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Cardiovascular disease is a major cause of death worldwide, and the COVID-19 pandemic has only made the situation worse. Te
purpose of this work is to explore various time-frequency analysis methods that can be used to classify heart sound signals and
identify multiple abnormalities in the heart, such as aortic stenosis, mitral stenosis, and mitral valve prolapse. Te signal has been
modifed using three techniques—tunable quality wavelet transform (TQWT), discrete wavelet transform (DWT), and empirical
mode decomposition—to detect heart signal abnormality. Te proposed model detects heart signal abnormality at two stages, the
user end and the clinical end. At the user end, binary classifcation of signals is performed, and if signals are abnormal then further
classifcation is done at the clinic. Te approach starts with signal preprocessing and uses the discrete wavelet transform (DWT)
coefcients to train the hybrid model, which consists of one long short-term memory (LSTM) network layer and three con-
volutional neural network (CNN) layers. Tis method produced comparable results, with a 98.9% classifcation accuracy for
signals, through the utilization of the CNN and LSTM model. Combining the CNN’s skill in feature extraction with the LSTM’s
capacity to record time-dependent features improves the efcacy of the model. Identifying issues early and initiating appropriate
medication can alleviate the burden associated with heart valve diseases.

1. Introduction

Cardiac arrest has become a common disease in today’s
world. According to the World Health Organization
(WHO), cardiovascular diseases (CVDs) are responsible for
17.9 million deaths per year, making them the leading cause
of mortality. Heart attacks and strokes contribute to over
80% of fatalities caused by CVDs, with one-third of these
deaths occurring prematurely in individuals under 70 years.
It is crucial to identify and treat cardiovascular diseases
promptly to improve patients’ quality of life and well-being.
Tis can also reduce the frequency of occurrences and
prevent the onset of various complications [1]. A phono-
cardiogram (PCG) signal is a graphical representation of the
sounds made by the opening and closing of heart valves. Te
signal shows how the heart sounds change over time. By

monitoring these signals, doctors can detect heart abnor-
malities early on, which can help to reduce mortality
rates [1].

Researchers have used time-frequency domain charac-
teristics to train conventional machine-learning models for
heart signal categorization. In [2], a similar technique is
proposed that utilizes spectrogram phase and magnitude
features to identify heart valve issues. Te authors in [3]
presents a TQWT-based two-stage abnormality detection
approach, where SVM is used in the frst stage for binary
classifcation and the KNN is used in the second stage for
further classifcation. In addition, Shannon energy [4],
cochleagram features [5], and mel-frequency cepstral co-
efcients (MFCC) [6] are also considered as other charac-
teristics to detect abnormalities in signals. To detect
abnormalities in signals, Karhade et al. [7] present the
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time-frequency domain deep learning (TFDDL) framework
techniques, which combine CNN architecture with time-
frequency domain polynomial chirplet transform. A novel
approach combining the wavelet scattering transform with
the twin support vector machine (TSVM) was employed in
the classifcation process [8].

Te Yaseen Khan dataset [6], Physionet Challenge 2016
[9], fetal heart sound [10], and PASCAL heart sound datasets
are available for the detection of abnormality in the PCG
heart sound signals.

1.1. Contribution of the Paper. Te primary contribution of
the paper lies in its introduction of a multistage model that
combines CNN and LSTM networks for heart sound signal
classifcation. Tis innovative combination enables the ex-
traction of intricate quasi-cyclic features from the heart
sound signal, ultimately leading to more efective signal
classifcation.

1.2. Organization of the Paper. Tis paper explains in detail
the proposed model and its evaluation process. In Section 2,
the step-by-step procedure of the proposed model is de-
scribed, which includes signal preprocessing, decomposition,
and classifcation using a novel hybrid deep-learning ap-
proach of the CNN and LSTM. Section 3 presents the out-
comes of our experiments, demonstrating the performance of
individual components such as the CNN, LSTM, and the
hybrid model in classifying heart sound signals. Section 4
includes a comparative analysis with recently available
methods, taking into account the model’s performance under
noisy conditions. Finally, Section 5 concludes the study
comprehensively.

2. Literature Review

Various models of machine learning and deep learning (DL)
have been proposed for detecting heart sound abnormalities.
In recent times, the deep learning neural network (DNN) has
become a powerful tool for identifying abnormal heart
sounds due to its strong feature representation capability.
Tomae and Dominik [11] created an end-to-end deep
neural network that focuses on temporal or frequency
features to extract hidden features in the temporal domain.
Ryu et al. [12] developed a CNN model specifcally designed
for segmented PCG classifcation. Recently, Humayun et al.
[13] created a time-convolutional (tConv) unit to discover
hidden features from temporal properties. Chakraborty et al.
[14] used the cardiac cycle spectrum for training on a 2D-
CNN. Figure 1 shows the evolution of abnormality detection
methods.

Mel-frequency cepstral coefcients (MFCC) and discrete
wavelet transform (DWT) characteristics were introduced
by Yaseen et al. [6] and combined with support vector
machine (SVM) for automated identifcation of heart valve
diseases and other conditions. In the meanwhile, Zabhi et al.
[15] classifed HVDs using an ensemble of 20 feedforward
neural networks (FFNNs) with time, frequency, and time-
frequency characteristics. Nevertheless, approaches that

depend on morphological characteristics need the identif-
cation of S1 and S2 sound peaks [15, 16]. Te phonocar-
diogram (PCG) signal contains pathological fuctuations and
noise interference, which make it difcult to detect these
peaks [17, 18]. An integrated method is presented with
k-NNACO algorithm. According to Rajathi and Radhamani
[19], an analysis of accuracy and error rate is used to de-
termine its efectiveness. An empirical Sstudy on initial
proposed algorithms is proposed by Meena et al. [20] on the
classifcation of heart disease dataset—its prediction and
mining. All available methods need to be further improved
in several areas. To cut computational costs, the detection
algorithm’s efciency must be improved. Also, false alarms
should be reduced. Tis is especially important because the
user will be interacting with the system; therefore, a low-cost
solution is required. Table 1 shows details about similar work
done by other researchers on diferent datasets.

3. Proposed Model

Te proposed model classifes signals into the initial stage at
the user end and a later stage in the clinical end as shown in
Figure 2.

Te suggested method uses TQWT transforms to help
a convolutional neural network (CNN) categorize heart
sounds into fve types. Te suggested approach is divided
into three stages, preprocessing, denoising, and classifca-
tion. Preprocessing is done on the signals in the frst stage to
make sure they are of the same length and normalized. After
that, these signals are broken down into six levels: one
approximation level coefcient and fve detailed levels. Once
this decomposition is complete, the output is combined into
a vector that is fed into a one-dimensional CNN model.
Lastly, a training session and subsequent dataset validation
are performed on the hybrid model.

3.1. Preprocessing. Te dataset for this study encompasses
fve classes of distinct heart sound signals, each sampled at
a frequency of 8 kHz. Te following preprocessing pro-
cedures are applied to each signal.

3.1.1. Resampling. To address the frequency range constraint
of the fast Fourier transform (FFT), which cannot capture
pathological sounds below 500Hz, the signal sampling
frequency is downsampled from 8 kHz to 1 kHz [36].

3.1.2. Scaling. Normalization is performed to overcome the
efect of interclass variation on the amplitude of signals that
suppress in amplitude variation in the signal. Normalization
of signals is performed as follows:

xnorm(n) �
x(n)

max(|x|)
. (1)

3.1.3. Resizing. For a given dataset, the duration of the
cardiac signal ranges anywhere from 1.15 seconds to
3.99 seconds. Each sample is comprised of three cardiac
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cycles, and the duration of these signals might vary owing to
diferences in the rate at which the heart beats. After
identifying the beginning and end points of the trans-
mission, the signals are shrunk down to the same size, which
is 2.8 kilobits. Matlab’s “imresize” function, whichmakes use
of bicubic interpolation, is called upon when the sample’s
size has to be changed. Te change in proportions, as seen in
Figure 3, are seen at the original signal.

3.2. TQWT Denoising. In the Mallat method of sub-band
coding algorithm, the signal is convolved with two frequency
bands, high pass (G) and low pass frequencies (H) [37]. In
this technique, the signal is divided into a detailed level (D)

and approximation (A) coefcients, respectively. At the frst
level, the signal x(n) itself will be convoluted with a high-
pass and low-pass flter. Downsampling approximation
applied on the low-pass flter and get next level coefcients,
as shown in Figure 4.

Te detailed and approximation features at a particular
level (j) is obtained as given in equations (2) and (3):

Aj(a) � 
n

1
Aj−1(n)H(n − 2a), (2)

and

Dj(a) � 
n

1
Aj−1(n)G(n − 2a). (3)

With the proposed technique, the heart sound signal is
decomposed up to 18 levels, and a rough level coefcient
vector is obtained. A tunable Q-factor qavelet transform
(TQWT-) based adaptive thresholding technique [38] is
used to suppress the in-band noise. Te cardiac sound signal
is decomposed by TQWT using eighteen TQWT de-
compositions. It is described as a time-condensed short-
wave signal that transports energy and information. Both
low-frequency and high-frequency sounds are categorized as
being present. High-frequency transmissions have quality,
while low-frequency signals have information.

3.3. Multiclass Classifcation Model. Te TQWT denoising
output generates approximation level coefcients using
TQWT, organized in a 1-D array of length 2942, serving as

input for training the CNN model. Te model architecture
consists of 5 layers: 1 input layer, 2 CP (convolution and
pooling) layers, 1 fully connected layer, and 1 output soft-
max layer. Each CP layer employs padding to maintain
output size matching the input. Following TQWT de-
composition, 2942 coefcients are generated for each of the
neurons in the layers. Each training epoch comprises 50
iterations, and within each epoch, nine iterations are exe-
cuted. A learning rate of 0.01% is applied in each iteration,
totaling 450 iterations. Gradient descent optimization is
utilized to determine the optimal settings for the output of
the LSTM layer including the dropout layer, which is useful
in noise-flled environments and plays a critical role in
preventing overftting. Table 2 illustrates the architecture of
the proposed model.

4. Results and Discussion

For the evaluation of the proposed approach, a publically
available dataset [6] of heart sound signals is used. It includes
normal, aortic stenosis (AS), mitral stenosis (MS), mitral
regurgitation (MR), and mitral valve prolapse (MVP) data
samples, with each category having a total of 1000 data
samples and each category’s 200 samples as shown in Fig-
ure 5. Each sample is given a frequency of one kilohertz and
a length that is always fxed at 2800 samples. Te entire
dataset is divided into two disjoint sets, i.e., a training set and
a testing set.

4.1.EvaluationParameters. In this work, TP,TN, FP, and FN

parameters are calculated for quality comparison. Metrics
such as sensitivity (Sy), specifcity (Sc), accuracy, and F-score
were used to carry out the quantitative examination of
performance. Quantitative parameters are estimated as
follows:

Sy �
TP

TP + FN

(4)

Sc �
TN

TN + FP

(5)

Recall �
TN

TN + FP

(6)

Discrete wavelet
transform

SVM, DNN &
KNN

Spline Kernel
Chirplet transform

Deep Layer
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CNN

2018 2019 2020
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2021 2022 2023

Instantaneous
Frequency
RF &KNN

TQ-WT, DWT-
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Figure 1: Time series of diferent techniques.
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Accuracy �
TP + TN

TP + FN + TN + FP

. (7)

It is also possible to see how many times each input class
was correctly matched with the output class by computing
the confusion matrix. Te confusion matrix produced by the
DWT denoising method is shown in Figure 6.

4.2. Proposed Method Results and Comparison to the Most
Cutting-Edge Research Techniques. Using the same dataset,
the suggested approach is evaluated in comparison to other
methods that have just recently been presented for the
detection of heart sound signals.Te procedures are outlined
in the following. Yaseen et al. [6] have been successful in
extracting features based on MFCC and DWT. Create and
analyze the performance using the SVM, KNN, and deep
neural network methodologies. Using the WSST approach
and random forest for the diferent categories, Ghosh et al.’s

[2] method acquired the time-frequency domain signal, and
they calculated the magnitude and phase characteristics.
Tese characteristics come from the transmission. Te ap-
proach, which is based on deep learning and employs the
deep wavelet method, was proposed by Oh et al. [39] and
colleagues. Wavelets are a kind of generative model that has
been investigated for its potential to produce raw audio
signals. Te experiments are performed with the proposed
hybrid model, as well as for the CNN model and LSTM
model individually. Te confusion matrix obtained using
these models are provided in Figure 7. Te CNN model
achieved 97.8% accuracy, the LSTM model achieved 43.9%
accuracy, and the hybrid model achieved 98.9% accuracy. It
shows that the hybridization of CNN and LSTM networks
produces better results than the individual models. It is
expected because the hybrid of CNN and LSTM networks
helps extract relevant patterns and exploit their time de-
pendency. Te CNN model alone produces satisfactory
results. However, the LSTM model’s performance degrades
drastically. Tese results indicate that the hybridization of
the diferent models.

Table 3 depicts the performance parameters obtained
for the CNN, LSTM, and hybrid models. Te results ob-
tained using the hybrid models are superior for all fve
categories compared to the CNN and LSTM models. Te
hybrid model achieved 100% F1-score for the classes N and
MVP, while 98.04% for AS, 98.88% for MS, and 99.19% for
MR. Tese results demonstrate the efcacy of the proposed
hybrid model classifying all fve heart sound signal cate-
gories, specifcally normal vs pathological cases. Such
a system will be helpful for automatically analyzing the
heart sound signal.

4.2.1. Comparison with Existing Methods. Te efectiveness
of the proposed model is evaluated by comparing its per-
formance with several recently introduced methods docu-
mented in the literature for the same dataset, as illustrated in
Table 4. Te proposed hybrid model with 98.9% accuracy is
superior to all the compared methods. While some existing
methods also show prominent results, the superior accuracy
of the proposed model highlights its efectiveness in clas-
sifying heart sound signals. Its accuracy may reduce mis-
diagnoses and improve patient care, benefting individuals
with heart valve diseases and other cardiac disorders.
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Figure 2: Proposed model.
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Table 2: Architecture of each layer used in the proposed multistage model.

Layer Learnable properties Number of learnable
PCG input 1× 2942×1 — 0
Convolution-1 Weight 1× 33×1× 8 272
32 flters 1× 33, stride (1, 1) Bias 1× 1× 8
Maxpooling: (2× 2), stride Convolution-2 Weight 1× 21× 8× 4 676
16 flters 1× 13, stride (1, 1) Bias 1× 1× 14
Maxpooling: (2× 2), stride (1, 1)
Convolution-3 Weight 1× 11× 4× 4 180
16 flters 1× 13, stride (1, 1) Bias 1× 1× 4
Maxpooling: (2× 2), stride (1, 1)
Flatten 0
LSTM layer (64 units) Input (192×11768) 2271936

Recurrent weight (192× 64)
Bias 192×1

Fully connected layer (5 classes) Weights 5× 64 325
Bias 5×1

250
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0

No. of Samples

AS MR MS MVP N

AS
MR
MS
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N

Figure 5: Data distribution graph.
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5. Conclusion and Future Work

Tis paper introduces a novel hybrid deep learning model
comprising a 3-layer CNN and GRU to categorize heart
sound signals into fve categories, even in the presence of
background noise. Te proposed method yields impressive
results, surpassing state-of-the-art methods. Notably, it
maintains satisfactory performance even in noisy condi-
tions. Te success of the proposed method is attributed to
the fusion of CNN and LSTM models: CNNs extract
meaningful features through convolution layers, while
LSTM exploits time-dependent features due to its recurrent

nature. Moving forward, future work should focus on
generalization to ensure efectiveness across diverse datasets,
which is currently lacking in publicly available datasets. Also,
real-time noise afects the quality of pathological signals.Te
inclusion of multiple stages in the proposedmodel inevitably
prolongs the signal classifcation time.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon reasonable
request.
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Figure 7: Confusion matrix obtained using the CNN, LSTM, and the proposed hybrid model: (a) CNN, (b) LSTM, and (c) CNN+LSTM.

Table 3: Obtained performance parameters using CNN, LSTM, and CNN+LSTM models.

Model Class Sy Sc Precision Recall (%) F1-score

CNN

AS 98.00 99.54 98.00 98.00 98.00
MR 93.62 99.55 97.78 93.62 95.65
MS 100 99.52 98.39 100 99.19
MVP 96.30 100 100 96.30 98.11
N 100 98.58 95.00 100 97.44

LSTM

AS 40.00 83.61 20.00 44.00 26.67
MS 24.81 91.18 73.33 24.81 37.08
MR 52.17 79.67 19.35 52.17 28.24
MVP 60.00 86.75 40.38 60.00 48.28
N 79.25 91.67 70.00 79.25 74.34

Hybrid

AS 96.15 100 100 96.15 98.04
MS 100 99.56 97.78 100 98.88
MR 100 99.52 98.39 100 99.19
MVP 100 100 100 100 100
N 100 100 100 100 100

Table 4: Comparison with existing methods.

Author (year) Feature extraction Classifcation method Accuracy (%)
Yaseen et al. (2018) [6] MFCC and DWT SVM, KNN, and DNN 97.9
Ghosh et al. (2019) [2] Wavelet synchrosqueezing transform Random forest (RF) classifer 98.5
Bhagel et al. (2020) [21] Data augmentation CNN 98.6
Ranipa et al. (2021) [22] MFCC, mel-spectrum, and spectrum contrast CNN 98.5
Jain et al. (2023) [24] DWT CNN 98.6
Proposed method DWT CNN and LSTM 98.9
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