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Acoustic emission (AE) signals produced by diferent types of rocks have diferent characteristics of information. Determining the
brittle mineral content of rock according to the acoustic emission characteristics of rock is helpful to understand the mechanical
behavior of rock in feld monitoring. Tis article constructs a deep learning algorithm model to identify acoustic emission signals
released from rock fractures with diferent brittle mineral contents. In response to the interference characteristics of acoustic
emission signal data, a multiscale one-dimensional convolutional neural network embedded with efcient channel attention
(ECA) module was incorporated into the model, and multiscale convolutional kernels were used to extract features of diferent
levels of precision. In the latter half of the model, the BLSTM network was incorporated to extract time series-related features,
local spatial uncorrelated features, and weak periodic pattern features from the acoustic emission signal data. To solve the problem
that the recognition accuracy of minority samples decreases, this study replaces ReLU activation function with SELU. Te results
show that the multiscale 1DCNN-BLSTM model embedded in ECA module has a good antinoise performance, and the rec-
ognition accuracy can reach over 90%. Te discovery of this work provides a new idea for exploring the mechanism of rock mass
instability.

1. Introduction

AE signals containing much damage information will be
released in the process of rock mass fracture with diferent
brittle mineral contents, so it is of great signifcance to study
them deeply for preventing natural disasters caused by rock
mass instability [1–3]. Te study shows that the main
fracture time of rock mass will decrease with the increase of
brittle mineral content. When the content of brittle minerals
in rock mass is less, the single fracture surface is the main
fracture surface, and the acoustic emission signals are
concentrated around the regular fracture surface. With the
increase of brittle mineral content in the rock mass, various
fracture modes and multiple fracture planes appear, and
fracture behavior and acoustic emission phenomena occur
in many areas. It can be seen that the brittleness of rock mass
has an important infuence on the fracture form of rockmass
[4–6]. When the content of brittle minerals reaches 50%, the
internal cracks of the rock become reticular after fracturing,

and the rock has reached the fracturing state [4]. Terefore,
four typical AE signals released by rock fracturing with
brittle content of 0%, 10%, 30%, and 50% are recognized in
this study. Te dataset of acoustic emission signals released
by rock fracture with four brittle mineral contents collected
in the laboratory is provided in the supplementary fle
(available here) at the end of the study, which is used to train
the neural network model in the study and verify its per-
formance. Accurate recognition of AE signals released by
rock fracture under diferent brittle mineral contents is not
only helpful to explore the instability mechanism of rock
mass, but also can provide prediction and early warning for
some disasters, such as rock burst, rock slab peeling, and
collapse.

In the research feld of acoustic emission signals of rock
mass fracture, scholars usually use acoustic emission tech-
nology to extract the damage information contained in the
energy released by rock mass instability, to learn the in-
formation such as changes of internal structure of rock mass

Wiley
Journal of Electrical and Computer Engineering
Volume 2024, Article ID 3717867, 14 pages
https://doi.org/10.1155/2024/3717867

https://orcid.org/0000-0003-1614-0166
mailto:2161113981@qq.com
https://creativecommons.org/licenses/by/4.0/


and the generation of microcracks. Figure 1 shows the
morphology of experimental rock samples after rock frac-
ture with four diferent brittle mineral contents. Aggelis et al.
[7] used the parameter feature discrimination method based
on acoustic emission technology to study the proportion of
tensile shear fracture signals in acoustic emission signals
under diferent material failures. Liu et al. [8] used Brazilian
disk and uniaxial compression tests to reveal the change
mechanism of acoustic emission b value of rock fracture
under the two tests. Te second detection method is to use
moment tensor; for example, Xu et al. [9] used AE signal
moment tensor technology to reveal the process of detecting
the fracture and damage mechanism of brittle granite.
Mhamidi et al. [10] used the moment tensor inversion of
acoustic emission signals to characterize bending and shear
cracks in reinforced concrete beams.

More and more scholars have applied the deep learning
algorithm, which can extract the deep features of data in
various felds, among which the convolutional neural net-
work (CNN) with excellent feature extraction performance
is the most widely used. As a one-dimensional time series,
AE signals released during rock mass fracture are charac-
terized by local space and time dimension. I consider adding
bidirectional long short-term memory (BLSTM) to this
model, which is widely used to deal with one-dimensional
time series problems. Te powerful learning ability of
BLSTM network makes up for the defciency of both front
and back related information that CNN cannot consider
[11, 12]. To better identify the acoustic emission signals
released by rock fractures with diferent brittle mineral
contents, this article designs a deep learning algorithm
model of a multiscale one-dimensional convolutional neural
network connected to a bidirectional long short-term
memory neural network and extracts acoustic emission
signals from diferent scales end-to-end to achieve more
efcient and accurate identifcation. In view of the noise and
other related features in the extracted AE signal, the author
tries to embed ECA-Net (Squeeze-and-Excitation Network)
module in the multiscale convolution network to realize the
weighted attention mechanism for one-dimensional data
features [13, 14]. Te main contributions are as follows:

(1) Te frst half of the multiscale 1DCNN-BLSTM
model constructed in this article is a multiscale
convolutional neural network embedded with ECA
mechanism. ECA can efectively capture cross-
channel interaction information, extract time and
frequency features hidden in signals of diferent
scales through multiscale convolution, and then fuse
these features into a feature information matrix. Te
model uses three layers of convolutional kernels with
diferent scales to extract feature information of
input signals, achieving the extraction of signal
features at diferent time scales.

(2) Since the ReLU activation function in traditional
CNN assigns all negative values to 0, this may lead to
a signifcant decline in the recognition accuracy of
minority samples. Terefore, this study replaces
ReLU activation function with SELU activation

function. Utilize linearity at the input layer to ensure
that all input few samples can enter the training
model. SELU is used in the middle layer, providing
a small negative slope for negative values, to better
apply to minority class samples in cases of
imbalanced data.

(3) Te acoustic emission signals released during the
process of rock mass fracture are one-dimensional
time series, and their signal characteristics are
manifested in two aspects: local space and time. To
better grasp the time-varying trend of acoustic
emission signals, this study considers adding a bi-
directional long short-term memory network
(BLSTM) evolved from a recursive neural network in
the latter half of the model. Te powerful learning
ability of BLSTM compensates for the shortcomings
of CNN in considering bidirectional signal-related
information.

2. Related Works

2.1. Multiscale 1DCNN. In signal processing, the problem is
that the time resolution and frequency resolution cannot be
well balanced when selecting a fxed-length window func-
tion. When the network extracts signal data features, if the
scale and span of convolution kernel are too small, the time
resolution of signal is better; however, it cannot learn the
low-frequency features in the signal well. On the contrary,
the larger-scale convolution kernel can learn the in-
formation in a longer time range, but it cannot refect the
high-frequency characteristics.

To solve the problem of difcult balance between time
resolution and frequency resolution in the process of
extracting signal data features, this study proposes a multi-
scale 1DCNN algorithm model, which is the frst half of the
model in this study, and the algorithm framework is shown
in Figure 2.Tere are four-layer multiscale convolution layer
with three parallel convolution kernels, in which each
convolution layer is composed of convolution and maxi-
mum pooling operation. Te AE signal extracts the time and
frequency features hidden in diferent scales through mul-
tiscale convolution layer and then fuses this feature in-
formation into a feature information matrix, which is
processed by full connection layer and softmax layer to
obtain the corresponding recognition type. In this study,
a number of one-dimensional convolution kernels are used
to convolve the input acoustic emission signals at diferent
scales to extract the characteristics of signals at diferent time
scales. L is the signal length. Multiscale one-dimensional
convolution is defned as follows:

y
U,V
i � τ Convu∈U,vϵV X(i−1)∗v+u, Wu􏼐 􏼑 + bi􏼐 􏼑, (1)

where u is the current convolution kernel scale, three
convolution kernel scales are U � [u1, u2, u3], and three
convolution kernel spans are V � [v1, v2, v3]. X represents
the input AE signal, τ is the activation function, and yU,V

i

represents the ith element of the convolution output with the
scale U and span V.
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Because the length of one-dimensional feature obtained
by multiscale convolution is inconsistent, corresponding
pooling operation is used for parallel convolution layers to
realize feature fusion. Te pool operation process is defned
as follows:

W
m,n
i � Fm∈M,n∈N X(i−1)∗n+m􏼐 􏼑, (2)

where X(i−1)∗n+m represents the input at pool scale M �

[m1, m2, m3] and span N � [c1, c2, c3], and Wm,n
i is the ith

pool result with M as the pool scale and N as the span.

(a) (b)

(c) (d)

Figure 1: Morphology of test rock samples after loading and fracture. (a) Brittle mineral content 0%. (b) Brittle mineral content 10%.
(c) Brittle mineral content 30%. (d) Brittle mineral content 50%.
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Figure 2: Multiscale convolutional network architecture.
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After the frst layer of their respective preliminary feature
extraction, the three parallel convolution layers obtained in
the next multiscale convolution process are applied with the
above pool scale R and the pool operation of span C, re-
spectively, which satisfy the following relationship with the
convolution scale:

s∗M � s∗N � C1, C2, C3􏼂 􏼃, (3)

where ∗represents Hadamard product, and C1, C2, C3 are
constants. To further extract high-dimensional features in
diferent scales, after the last layer of multiscale convolution,
the feature signals extracted in diferent scales are fused, so
that the information of features in diferent scales can
blend. Te specifc network structure diagram is shown in
Figure 2.

2.2. Principle Structure of BLSTM Neural Network. LSTM
network is evolved from recurrent neural network, and its
components are input layer, hidden layer, and output layer
[15–17]. Te data used in this study are the AE signal re-
leased by the rock mass rupture, and the efective in-
formation on the time series of the AE signal data can be
fully extracted by LSTM. Input gate, forget gate, and output
gate are the three gates of the LSTM network unit. Te input
gate and the output gate, respectively, control the way that
data enter the memory cell unit and the infuence of the
memory unit on the current output value, the forgetting gate
decides whether to discard some information, and the
function of the LSTM network gate control part is mainly to
store and update the information. First, the forget gate
determines whether to retain the unit information of the
previous moment according to the hidden state Gt−1 of the
previous moment and the new input data xt. Te formula is
as follows:

ft � σ Wf ∗ Gt−1, xt􏼂 􏼃 + bf􏼐 􏼑. (4)

After that, the input gate gets the valid information
obtained from Gt−1, and the formula is as follows:

it � σ Wi ∗ Gt−1, xt􏼂 􏼃 + bi( 􏼁. (5)

Te new state is composed of the previous unit state plus
the current unit state information, and the formula is as
follows:

Ct � ft ⊙Ct−1 + it ⊙Ct1. (6)

Finally, the output is calculated from the output gate and
the cell state with the following formula:

ot � σ Wo ∗ Gt−1, xt􏼂 􏼃 + bo( 􏼁,

Gt � ot ⊙ tan h Ct( 􏼁.
(7)

In the above formula, xt and Ct represent the input and
output of the cell unit at time t, and Ct1 and Ct represent the
hidden state and updated state of the cell unit.

However, the hidden layer of the LSTM neural network
can only calculate the data in one direction, and BLSTM
solves this problem well. Te BLSTM network can perform

forward and reverse calculations on the signal data, pro-
viding contextual information on the signal data for the
created network structure, and learning more efective in-
formation than traditional LSTM [18–20].

2.3. Efcient Channel Attention Module (ECA-Net).
Channel attention mechanism has been increasingly applied
to convolutional neural networks in recent years. However,
some complex attention mechanisms inevitably increase the
computational cost of the network. Wang et al. [21] put
forward the lightweight attention module (ECA-Net) in
2019. As an ultra-lightweight attention module, ECA
module (efcient channel attention) efectively balances the
model performance and computational cost. Avoiding di-
mensionality reduction is very important for learning
channel attention, and appropriate cross-channel in-
teraction can signifcantly reduce the complexity of the
model while maintaining performance. Terefore, the local
cross-channel interaction strategy without dimensionality
reduction can be efectively realized by one-dimensional
convolution. ECA module can interact the relationship
between channels, enhance important features, and suppress
useless features. Figure 3 shows the efcient channel at-
tention module.

As shown in Figure 3, ECA-Net uses appropriate cross-
channel interaction, in which kernel size K is a key pa-
rameter, which determines the coverage of interaction.
Because 1DCNN is used to capture local cross-channel
interactions, convolution blocks of diferent channels and
diferent CNN architectures may be diferent. It is related to
the channel dimension C of K. Te larger the channel di-
mension C is, the stronger the long-term interaction will be,
while the smaller the channel dimension C is, the stronger
the short-term interaction is. Tere may be some kind of
mapping φ between K and C.

C � ∅(K), (8)

where K and C are nonlinear. ECA mechanism uses an
exponential function to approximate mapping ∅:

C � ∅(K) ≈ cK − b. (9)

To solve the fnite linear function characteristic re-
lationship, the mapping between K and C is further
expressed as follows:

C � ∅(K) � 2cK−b
. (10)

Given the channel dimension C, the dimension K is
adaptively determined.

C � ∅(K) �

log
2

C

c
+

b

c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌odd

, (11)

where A represents the nearest odd number t, c � 2, and
b � 1. Te main advantage of ECAmechanism is that it takes
into account the computational complexity and test accu-
racy of the model.
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3. Multiscale 1DCNN-BLSTM Network Model
Design and Parameter Settings

In this article, the structure of the deep learning algorithm
model used to identify acoustic emission signals from rocks
with diferent brittle mineral contents is shown in Figure 4.

Te purpose of building this model is to accurately
identify the content of brittle minerals contained within
rocks. Te acoustic emission signals released during the
fracture of rocks with diferent brittle mineral contents are
also diferent. By identifying the acoustic emission signals
released during the fracture of these rocks, the content of
brittle minerals inside the rocks can be determined. When
the content of brittle minerals reaches 50%, the internal
cracks of the rock become a network after fracture, and the
rock has reached a fractured state. Terefore, this article
identifes four typical acoustic emission signals released by
rock fractures with brittle content of 0%, 10%, 30%, and 50%,
respectively. Tis study conducted fracturing tests on rocks
with four diferent mineral contents in a laboratory envi-
ronment. Te acoustic emission signals released by them
were collected through sensors and input into the model.
Te characteristic information of these acoustic emission
signals on diferent scales and time dimensions was
extracted, and they were accurately identifed through the
softmax layer to determine the content of brittle minerals
inside the rocks.

Te model includes three layers of multiscale convolu-
tion, and a number of one-dimensional convolution kernels
are used to convolve the input AE signals in diferent scales
to extract the characteristics of the signals in diferent time
scales. Aiming at the problem of AE signal mixed with strong
noise, this model embeds ECA module of local cross-
channel interaction strategy without dimensionality re-
duction to realize channel attention mechanism behind the
convolution layer, which efectively avoids the infuence of
dimension reduction on channel attention learning. Ap-
propriate cross-channel interaction can signifcantly reduce
the complexity of the model while maintaining its perfor-
mance. In view of the correlation of acoustic emission

signals of rock fracture in time dimension, it continues to
carry out secondary feature extraction on the spatial features
extracted by multiscale 1DCNN with BLSTM and acquires
the front-back bidirectional time sequence characteristic
information of AE acoustic emission signals.

To improve the accuracy of minority sample data rec-
ognition, this study replaces the activation function ReLU
commonly used in deep learning with the activation func-
tion SELU. In the input layer, SELU activation function is
used to ensure that a few samples of all inputs can enter the
training model.

ReLU activation function commonly used in deep
learning is essentially an irreversible process, because it will
directly remove the part whose input is less than 0, and the
original vibration signal collected by the sensor takes 0 as the
average value.When dealing with imbalanced data, ReLUwill
eliminate massive data less than 0, which will greatly reduce
the recognition accuracy of a few kinds of samples. Terefore,
we consider setting the activation function as SELU in the
input layer of themodel.When the input signal is greater than
0, the SELU function has the same curve as ReLU, so it
inherits the fast convergence characteristic of ReLU. When
the input data are less than 0, a small negative slope is given,
which makes the input data less than 0 have a small gradient,
which solves the problem of data imbalance.

For the size of convolution kernel in MCNN (multiscale
1DCNN), to better suppress the input of high-frequency
noise, the size of convolution kernel in the frst layer is 16×1,
and that in the second layer and the third layer is set to 64
and 128, respectively, which is convenient for network
deepening. After each convolution layer, a 2×1 maximum
pool operation is performed to reduce the number of net-
work parameters, reduce the calculation amount of the
model, and avoid overftting. In addition, in order not to
discard the feature information of the input sample and keep
the output dimension of the convolution layer consistent
with the input dimension, a padding operation is added to
each convolution layer. Te specifc parameters of the model
are shown in Table 1. Te GAP in the parameter table refers
to global average pooling.

1*1*C 1*1*C

H

W

C
X'

H

W

C
X

O'GAP

Figure 3: ECA mechanism.
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4. Model Performance Testing
Experimental Preparation

4.1. ExperimentalDesign. Te test rock samples were selected
from the research block of the Liaohe Oilfeld, and similar
core samples with brittle mineral contents of 0%, 10%, 30%,
and 50% (refer to the mineral composition of natural core
samples) were prepared according to the prefabricated

mineral composition. Te rock samples are mainly composed
of engineering sand, quartz, clay minerals, cement, and
pouring materials. According to the experimental re-
quirements, the proportions are made according to the rel-
evant proportions. Te proportioned magma is poured into
the designed core mold and stirred evenly. Observe the
magma surface until water and air bubbles no longer appear
on the surface, then put the mold into an incubator and let it
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global average
poolingBLSTM

Class3

Flatten
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fusion
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128
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Figure 4: ECA-ICNN-BLSTM network structure.

Table 1: Multiscale 1DCNN-BLSTM network model parameter.

Layer Type Output
size

Convolution
kernel
size/step
size

Number
of

neurons

Convolution
kernel
number

Dropout Activation
function

Pooling
layer

1 Conv1 16 ∗ 16 32 ∗ 1/1 — 16 0.6 SELU 2
2 Conv2 64 ∗ 64 128 ∗ 1/1 — 64 0.6 SELU 2
3 Conv3 128 ∗ 128 256 ∗ 1/1 128 0.6 SELU 2
4 ECA — — — — — — —
5 MCNN 16 ∗ 64 2 ∗ 1/1 — 64 0.6 SELU 1
6 BLSTM 40 ∗ 1 — (40, 40) — — Tanh —
7 Dense1 100 ∗ 1 — 100 — 0.8 Softmax —
8 GAP 100 ∗ 1 100 1 0.8 Softmax —

6 Journal of Electrical and Computer Engineering



stand at 30°C for about 7 days. After the core sample is
completely solidifed, it is taken out for cutting and grinding.
During the whole process, the samples are prepared according
to the requirements of the International Society of Rock
Mechanics (ISRM). Te rock sample has good integrity, its
size is 100mm ∗ 100mm ∗ 100mm, and the rock sample is
divided into four groups, as shown in Figure 5.

To collect the acoustic emission signals of diferent brittle
rocks, uniaxial compression tests were carried out on dif-
ferent brittle rocks, and the acoustic emission signals re-
leased during the loading process of the specimens were
recorded, respectively. In this study, a uniaxial fracturing
experiment was carried out on a true triaxial press. During
the experiment, the loading method was displacement
control, and the displacement speed was set to 0.8mm/min.
Te arrangement of the probes on the loaded specimen is
shown in Figure 6. Te failure mode of the rock sample
expands from the local to the whole. As the specimen
continues to be stressed, a crack appears in the rock sample,
the crack gradually expands and deepens, and multiple
cracks penetrate each other until the specimen is completely
broken. Te PCI-2 acoustic emission monitoring system
produced by American Physical Acoustics Company was
used to monitor the AE signal of rock fracture in real time,
and sampling frequency is set to 192 kHz. Figure 7 shows the
microcomputer control loading system and AE monitoring
system used throughout the entire experimental process.

4.2. Acoustic Emission Signal Data Acquisition and
Preprocessing. To construct a training sample dataset for the
networkmodel, this study conducted fracturing experiments
on rocks with diferent brittle mineral contents using a true
triaxial fracturing machine in a laboratory environment.
Figure 8 shows the acoustic emission signals released by the
fracturing test of the rock, which are segmented and
intercepted. When the brittle mineral content of the rock
reaches 50%, the internal cracks of the rock become a net-
work after fracture, and the rock has reached a fractured
state [4]. Terefore, the four rock samples with mineral
brittleness of 0%, 10%, 30%, and 50% were divided into 3571
data samples for identifcation testing. Te information of
the four rock samples is shown in Table 2. For the traditional
machine learning stage (where the dataset is on the order of
ten thousand), the general data allocation ratio is 7 : 3 be-
tween the training and testing sets. Te total number of
collected signal datasets is 3571 ∗ 4, randomly divided into
70% training set and 30% testing set, with 2500 ∗ 4 training
sets and 1071 ∗ 4 testing sets, and 30% testing set used to
evaluate the current training results of the model. Te
preprocessed time series signal data are, respectively, input
into the network structure model constructed above for
feature extraction and parameter training.

In the existing one-dimensional data classifcation re-
search, the preprocessing process usually adopts fltering
operation to obtain pure one-dimensional signal data. To
preserve the feature information of the original AE signal as
much as possible to enhance the generalization ability of the
model, this study directly divides the original AE signal into

fxed-length signal segments without fltering in the process
of signal preprocessing. Of 560 sets of data, the original AE
signal is normalized to [0, 1] by the mapminmax function,
and the corresponding labels are annotated for each fxed-
length AE signal after segmental interception, which are P-0,
P-1, P-2, and P-3. To ensure the consistency of the data input
into the model, this study unifes each segment of the AE
signal intercepted in segments into a data segment with
a length of 256 sampling points.

4.3. Model Performance Evaluation Indicators. To improve
the generalization ability of the network model and avoid
overftting during the training process, this study adopts the
shufe batchmethod to disrupt the training samples, making
themmore random.Te experimental code part of this study
is carried out on the Windows 10 64-bit operating system.
Te deep learning framework is Torch, the programming
language is Python 3.7, the training execution environment
is CPU, and the Batch size is set to 128.

To evaluate the efectiveness of the network structure
model in this article, accuracy (ACC), sensitivity (Sen), recall
(P), F1 harmonic mean, and Matthews correlation co-
efcient (MCC) were used to evaluate the performance of the
model. Te defnitions of each evaluation parameter are as
follows:

Acc �
TP + TN

TP + FP + TN + FN
× 100%,

Sen �
TP

TP + FN
× 100%,

P �
TP

TP + FN
× 100%,

F1 �
2 ×(Precision∗Recall)

Precision + Recall
,

MCC �
TP × TN − FP × FN

�������������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

􏽰 .

(12)

TP (true positive) represents the number of positive
samples correctly identifed as positive samples, TN (true
negative) represents the number of negative samples cor-
rectly identifed as negative samples, FP (false positive) refers

Figure 5: Test rock sample.
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Figure 6: Placement of probes on loading specimens.
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Figure 7: Microcomputer control loading system and AE monitoring system.
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to the number of negative samples incorrectly identifed as
positive samples, and FN (false negative) represents the
number of positive samples incorrectly identifed as negative
samples.TeMatthews correlation coefcient is greater than
−1 but less than 1, and the closer the coefcient value is to 1,
the better the classifcation and recognition performance of
the model.

5. Experimental Results and Analysis

5.1. Network Performance Evaluation. According to the
above, the pretreated AE signal data of rock fracture with
diferent brittle mineral contents are input into the model of
the study for training and use the trained model to predict
the test set. T-SNE dimensionality reduction visualization is
carried out on the feature expression of data pooled by input
layer, middle layer, and output layer [22]. T-SNE di-
mensionality reduction technology can map high latitude
data to low latitude space to realize visualization, and the
distance of each point after dimensionality reduction cor-
responds to the diference between the data. Te clustering
efect of test samples in each layer of the model is shown in
Figure 9.

It can be seen from the visualization that the distribution
of data gradually reaches linear separability after passing
through each pool layer. Te clustering efect of output after
global average pooling layer is obvious. It is proved that the
model has good feature extraction ability and classifcation
performance for acoustic emission data sets.

To verify the efectiveness of ECA module, MCNN-
BLSTM with CBAM, SE module, and CA module, re-
spectively, is compared by the experiment. Te corre-
sponding four models are trained for 6 times to get the best
results, and the training results are shown in Figure 10. It can
be seen from the fgure that when the attentionmechanism is
set to CBAM and ECA module, the training accuracy of the
model is superior. However, when the attention mechanism
is CBAM, the model training fuctuates greatly, while when
the attention mechanism is ECAmodule, the model training
is stable and the recognition accuracy is superior. When the
attention mechanism is set to SE module and CA module,
the iteration speed of the model is relatively slow and the
accuracy is relatively low. In summary, when the attention
mechanism is set to the ECA module, the recognition ac-
curacy of the model is high and the model has good ro-
bustness during the training iteration process.

In this study, the ReLU function, which is commonly
used in traditional convolution networks, is changed into
SELU function to avoid a large amount of data being
suppressed before feature extraction. Te function of acti-
vation is to make nonlinear conversion for the input, and the
conversion result will be used as the input of the following
hidden layer. Te formula is as follows:

SELU(x) � μ
x, x≥ 0,

αe
x
, −αx≤ 0,

􏼨 (13)

where α and μ are the parameters of the activation function.
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Figure 8: Time domain waveform diagram of AE signal of rock fracture with diferent brittle mineral contents. (a) Brittle mineral content
0%. (b) Brittle mineral content 10%. (c) Brittle mineral content 30%. (d) Brittle mineral content 50%.

Table 2: Rock sample information.

Brittle content of
minerals (%) Experimental type Training set Test set Label

0 Triaxial compression test 2500 1071 P-0
10 Triaxial compression test 2500 1071 P-1
30 Triaxial compression test 2500 1071 P-2
50 Triaxial compression test 2500 1071 P-3
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Based on ECA-MCNN-BLSTM model, diferent acti-
vation functions are selected to adjust the model. Tese
activation functions include ReLU, ELU, LeakyReLU, and
SELU, and the test results are shown in Table 3. It can be seen
from Table 3 that the model using SELU activation function
has higher recognition accuracy and higher sensitivity.

5.2. Analysis of Results of ECA-MCNN-BLSTM Model under
Diferent Noises. To more intuitively display noisy signals
with diferent signal-to-noise ratios, Figure 11 shows the
waveform of noisy emission signals under diferent signal-
to-noise ratios. Taking the acoustic emission signal released
by shale fracture with a brittle mineral content of 30% as an
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Figure 9: Visualizations of data at each layer.
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Figure 10: Recognition accuracy curve of diferent attention modules.
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Table 3: Performance evaluation of models using diferent activation functions.

Activation function ACC Sen P F1 MCC

ReLU 0.86 0.83 0.90 0.88 0.68
ELU 0.88 0.88 0.83 0.85 0.78
SELU 0.91 0.92 0.94 0.90 0.88
Sigmoid 0.79 0.85 0.80 0.86 0.80
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Figure 11: Continued.
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Figure 11: AE signals with signal-to-noise ratios of 0, −3, −6, and −9 dB, respectively. (a) RSN � 0 dB noisy signal. (b) RSN � 0 dB noisy signal
corresponding spectrum. (c) RSN � −3 dB noisy signal. (d) RSN � −3 dB noisy signal corresponding spectrum. (e) RSN � −6 dB noisy signal.
(f ) RSN � −6 dB noisy signal corresponding spectrum. (g) RSN � −9 dB noisy signal. (h) RSN � −9 dB noisy signal corresponding spectrum.

P-2

P-3

P-0

P-1

Tag value

(a)

P-2

P-3

P-0

P-1

Tag value

(b)

P-2

P-3

P-0

P-1

Tag value

(c)

P-2

P-3

P-0

P-1

Tag value

(d)

Figure 12: T-SNE visualization clustering diagram of four models for four AE signals withRSN � 0dB. (a)Model of this article. (b) 1DCNN-
BLSTM. (c) ECA-1DCNN. (d) MCNN-BLSTM.
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example, the spectrum of noisy AE signals and corre-
sponding noisy AE signals under diferent signal-to-noise
ratios are displayed.

To test the antinoise performance of the proposedmodel,
the same dataset was input into models in this study,
1DCNN-BLSTM, ECA-1DCNN, and MCNN-BLSTM. Te
antinoise model should maintain a high recognition accu-
racy at least when the signal-to-noise ratio is 0 dB.Terefore,
this study uses the t-distribution domain embedding algo-
rithm (t-SNE) to analyze the clustering performance of the
test set samples in diferent models at the fully connected
layer when RSN� 0 dB. Te results are shown in Figure 12.
Te parameter of t-SNE is set to PCA mode, the maximum
number of iterations is 10000, and the learning rate is 500.
T-SNE is concerned with learning to maintain the local
structure of the data. When descending to a two-
dimensional space, it preserves the manifold structure of
the data. Te distance between classes does not represent the
classifcation distance of the real data, but is a clustering
diagram. From Figure 12, it can be seen that the proposed
model and 1DCNN-BLSTM have the best classifcation
performance at a signal-to-noise ratio of 0 dB, while other
models overlap during the clustering process, resulting in
poor classifcation performance.

To further verify the noise resistance performance of the
model in this study, four levels of Gaussian white noise were
added to the training dataset, namely, 0 dB, −3 dB, −6 dB,
and −9 dB, and input four types of AE signals into diferent
network models to further analyze the impact of diferent
noise conditions on the performance of the four networks.
Te specifc experimental results are shown in Table 4. Due
to the signifcant deviation between the accuracy and recall
of the model diagnosis after adding Gaussian white noise,
this section uses the harmonic mean F1 of the two as the
evaluation indicator.

Table 4 compares the accuracy and harmonic values of
several models in AE signals with diferent signal-to-noise
ratios. It can be seen from the table that the proposed model
and the ECA-1DCNN model still have high recognition
accuracy under strong noise.Te recognition accuracy of the
1DCNN-BLSTM model is greatly reduced when
RSN � −9 dB, and the harmonic value is already less than
60%, indicating that 1DCNN-BLSTM is sensitive to data
noise. Terefore, in strong noise environments, multiscale
one-dimensional convolutional networks and ECA modules
can efectively alleviate the model’s sensitivity to data noise.
Te model in this article has higher noise resistance and
feature learning ability.

6. Conclusion

Aiming at the limitations of traditional rock fracture
acoustic emission signal recognition, this study establishes
an acoustic emission signal recognition model based on the
deep learning method and proposes a deep learning-based
rock fracture AE signal recognition method.Tis article uses
the acoustic emission signals released by rock fractures as
physical signals to identify diferent types of rock fractures
and constructs a multiscale 1DCNN network connected to
a BLSTM network algorithm model. In response to the
problem of noise interference in the original acoustic
emission signal, this study embeds an ECA mechanism on
the basis of the series model to suppress the impact of noise
interference and other related features on the recognition
results.

Te purpose of building this model is to accurately
identify the content of brittle minerals contained within
rocks. Te acoustic emission signals released during the
fracture of rocks with diferent brittle mineral contents are
also diferent. By identifying the acoustic emission signals
released during the fracture of these rocks, the content of
brittle minerals inside the rocks can be determined. When
the content of brittle minerals reaches 50%, the internal
cracks of the rock become a network after fracture, and the
rock has reached a fractured state. Terefore, this article
identifes four typical acoustic emission signals released by
rock fractures with brittle content of 0%, 10%, 30%, and 50%,
respectively. Tis study conducted fracturing tests on rocks
with four diferent mineral contents in a laboratory envi-
ronment. Te acoustic emission signals released by them
were collected through sensors and input into the model.
Te characteristic information of these acoustic emission
signals on diferent scales and time dimensions was
extracted, and they were accurately identifed through the
softmax layer to determine the content of brittle minerals
inside the rocks.

By comparing and analyzing with other network models,
it can be seen that this model not only has high recognition
accuracy but also has good noise resistance. Tis confrms
the superiority of the network model in dealing with the
multiclassifcation problem of AE signal data in this study.
Compared with the traditional rock fracture AE signal
recognition method, the method of constructing deep
network model in this study has the advantages of low cost,
simple process, and high recognition accuracy, which
provides a new method for the current rock fracture AE
signal recognition problem.

Table 4: Comparison of model performance under diferent noises.

ACC (%) F1 (%)
RSN � 0 dB RSN � −3 dB −6 dB −9 dB 0 dB −3 dB −6 dB −9 dB

Model of this study 96.88 90.65 88.37 83.07 96.56 90.56 82.65 76.54
1DCNN-BLSTM 94.98 85.45 68.56 59.09 92.63 84.62 71.52 56.52
ECA-1DCNN 95.62 86.12 80.84 72.27 93.52 86.51 77.32 69.21
MCNN-BLSTM 94.56 82.99 73.56 67.21 93.85 87.95 75.41 62.47
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