt � 0.

(8)

Equation (8) is a homogeneous system of N linear
equations with t � N − r + 1 variables m11, m12, . . . , m1t.
Tis system has only a trivial solution as the coefcient
matrix of (8) is exactly T(P), i.e. m1j � 0 for j � 1 to t.

In the same way, we can prove that mij � 0 for
2≤ i≤ s&1≤ j≤ t, uij � o, and lij � 0 for 1≤ i≤N − r&
1≤ j≤ (N − i) − r + 1. Hence, B is linearly independent.

Now, let C be the span of B over R. Clearly, C is a vector
space with basis B over R. Equipping C with the rank
distance, we obtain the proposed RARD code.

Te following results give the various properties of the
RARD code C. □

Theorem  . Te dimension of the linear RARD code C

constructed above is (n − r + 1)(N − r + 1).

Proof. Te dimension of the linear RARD code is the car-
dinality of B.

|B| � B1 ∪B2 ∪B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, asBi
′ s are pairwise disjoint.

(9)

(i) Te set B1 contains st � (n − N + 1)(N − r + 1)

elements.
(ii) Te number of elements in the set B2 is
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B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � U1j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + U2j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + . . . + U(N−r)j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 1≤ i≤N − r&1≤ j≤ (N − i) − r + 1

� (N − r) +(N − r − 1) + . . . + 1

�
(N − r)(N − r + 1)

2
.

(10)

(iii) Te number of elements in the set B3 is

B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � L1j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + L2j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + . . . + L(N−r)j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 1≤ i ≤N − r&1≤ j≤ (N − i) − r + 1

� (N − r) +(N − r − 1) + . . . + 1

�
(N − r)(N − r + 1)

2
.

(11)

Hence,

|B| � (n − N + 1)(N − r + 1) +
(N − r)(N − r + 1)

2
+

(N − r)(N − r + 1)

2

� (n − r + 1)(N − r + 1).

(12)

□
Theorem 7. Each nonzero element of the RARD code C has
rank at least r over R.

Proof. Let X be an arbitrary nonzero element of C. X can be
expressed in terms of elements of B.

i.e. X � 􏽘
t

j�1
􏽘

s

i�1
mijMij + 􏽘

(N−i)−r+1

j�1
􏽘

N−r

i�1
uijUij + 􏽘

(N−i)−r+1

j�1
􏽘

N−r

i�1
lijLij, (13)

where Mij ∈ B1, Uij ∈ B2, Lij ∈ B3, and mij, uij, lij ∈ R. Te
rank of X is the rank of the corresponding matrix T(X).
T(X) can be expressed as follows:
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􏽘

t

j�1
a1jm1j 􏽘

t

j�1
a1jm2j · · · 􏽘

t

j�1
a1jmsj 􏽘

N−r

j�1
a1ju1j · · · u(N−r)1 01 · · · 0r−1

􏽘

N−r

j�1
a1jl1j 􏽘

t

j�1
a2jm1j · · · 􏽘

t

j�1
a2jm(s−1)j 􏽘

t

j�1
a2jmsj · · · 􏽘

2

j�1
a2ju1j u(N−r)1 · · · 0r−2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

􏽘

N−2r+3

j�1
a1jl(r−2)j ⋮ ⋮ ⋮ ⋮ ⋮ 01

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

01 ⋮ ⋮ ⋮ ⋮ ⋮ 􏽘
N−2r+3

j�1
a(N−r+2)ju(r−2)j

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0r−1 0r−2 · · · · · · 01 · · · · · · · · · 􏽘
t

j�1
aNjmsj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Consider the lowest nonzero diagonal of T(X). To prove
each nonzero element of the codeC has rank at least r overR, it
is enough to prove that this diagonal contains at least r nonzero
elements. We may assume that this diagonal is the main di-
agonal. Consider theN × N submatrix ofT(X) containing the
main diagonal, which is denoted by TN(X). Let

λi � 􏽘

t

j�1
aijm1j, i � 1  to N, (15)

be the main diagonal elements of TN(X) and we assume that
not all of the m1j are zero for j � 1 to t. We have to prove
rank(TN(X)) ≥ r.

On the contrary, we assume that rank(TN(X))< r.Ten,
at least N − r + 1 of λi must be zero (if λ1, λ2, . . . , λN are the
diagonal elements of a square matrix and if every product of
r distinct λi vanishes, then at least N − r + 1 of λi must be
zero [28]). Without loss of generality, we may assume that
λ1, λ2, . . . , λN−r+1 are nonzero. Hence,

􏽘

t

j�1
aijm1j � o, (16)

for i � 1 to N − r + 1. Equation (16) is a homogeneous
system of N − r + 1 equations in N − r + 1 variables. Te
coefcient matrix of the above homogeneous system is
a (N − r + 1) × (N − r + 1) submatrix of T(P). By the na-
ture of T(P), the system has only a trivial solution. So, m1j �

0 for j � 1 to N − r + 1 � t, which contradicts our as-
sumption. Hence, rank(T(X))≥ r. In the same way, we can
prove the result in the case of other diagonals. □

Theorem 8. Each element of the basis B has rank r over R.

Proof. Te result follows from the fact that B � B1 ∪B2 ∪B3
and if E is an arbitrary element of B and T(E) is its cor-
responding matrix representation, then T(E) has exactly “r”
nonzero columns, which are, in fact, scalar multiples of unit
vectors. □

Remark 9. Teorems 6, 7, and 8 imply that C is a linear
RARD code with minimum distance r and dimension
(N − r + 1)(n − r + 1).

Example 1. An RARD code “C” with minimum distance r �

2 over the space V4 � (R3)4.
Here, s � n − N + 1 � 2 and t � N − r + 1 � 2.

(i) Stage-I (construction of set B1)
We choose an element P � [XT

1 ,XT
2 ] ∈ V2 over R3

such thatX1 � [1, 1, 1],X2 � [1, 2, 3]. T(P) is the 3 ×

2 matrix, in which every 2 × 2 submatrix is
nonsingular.

B1 � Mij : Mij ∈ V
n
; 1≤ i≤ s& 1≤ j≤ t􏽮 􏽯

� Mij : Mij ∈ V
5
; 1≤ i≤ 2 & 1≤ j≤ 2􏽮 􏽯

� M11, M12, M21, M22􏼈 􏼉,

(17)

where

M11 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� ET
1 ,ET

2 ,ET
3 ,OT

1􏽨 􏽩,

M12 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� ET
1 , 2ET

2 , 3ET
3 ,OT

1􏽨 􏽩,

M21 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� OT
1 ,ET

1 ,ET
2 ,ET

3􏽨 􏽩,

M22 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� OT
1 ,ET

1 , 2ET
2 , 3ET

3􏽨 􏽩.

(18)

(ii) Stage-II (construction of sets B2 and B3)

(1) h � 1 to N − r � 1
(2) We choose the element P1 � [XT

1 ] ∈ V(N− h)− r+1

� V1 over RN− h � R2 such that X1 � [1, 1].

Journal of Electrical and Computer Engineering 5



T(P) is the 2 × 1 matrix, whose every 1 × 1
submatrix is nonsingular.

B2 � Uij: Uij ∈ V
5
; 1≤ i≤N − r & 1≤ j≤ (N − i) − r + 1􏽮 􏽯

� Uij: Uij ∈ V
5
; 1≤ i≤ 1 & 1≤ j≤ 2 − i􏽮 􏽯

� U11􏼈 􏼉,where

U11 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� OT
1 ,OT

2 ,ET
1 ,ET

2􏽨 􏽩

B3 � Lij: Lij ∈ V
5
; 1≤ i≤N − r & 1≤ j≤ (N − i) − r + 1􏽮 􏽯

� Lij: Lij ∈ V
5
; 1≤ i≤ 1 & 1≤ j≤ 2 − i􏽮 􏽯

� L11􏼈 􏼉,where

L11 � XT
1 ,XT

2 ,XT
3 ,XT

4􏽨 􏽩

� ET
2 ,ET

3 ,OT
1 ,OT

2􏽨 􏽩.

(19)

Ten,

B � B1 ∪B2 ∪B3

� M11, M12, M21, M22, U11, L11􏼈 􏼉

|B| � (N − r + 1)(n − r + 1)

� (3 − 2 + 1)(4 − 2 + 1)

� 6.

(20)

Te RARD code C is given by

i.e. C � 􏽘

2

j�1
􏽘

2

i�1
mijMij + 􏽘

2−i

j�1
􏽘

1

i�1
uijUij + 􏽘

2−i

j�1
􏽘

1

i�1
lijLij􏼪 􏼫.

(21)

Te matrix representation of any element P of C is

T(P) �

m11 + m12 m21 + m22 u11 0

l11 m11 + 2m12 m21 + 2m22 u11

0 l11 m11 + 3m12 m11 + 3m12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22)

Te nonzero elements of C have rank at least 2.

3.2. A Subclass of Equidistant Constant Rank Codes.
Equidistant constant rank codes have many applications
especially in network coding, ARQ systems, etc. Te fol-
lowing result extracts a subclass of equidistant constant rank
RARD code with distance “r” from the class of RARD codes.

Theorem 10. If N � r, the RARD code “C” is an equidistant
constant rank code with distance r.

Proof. Since “C” is a linear rank distance space, it is enough
to prove that every nonzero element of “C” has rank r. When
N � r, by the construction t � 1, B2 � ϕ and B3 � ϕ. We
choose an element P � [XT

1 ], where X1 � [a11, a21, . . . , aN1],
from V such that every 1 × 1 submatrix of T(P) is non-
singular, i.e. ai1 ≠ 0, ∀i � 1 to N. Tus, the basis is

B � B1

� Mij : Mij ∈ V
n
; 1≤ i≤ s &1≤ j≤ t􏽮 􏽯

Mi1 � OT
1 ,OT

2 , . . . ,OT
i−1, a11E

T
1 , a21E

T
2 , . . . , aN1E

T
N,OT

i ,OT
i+1 . . . ,OT

n−N􏽨 􏽩,

(23)

6 Journal of Electrical and Computer Engineering



where [a11, a21, a31, . . . , aN1] � X1. Tus, C �

<􏽐
t
j�1􏽐

s
i�1mijMij >. LetX be any arbitrary nonzero element

of C. Ten, T(X) is

a11m11 a11m21 a11m31 · · · a11mr1 · · · a11ms1 0 0 · · · 0

0 a21m11 a21m21 · · · a21m(r−1)1 · · · a21m(s−1)1 a21ms1 0 · · · 0

0 0 a31m11 · · · a31m(r−2)1 · · · a31m(s−2)1 a31m(s−1)1 ms1 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · aN1m11 · · · · · · · · · · · · · · · aN1ms1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

As the number of nonzero rows of T(X) isN � r, the rank
of T(X) cannot exceed r. Also, by the construction, T(X) has
rank r for any choice of m11, m21. · · · , ms1 except when all of
them are zero, in which case we have the zero matrix.

Tus, T(X) has rank either r or 0. As T(X) is
nonzero, its rank must be r. Tat is, if N � r, the RARD
code C is an equidistant constant rank code with
distance r. □

3.3. An Upper Bound for the Dimension of RARD Codes.
Te following result gives an upper bound for the dimension
of an RARD code for any given N, n, and r.

Theorem 11. Let C[N, n, k] be an RARD code with every
nonzero vector having rank at least r. Ten, the dimension of
C is at most n(N − r + 1).

Proof. Let Vn � (RN)n be the rank distance space of di-
mension N × n over R. Let U be a subspace of Vn such that
every element of U has rank at most “r”, and dim U � nr. If
we replace r by r − 1, we get a subspace W of Vn with di-
mension dim W � n(r − 1), whose elements have rank at
most r − 1. Consider a new subspace C of Vn with dimension
k consisting of all the nonzero vectors having rank at least r.
Since C∩W � 0{ },

dim(C∩W) � dim(C) + dim(W) − dim(C + W)

we have dim(C) � dim(C∩W) − dim(W) + dim(C + W)

k≤ 0 − n(r − 1) + nN

� nN − n(r − 1)

� n(N − r + 1).

(25)

Tus, the dimension of C[n, N, k] is at most
n(N − r + 1). □

Remark 12. We call an RARD code achieving the upper
bound on its dimension as an optimal RARD code.

Te following are examples of optimal RARD codes.

Example 2. Let V2 � (R2)2 be the rank distance space. We
construct an RARD code with minimum distance r � 2. Let
C be the rank distance space spanned by B � B1, B2􏼈 􏼉, where

B1 � [(1, −1)T, (2, 1)T] and B2 � [(1, 1)T, (−2, 1)T]. Clearly,
B is linearly independent. Consider an arbitrary nonzero
element X from C. Let it be X � [(x + y, y − x),

(2x − 2y, x + y)], where x, y ∈ R.Tematrix representation
of X is

T(X) �
x + y 2x − 2y

y − x x + y
􏼠 􏼡. (26)

Te determinant of T(X) is (x − y)2 + 2x2 + 2y2, which
is zero only if x � y � 0. Hence, the rank of T(X) is 2. C has
minimum rank distance r � 2. Also, the dimension of C is 2.
Here, n � N � 2, r � 2 and k � n(N − r + 1) � 2, i.e. di-
mension of C achieves the upper bound.

Example 3. Let Vn � (R2)n, n � 2t, t ∈ N be the rank dis-
tance space. We construct an RARD code with minimum
distance r � 2. Let C be the rank distance space spanned by
B � B1, B2, B3, . . . , B2t􏼈 􏼉, where the elements Bi for 1≤ i≤ 2t

are defned as follows:

Bi �
OT

1 ,OT
2 ,OT

j−1,ET
1 ,ET

2 ,OT
j , . . . ,OT

2t−2􏽨 􏽩, if i is odd,

OT
1 ,OT

2 ,OT
j−1, −ET

2 ,ET
1 ,OT

j , . . . ,OT
2t−2􏽨 􏽩, if i  is even.

⎧⎪⎨

⎪⎩

(27)

Clearly, B is linearly independent over R. Te span of B

gives a linear RARD code. To fnd its minimum distance,
consider an arbitrary nonzero element X in C. X can be
expressed in terms of the elements of B.

i.e. X � 􏽘
2t

i�1
a1iBi, (28)

where Bi ∈ B  and a1i ∈ R. Ten, the matrix representation
of X is

T(X) �
a11 a12 a13 · · · a1(2t−1) a12t

−a12 a11 −a13 · · · −a1(2t) a1(2t−1)

⎛⎝ ⎞⎠. (29)

We can easily see that every such matrix has rank 2,
except when all of the aij’s are zero. Hence, the rank of T(X)

is 2. Tus, C has minimum rank distance r � 2. Since B is
linearly independent, the dimension of the space is 2t. Here,
N � 2, n � 2t, and r � 2. So k � n(N − r + 1) � 2t. Tus, the
dimension of C achieves the upper bound.
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4. Conclusion

While the role of rank distance codes defned over fnite
felds is signifcant in dealing with various applications,
codes defned over R are advantageous in some applica-
tions where the errors in the received data are not discrete
or quantized. Real rank distance codes are well suited
for many applications involving analog signals or
continuous data.

In this work, we have considered the problem of the
construction of a rank distance code over R. We have
constructed a class of linear real array rank distance (RARD)
codes. RARD codes can be used inmany applications such as
network coding, distributed data storage, compressed
sensing, and cryptography whenever the code alphabet is the
real feld R. In this process, we obtained an interesting
subclass of equidistant constant rank codes which can have
many applications including network coding. We obtained
an upper bound on the dimension of RARD codes which led
the way to defne an optimal RARD code. We constructed
two examples of optimal RARD codes.

Future research on RARD codes may focus on the
construction of a class maximum distance separable
RARD codes to ensure the maximum error correction
capability.
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