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As a commonly used mode of transportation in people’s daily lives, the normal operation of railway transportation is crucial. Te
track circuit, as a key component of the railway transportation system, is prone to malfunctions due to environmental factors.
However, the current method of inspecting track circuit faults still relies on the experience of on-site personnel. In order to
improve the efciency and accuracy of fault diagnosis, we propose to establish an intelligent fault diagnosis system. Considering
that the fault data are a one-dimensional time series, this paper presents a fault diagnosis method based on the UNet-LSTM
network (ULN).Te LSTM network is established on the basis of fault data and used for ZPW-2000A track circuit fault diagnosis.
However, the use of a single LSTM network has a high error rate in the common fault diagnosis of track circuits. Terefore, this
paper proposes a feature extraction method based on the UNet network. Tis method is used to extract the features of the original
data and then input them into the LSTM network for fault diagnosis. Trough experiments with on-site fault data, it has been
verifed that this method can accurately classify seven common track circuit faults. Finally, the superiority of the method is verifed
by comparing it with other commonly used fault classifcation methods.

1. Introduction

In recent years, China’s railways have been developing
continuously. With the progress of technology and the needs
of people’s lives, the frequency of train operation in stations
is increasing. Terefore, the requirements for the safety and
reliability of railway signal systems are increasingly strict.
Te track circuit is a key part of the railway signal system,
which directly afects the operating efciency of the whole
trafc system. When a track section is occupied by a train,
the voltage received by the main rail and the small rail of the
track circuit is lower than the voltage required for normal
operation. Tis results in the activation of red light in-
dications, prohibiting following trains from entering the
section. When the track section is unoccupied but there is
a fault in the track circuit equipment, the railway signal
system will also activate red light indications, prohibiting

rear vehicles from entering the section to ensure safety. At
this time, the personnel need to quickly determine the lo-
cation of the fault and carry out repairs to restore train
operations promptly. In order to rapidly diagnose the fault
location, it is necessary to monitor the voltage data in the
track circuit in real time, and the personnel need to be
profcient in recognizing the voltage changes caused by
diferent equipment faults.

However, due to the fact that a large number of devices
in the track circuit are used outdoors, they are easily sus-
ceptible to environmental infuences and can experience
various types of failures. Currently, the diagnosis of track
circuit failures in practical work mainly relies on the ex-
perience of personnel. However, humans cannot maintain
the optimal working condition like machines, and manual
fault diagnosis is prone to interference, which limits ef-
ciency and accuracy. Terefore, it is necessary to use an
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intelligent fault diagnosis method, which can improve fault
diagnosis efciency. Traditional fault diagnosis uses a sup-
port vector machine (SVM), fuzzy clustering, and other
methods. However, these methods have the disadvantages of
being unable to process large-scale data and difculty in
classifying new problems. Te computational complexity of
fuzzy clustering is high. It involves calculations of fuzzy sets
and iterative optimization processes. When dealing with
large datasets, it requires more time and computational
resources. Similarly, the computation complexity of support
vector machines (SVM) increases with the increase in the
number of training samples. When dealing with very large
datasets, both the training time and storage requirements
signifcantly increase. Te original SVM algorithm was
designed for binary classifcation problems. To apply SVM to
multiclass problems, extension techniques need to be used,
which can result in increased computational overhead, es-
pecially when there are many classes.

In traditional fault diagnosis, people usually rely on expert
knowledge and rules to judge and locate problems. Intelligent
fault diagnosis, on the other hand, utilizes the learning ability
and pattern recognition capability of neural networks to
automatically judge and diagnose faults by analyzing and
processing input and output data from systems or devices.

At present, methods based on deep learning are widely
used in the fault diagnosis feld. Jiao et al. proposed a method
to improvemodel performance by adding batch normalization
and discarding layers to the convolution layer and pooling
layer [1]. Lu et al. proposed a method to store new faults in the
database for analysis [2]. Zhang et al. proposed a method for
fault diagnosis after converting one-dimensional data into
two-dimensional graphs [3]. Huang et al. proposed the
CNN+LSTM model [4–6], a CNN is used to extract features,
and an LSTM is used to classify faults. Huang et al. proposed
a method to obtain data samples by establishing a simulation
model and then using a CNN for classifcation [7].

In the track circuit fault diagnosis feld, Zhao et al.
established the tuning zone simulation model according to
the working principle of the track circuit tuning zone [8] and
built a backpropagation neural network for tuning unit fault
diagnosis. Chen et al. used a neurofuzzy system [9]. It
combines the advantages of fuzzy logic and neural networks
and can be learned through the neural network training
process. Bruin et al. proposed processing data by using
a short-term memory network [10] and considering the
temporal and spatial correlation of data. By comparing the
fault diagnosis results with the convolutional network, it was
concluded the LSTM was better than the CNN. Chen et al.
established a fault diagnosis model based on ZPW-2000A
track circuit experimental data and combined it with kernel
principal component analysis and a stacked autoencoder
network (KPCA-SAD) [11], which can realize the fault lo-
cation of the track circuit. Hu et al. proposed a fault di-
agnosis method that combines gray theory with an expert
system [12]. Sun and Zhao proposed a track circuit fault
diagnosis method based on an SVM [13]. Short-circuit
current signals were obtained by establishing a simulation
model. SVM was used for classifcation, and the SVM
classifcation accuracy was 96%, which is relatively low.

Zheng et al. proposed the use of an optimized particle swarm
algorithm to optimize deep belief networks [14], which
improved the robustness and accuracy of the network. Lin
et al. proposed a fault diagnosis method based on rough set
and graph theory for ZPW-2000A uninsulated rail circuits
[15] and proposed a new concept of fault decision chart for
fault diagnosis. Te detailed information of the references
used in the above content is shown in Table 1.

Tis paper presents a track circuit fault diagnosis method
based on the UNet-LSTM network (ULN). Te network is
composed of a feature extraction module and a fault clas-
sifcation module. Te feature extraction module is com-
posed of a UNet network. Te UNet network is used to
extract features from the original data, and the sample
feature size of the original data is reduced from 600 to 38.
Tis approach not only alleviates the curse of dimensionality
and improves training efciency but also allows the model to
better learn key features from the data, thereby enhancing
generalization performance. Te track circuit fault data are
a one-dimensional time series. Because the LSTM network
has advantages in dealing with timing problems, the LSTM
network is used as a classifer in the fault classifcation
module. Te fault classifcation module inputs the data after
feature extraction into the LSTM network for classifcation.
Te dataset used in this paper is the main and short track
voltages of three adjacent rails, which combines the in-
formation features in time and space to improve the clas-
sifcation efect of the model.

2. Related Works

2.1. Te Basic Principle of ZPW-2000A Track Circuits. In
railway transportation systems, the ZPW-2000A track cir-
cuit is commonly used to ensure safety and the efciency of
train transport. It detects whether there is a train occupying
a section of track and transmits relevant information [16].
Te ZPW-2000A track circuit consists of two rails and
several devices, as shown in Figure 1. When the devices are
functioning normally, the transmitter provides power,
which is delivered to the surface of the rails through the SPT
cable and matching transformer. At this point, the signal is
transmitted simultaneously to the main rail and the small
rail (the small rail connects to the adjacent track) and
eventually reaches the receiver. When the received main
track and small track voltages do not meet the required
voltage for the operation of the device, the track will generate
a red light strip to sound an alarm.

Tis article primarily focuses on the important com-
ponents of the ZPW-2000A track circuit, including the
matching transformer, tuning unit, rail, compensating ca-
pacitor, and attenuator. When the ZPW-2000A track circuit
is functioning properly, the voltage waveforms received by
the main rail and small rail are continuous and stable.
However, if any of the devices experience a malfunction, the
received voltage on the main rail and small rail will change.
Diferent equipment failures will result in diferent voltage
waveforms on the main rail and small rail. Terefore, the
voltage changes on the main rail and small rail in the ZPW-
2000A track circuit can be used as a basis for fault diagnosis.
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In practical work, when a device in the track circuit
malfunctions, it will send an alarm to the personnel.Te staf
determine the type of fault by examining real-time moni-
tored track voltage data. However, manual fault diagnosis
has certain limitations. Tis method relies too heavily on the
experience of the staf. When the staf are fatigued or not
fully focused, the efciency and accuracy of fault diagnosis
can be afected. Establishing an intelligent fault diagnosis
model can reduce the workload of personnel and improve
the efciency and accuracy of fault diagnosis.

In actual railway systems, the route for train operation
consists of a series of interconnected track circuits. When
one track circuit experiences a malfunction, its adjacent
track circuits will also be afected to varying degrees.
Terefore, we took the voltage data of themain rail and small
rail from the faulty track circuit and its two adjacent track
circuits as experimental data.

3. Method

3.1. Long Short-Term Memory Network (LSTM). A long
short-term memory network (LSTM) [17] is a kind of time-
cyclic neural network that is specifcally designed to solve the
long-term dependence problem of a general cyclic neural
network (RNN). An LSTM cell consists of a memory cell Ct
and three gate structures (input gate it, forget gate ft, output
gate ot) as shown in Figure 2. At moment t, Xt denotes the
input data, Ht denotes the hidden layer, “X” denotes the

vector outer product, and “+” denotes the superposition
operation. Te operation formula is as follows, using which
the forward propagation calculation of LSTM can be per-
formed. Each of the gate structure’s is using sigmoid
function as an activation function, using which the input
data can be fltered to keep the useful information and delete
the useless information.Tememory cell Ct has the function
of memory, and the fltered data can be saved and trans-
mitted backward by the memory cell. Terefore, LSTM
network can solve the problem of long-term dependency.

ft � σ Uf · Xt + Wf · Ht− 1 + bf ,

it � σ Ui · Xt + Wi · Ht− 1 + bi( ,

ut � tanh Uu · Xt + Wu · Ht− 1 + bu( ,

Ct � ft · Ct− 1 + it · ut,

ot � σ Uo · Xt + Wo · Ht− 1 + bo( ,

Ht � ot · tanh Ct( .

(1)

3.2. Framework. Te data-driven [18] UNet-LSTM network
framework proposed in this paper is shown in Figure 3. First,
the collected dataset is input into the feature extraction
module, and feature extraction is performed through the
UNet network [19]. Ten, the extracted features are input
into the fault classifcationmodule, and the LSTMnetwork is
used for classifcation.

Train running direction

Mechanical
tuning

hollow coil

Tuning
Unit

Matching
transformer

Matching
transformer

SPT
cable

Transmission

SPT
cable

Attenuator

Receiver

Compensation
capacitor

Tuning
Unit SVA Tuning

Unit

Main track
small track

29 m

Figure 1: ZPW-2000A track circuit structure diagram.
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3.3. Feature Extraction Module. Te data used in this paper
are one-dimensional time series. Time series have local and
global characteristics. Tomake themodel have high accuracy
in processing time series, it must consider both character-
istics. A high correlation between adjacent variables of time
series is used to extract global features according to the
advantages of the LSTM network in processing long-term
dependent data. For local time series features, this paper
adopts a convolutional neural network model based on the
UNet network to extract local features. Te feature ex-
traction model is shown in Figure 4.

Te structure of the feature extraction method is divided
into left and right sections. Te left section is convolutional
downsampling. Te original data sequence feature size is
reduced from 600 to 75. Te right section is data upsam-
pling. First, the features after the last downsampling are

deconvolved. Ten, they are spliced with the features
extracted from the second downsampling. Ten, the spliced
data are upsampled once and spliced with the frst down-
sampled data. Finally, after a 1× 3 convolution, the stride is
8, the number of feature channels is reduced to 1, and the
sequence feature size is reduced to 38.Ten, it is input to the
LSTM network. According to experience, setting the con-
volutional kernel size as 3 in the convolution operation
during upsampling and downsampling tends to yield better
performance. It is important to add a feature extraction
block in the second downsampling to extract the depth
feature once. Its structure is shown in Figure 5.

Te principle of the feature extraction block is as follows.
First, we take the features after the second downsampling as
the input and extract the depth features through three
convolution layers. In order to extract features at diferent

Ht-1

X

o’ o’ o’tanh

+

X X
tanh

Ht Ht+1

Xt-1 Xt+1Xt

A A

Figure 2: LSTM network structure.

Feature Extraction Module

Fault Classifcation Module

Input data

LSTM Layer

FC

0 1 2 3 4 5 6

Input
Time series 1*600

1*300

1*150

1*75

4

8

1*150

8

4
1*300 1*38

1 Output

16

Figure 3: UNet-LSTM network framework.
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scales, we set the size of the convolutional kernel to 3, 5, and
7. Ten, the three convolved features are spliced together.
Finally, the number of channels meets the right splicing
requirements through a convolution.

3.4. Fault Classifcation Module. Te fault classifcation
module includes an LSTM layer and a full connection layer
(FC) and constructs a complex nonlinear model between the
input and output. As shown in Figure 6, in the model
proposed in this paper, the original time series is used for
feature extraction and then used as the input to the LSTM
network. Te LSTM layer trains the input data. Te softmax
function is used in the fully connected layer, and the output
of the last neuron in LSTM_1 is transformed into a proba-
bility distribution of seven fault type. Tere are seven types
of track circuit faults, so the number of neurons in the fully
connected layer is 7.

4. Experiments

In this section, we evaluate the method proposed in this
paper by testing on the actual ZPW-2000A track circuit fault
dataset and training the network with a dataset containing
six diferent faults and 1 healthy state.

4.1.Datasets. Te dataset used in this paper is collected from
real measurements in the feld of the ZPW-2000A track
circuit. Te dataset includes the main and small track

voltages of three adjacent track circuits. Te small track
voltage of the rear track circuit is hardly afected, so voltage
data are not collected for it. Te collected data include the
main and small track voltages of the faulty track circuit, the
main and small track voltages of the track circuit in front of
the faulty track circuit, and the main track voltage of the
track circuit behind the faulty track circuit. When a failure
occurs, the voltage changes of each track circuit typically
stabilize within two minutes. Terefore, voltage data is
collected every second within a two-minute period as ex-
perimental data. Te dataset consists of 17,500 training
samples and 10,500 test samples. Te article studies seven

Input
Time series

Input
Time series

Down-conv 1×3,
ReLU

Transmission
line

Feature
Extraction

block

Up-conv 1×1 Conv 1×3
Str=8

Output

1*600

4

8

1*300

1*150

1*75
8

1*150

4 1

1*38
Output

1*300

16

Figure 4: UNet feature extraction network diagram.
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Figure 5: Structure of the feature extraction block.
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Figure 6: Fault classifcation module.
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types of track circuit faults, and the amount of data for each
type of fault is the same.Te specifc information is shown in
Table 2.

4.2.Model Setting. Te parameters used in the model are set
according to the feature extraction method and fault
identifcation network proposed in this paper. Specifc pa-
rameter information is shown in Table 3.

4.3.Model Training. Using the cross-entropy function as the
loss function in the LSTM network to evaluate network
performance, the output is obtained after model training,
and then the cross entropy between the output value and the
sample tag is calculated. It achieves a good efect on judging
the similarity between the actual output and the expected
output. Te function formula is as follows:

L � − [y log �y +(1 − y) log(1 − �y)]. (2)

Here, y is the real label value (positive class value is 1,
negative class value is 0), and �y is the predicted probability
value (�y ∈ (0, 1)). It represents the diference between the real
sample tag and the prediction probability. In this article, the
optimizer uses stochastic gradient descent (SGD), and the
initial learning rate is set to 0.1, and the learning rate is
gradually reduced with iterations. Te cross-entropy func-
tion is used as the loss function in the LSTM network to
evaluate network performance and update the parameters
with backpropagation. Te work was implemented using
Python language with PyTorch libraries and executed on
a system based on GeForce RTX 2080 Ti GPU, running in
a Windows 10 environment.

4.4. Experimental Results. In this paper, datasets are used for
4,000 samples in each of the six fault and normal states,
totaling 28,000 samples. Tis paper classifes and recognizes
the data after feature extraction according to the proposed
method. In the LSTM network parameters, the number of
layers and the number of neurons in LSTM have a signifcant
impact on the experimental results. Terefore, this article
has conducted research on these two parameters and se-
lected the optimal combination.Terefore, this paper studies
the two and selects the best parameter combination. Tis
paper studies the classifcation ability of UNet-LSTM when
the number of LSTM neurons is 4, 8, 16, and 32 and the
number of LSTM layers is 1–3. Figure 7 shows the accuracy

of UNet-LSTM under diferent parameters. It can be seen
from the data in the fgure that when the number of LSTM
layers is 1 and the number of LSTM neurons is 16, the
accuracy rate reaches the highest, 99.85%.As the number of
network layers increases, the model exhibits an overftting
phenomenon, and the accuracy decreases.

Figure 8 shows the UNet-LSTM accuracy and loss
under the optimal parameter combination. We record the
results for every 400 iterations. Te model starts to con-
verge from the 40th epoch and maintains an accuracy of
over 95%. Te research model demonstrates good con-
vergence speed and stability. Its precision, recall, and F1 are
shown in Table 4:

Te LSTM network without the feature extraction
method proposed in this paper is tested with the same
dataset. To eliminate the randomness of the experiment,
each experiment was repeated ten times. Table 5 displays the
highest, lowest, and average accuracies of the twomethods in
ten experiments. According to the data in the table, the
maximum accuracy of using the LSTM network to diagnose
track circuit faults is 85.71%, and the average accuracy is
84.28%. Te maximum accuracy using the ULN method
proposed in this article to diagnose track circuit faults is
99.85%, and the average accuracy is 99.75%.Tus, the UNet-
LSTM network greatly improved the accuracy of track
circuit fault diagnosis.

Figure 9 shows the highest accuracy of track circuit fault
diagnosis using two methods. According to the data in the
fgure, it can be seen that the LSTM network cannot identify
faults 5 and 6 very well, and the accuracy rate is only 50%.
Te reason for this is that the voltage change waveforms of
these two faults are similar. Using the UNet-LSTM network
proposed in this paper, the fault identifcation accuracy is
more than 99%, which can identify the fault types in the
track circuit well.

In Figure 10, (a) is the confusion matrix of UNet-LSTM
network classifcation, and (b) is the confusion matrix of
LSTM network classifcation. In the test, 10,500 faults were
classifed, and the LSTM network mistakenly identifed
1,500 faults, of which fault 5 and fault 6 were mistakenly
incorrectly identifed because of the similarity between the
two fault data. Fifteen faults were incorrectly diagnosed
using the UNet-LSTM network because of the similarity
between the original data of fault 1, fault 5, and fault 6.
However, the overall fault diagnosis results verify that the
proposed UNet-LSTM framework can efectively detect
various track circuit faults.

Table 2: Details of experimental data.

Track
circuit fault type Label Train data size Test data size Sample feature size

Healthy state 0 2500 1500 600
Poor tuning unit 1 2500 1500 600
Broken rail 2 2500 1500 600
Poor mechanical insulation joint 3 2500 1500 600
Poor attenuator 4 2500 1500 600
Fault of the frst capacitor at the sending end 5 2500 1500 600
Fault of the third capacitor at the receiving end 6 2500 1500 600
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4.5. Experimental Comparison. Experiments are conducted
on commonly used fault classifcation methods using the
same data set, and the experimental results are compared
with the methods used in this paper. Te comparison results

are shown in Table 6. Te accuracy rate of the method used
in this paper is 99.85%, which is higher than the other three
fault diagnosis methods (the highest accuracy rate is
86.23%).

Table 3: LSTM model parameters of the applied method.

Name Filter Kernel
size/stride/padding Unit Input size Output size

Downsample
Conv-1 4 3/2/1 1× 600 4× 300
Conv-2 8 3/2/1 4× 300 8×150
Conv-3 16 3/2/1 8×150 16× 75

Feature extraction block
Conv-4 16 3/1/1 8×150 16×150
Conv-5 32 5/1/2 16×150 32×150
Conv-6 64 7/1/3 32×150 64×150
Cat 112×150 8×150

Upsample
ConvTranspose1d-1 8 1/1/0 16× 75 8×150
ConvTranspose1d-2 4 1/1/0 16×150 4× 300
Conv-7 1 3/8/0 8× 300 1× 38

LSTM
LSTM_1 16 1× 38 16× 38
FC 7 1× 38 1× 7
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Figure 7: Classifcation ability of UNet-LSTM under diferent parameters.
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Figure 8: Accuracy and loss of the fault diagnosis method proposed in this paper.

8 Journal of Electrical and Computer Engineering



Table 4: Performance evaluation of ULN.

Method ULN (%)
Precision 99.86
Recall 99.85
F1 99.85

Table 5: Comparison of model results.

Method Highest accuracy (%) Lowest accuracy (%) Average accuracy (%)
LSTM 85.71 71.42 84.28
UNet-LSTM 99.85 98.95 99.75
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Figure 9: Fault diagnosis accuracy of the LSTM network and UNet-LSTM network.
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Figure 10: Confusion matrix of UNet-LSTM and LSTM classifcation.
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5. Conclusion

We propose an efective track circuit fault diagnosis method
(UNet-LSTM), which collects three track circuit information
as experimental data, which has temporal and spatial fea-
tures to facilitate the accuracy of fault diagnosis. We in-
troduce a module of UNet feature extraction to extract
features at diferent scales. In the UNet module, we add
a deep feature extraction block to extract features at deeper
scales. Finally, we build an LSTM network for fault di-
agnosis. Te experimental results show that the accuracy of
this method for fault diagnosis of rail circuits is 99.75%, and
the superiority of this method is verifed by experimental
comparison with other methods.
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