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Automatic speech recognition (ASR) is a feld of research that focuses on the ability of computers to process and interpret speech
feedback from humans and to provide the highest degree of accuracy in recognition. Speech is one of the simplest ways to convey
a message in a basic context, and ASR refers to the ability of machines to process and accept speech data from humans with the
greatest degree of accuracy. As the human-to-machine interface continues to evolve, speech recognition is expected to become
increasingly important. However, the Arabic language has distinct features that set it apart from other languages, such as the
dialect and the pronunciation of words. Until now, insufcient attention has been devoted to continuous Arabic speech rec-
ognition research for independent speakers with a limited database. Tis research proposed two techniques for the recognition of
Arabic speech. Te frst uses a combination of convolutional neural network (CNN) and long short-term memory (LSTM)
encoders, and an attention-based decoder, and the second is based on the Sphinx-4 recognizer, which includes pocket sphinx, base
sphinx, and sphinx train, with various types and number of features to be extracted (flter bank and mel frequency cepstral
coefcients (MFCC)) based on the CMUSphinx tool, which generates a languagemodel for diferent sentences spoken by diferent
speakers. Tese approaches were tested on a dataset containing 7 hours of spoken Arabic from 11 Arab countries, covering the
Levant, Gulf, and African regions, which make up the Arab world, and achieved promising results. CNN-LSTM achieved a word
error rate (WER) of 3.63% using 120 features for flter bank and 4.04% WER using 39 features for MFCC, respectively, while the
Sphinx-4 recognizer technique achieved 8.17% WER and an accuracy of 91.83% using 25 features for MFCC and 8 Gaussian
mixtures, respectively, when tested on the same benchmark dataset.

1. Introduction

Arabic is recognized as the ofcial language in 22
countries globally, with approximately 400 million in-
dividuals estimated to be profcient in speaking Arabic
across the world [1]. Arabic is a collection of languages
that are closely related. Modern standard Arabic (MSA) is
frequently taught in schools and colleges and is used in
formal settings such as courtrooms, media, and ofcial
speeches. All countries that speak Arabic speak MSA as
their ofcial language [2]. Despite being one of the most
widely spoken languages globally and ranking ffth in
terms of usage [3, 4], research studies on speech recog-
nition for the Arabic language are limited [3, 4]. Arabic

ASR poses several challenges, including sparse language
data, lexical variety [5], diferent dialects spoken
throughout the Arab world [6], and the widespread use of
nondiscretized text [4]. Furthermore, the Arabic language
presents difculties for the speech research community
due to its morphological complexity [7] and the com-
plexity of large vocabulary ASR.

Diacritical and nondiacritical texts are the two types of
writing that are available in Arabic. Diacritical marks are
symbols that are essential for understanding a word’s
meaning. Each Arabic word’s specifc defnition is de-
termined by its diacritical mark. Arabic readers and speakers
can read and understand nondiacritical material by using the
word’s context in a phrase [8, 9].
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Automatic speech recognition (ASR) has emerged as
a powerful algorithm for simplifying human-computer in-
teraction (HCI) by serving as the most interactive and
convenient means of communication between automated
systems and individuals [10].

Te conventional structure of automatic speech recog-
nition (ASR) algorithms involves various components, in-
cluding lexicon creation, language modelling, and acoustic
modelling.Tese components are constructed and processed
independently of each other [11]. Te traditional approach
for ASR includes a variety of methods, such as deep neural
networks (DNN), hidden Markov models (HMMs),
Gaussian mixture models (GMMs), and a hybrid of HMM
and DNN [12]. On the other hand, with the end-to-end
strategy, all components can be trained and adjusted to-
gether as a single entity through the use of deep learning
techniques. Tis approach is generally viewed as more ad-
vantageous than the conventional approach in terms of the
optimization of all its components [11].

Te end-to-end approach does not utilize any linguistic
knowledge in its data, and all of its components may be
trained using a single algorithm [12]. Various neural models
and properties have been studied by researchers to explore
the workfow processes involved in this approach [12, 13].
Te entirety of automatic speech recognition, or ASR, is
composed of a variety of techniques and methods,
employing a range of techniques, such as recurrent neural
networks (RNNs) transducer and connectionist time clas-
sifcation (CTC), convolutional neural networks (CNNs),
long short-term memory networks (LSTM), attention-based
encoder-decoder, and hybrid models [14].

Due to the availability of spectrum fuctuations and local
correlation characteristics in speech signals, the CNN
technique is suitable for ASR. Local fltering and weight-
sharing techniques are used in CNN’s pooling layer to ef-
fciently remove feature noise and shift tiny frequencies.

In addition, LSTM is used as a cutting-edge approach for
modelling acoustic data, which can result in higher recog-
nition rates.Te LSTM has a memory block that enables it to
control the learning time dependencies brought on by
disappearing and exploding gradient occurrences. As a re-
sult, end-to-end algorithms now regard the hybrid
CNN-LSTM approach as a cutting-edge method.

Te proposed paper presents two techniques. Te frst
involves the hybridization of CNN-LTSTM and the attention-
based encoder-decoder to develop a newmethod for decoding
nondiacritics Arabic ASR.Te second technique is traditional
and involves utilizing the Sphinx-4 recognizer, which com-
prises a pocket sphinx, sphinx base, and sphinx train, with
various types and amounts of feature extraction (flter bank
and MFCC). Furthermore, we used the CMU Sphinx tool to
develop a language model that includes uni-grams, bi-grams,
and tri-grams for diferent speakers with diferent sentences
to attain each technique’s intended result. Based on the ex-
periments conducted, our work demonstrates better accuracy
and performance for Arabic ASR algorithms compared to
traditional ASR algorithms.

Te remaining parts of the paper are organized as follows:
Section 2 gives a brief overview of the Arabic ASR research

that uses several techniques, including end-to-end Arabic
ASR that has been around for a while, HMM-based neural
networks, recurrent neural networks, and deep learning. It
will then go on to research methodology in Section 3, while
the fourth section presents the fndings of the research. Lastly,
Section 5 discusses the conclusion and prospects.

2. Related Work

Statistical models used in automatic speech recognition have
signifcantly improved the recognition of speech in various
languages [15]. A statistical speech recognizer is composed
of the following elements:

(1) A language model that calculates the likelihood of
a sequence of words.

(2) An acoustic model that specifes the correlation
between acoustic data and phonemes.

(3) A lexicon is necessary for the decoder to establish the
phonetic sequence for each word [16].

(4) Te decoder identifes the sentence with the highest
likelihood, based on the input acoustic observations.
Tis can be achieved by multiplying the two prob-
abilities for each sentence and selecting the sentence
with the highest product [17].

Khatatneh [18] introduced an algorithm for recognizing
Arabic phonemes and employed various techniques to en-
hance the accuracy of the algorithm. Te preprocessing
phase included the integration of the Gaussian low-pass
fltering algorithm with a neural network. In addition, the
neural network was utilized to train the speech signal rec-
ognition algorithm. Sampling, signal capture, energy setting,
and quantization were among the techniques employed to
recognize phonemes. Tey concluded that utilizing a neural
network led to improved results.

A method for automatic Arabic speech recognition’s
Egyptian dialect was proposed by A. Mousa et al. [19]. Tey
successfully represented the features by combining feature-
rich modelling (DNN-LMs) with morpheme LMs. In ad-
dition; they combined words and morphological elements
with the corresponding features. Te results of the study
demonstrated that this method was more accurate than
traditional word-based (LMs).

In the same direction, AlHanai et al. [20] developed an
automatic Arabic speech recognition algorithm utilizing
a speech corpus of 1200 hours. Tey utilized a deep neural
network (DNN) that integrated various techniques, in-
cluding feed-forward, time delay, convolutional, Highway
LSTM (HLSTM), Recurrent (LSTM), and Grid LSTM
(GLSTM). Te research revealed that the GLSTM model,
trained on the chosen corpus, achieved a WER of 18.3%.

An Arabic news voice recognition algorithm was created
by Ali et al. [21]. Tey created the algorithm using the
KALDI recipe and trained the acoustic model for 200 hours
using the broadcast news algorithm. Text normalization,
vowelization, and language models were all included in their
evaluation of the system using BR, BC, and combination
metrics. Te results showed that, for BR, BC, and combined
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metrics, the algorithm attained WER scores of 15.81%,
32.21%, and 26.95%, respectively.

AbdAlmisreb et al. [22] proposed a deep neural network
(DNN) approach to construct an automatic Arabic speech
recognition system. Te DNN featured three hidden layers,
500 maxout units, and two neurons per unit with features
generated by MFCC. Te study employed a corpus of 20
Malay speakers of Arabic phonemes, with fve waveforms
used for training and ffteen for testing. Te Maxout-based
deep structure outperforms several other deep networks,
including CNN, restricted Boltzmann machines, conven-
tional feed-forward neural networks, deep belief networks,
and convolutional auto-encoders, according to the results.

Ahmed et al. [17] applied recurrent neural networks
(RNNs) without a lexicon, employing the objective function
of connectionist temporal classifcation (CTC), which uti-
lizes audio input information. Tey used a dataset con-
taining 1200 hours of Al Jazeera’s multigenre broadcast
program to assess the recipe, resulting in a WER of 12.03%.
It is worth noting that this study employed various dialects,
whereas Ahmed’s study used only one dialect.

Azim et al. [23] created a phonetic decision tree for
Arabic. Tey utilized their method to create tied-state tri-
phone hidden Markov models (HMMs) and compared the
experimental results with data-driven tri-phone models and
phoneme-based models. Teir approach achieved a maxi-
mum accuracy of 95.13%. When tested on the same
benchmark database, the accuracy was reduced to 78.03%
and 58.45% using tri-phones and HMMs based on pho-
nemes, respectively, employing data-driven techniques. Te
dataset utilized in this study consisted of 4372 WAV fles,
totalling 7 hours of recordings from a single Arabic speaker.
It is noteworthy that although Azim’s study included
multiple speakers and sentences, they only used one speaker.

Alsayadi et al. [24] introduced cutting-edge methods to
enhance discrete automatic Arabic speech recognition, in-
cluding CNN-LSTM, CTC-based ASR, and an attention-based
end-to-end approach. To improve the outcomes, a language
model based on words is employed. To train and test the
framework, SASSC—the standard Arabic single-speaker cor-
pus—was employed. According to the results of the experi-
ment, the CNN-LSTM attention framework wasmore efective
at recognizing Arabic speech when compared to conventional
ASR, as well as when compared to the common CTC-attention
ASR framework. Te CNN-LSTM with an attention frame-
work resulted in a signifcantly lower word error rate (WAR)
compared to the CNN-LSTM framework (5.24% vs. 2.62%).

3. Methodology

3.1. Te Proposed Algorithm. Tis study utilized two speech
recognition techniques—the CNN-LSTM attention tech-
nique and the Sphinx-4 technique. All algorithms applied an
acoustic model that was trained on the speech corpus, and
additional information about these algorithms will be
provided in subsequent sections. Te language models were
developed using the CMU Sphinx model, and the hardware
specifcations utilized are listed in Table 1, and the main
steps of this research are shown in Figure 1.Te initial step of

the data preprocessing involves extracting features from the
sounds and constructing a language model, which is then fed
into the recognizer for evaluation using the character error
rate, word error rate, and accuracy equations. Tis com-
prehensive approach ensures thorough analysis and as-
sessment of the extracted features and their performance
within the recognition system.

3.2. Data Preprocessing. Te initial stage involves preparing
the dataset by converting the fle format from Wav to Flac,
which helps to reduce the storage space while maintaining
high quality. In addition, the vocabulary fle is created by
extracting all words from the sentences and partitioning
them into subwords with the aid of the SentencePiece Li-
brary. Te SentencePiece Library is composed of four pri-
mary parts: the normalizer, trainer, encoder, and decoder.
Te normalizer functions to standardize semantically similar
Unicode characters into a standard form. On the other hand,
by indicating the kind of subwordmodel to be employed, the
trainer trains the subword segmentation model from the
normalised corpus. Te encoder utilizes the normalizer and
tokenizes the input text into a subword sequence utilizing
the subword model learned by the trainer. Te decoder
eventually transforms the subword sequence into a nor-
malised text [25].

3.3. Feature Extraction. Tis section delves into the topic of
feature extraction, employing two distinct techniques. Te
frst technique discussed is MFCC 4.3.1, which involves
extracting features. Te second technique explored is the
flter bank 4.3.2, which also encompasses feature extraction.
By examining and comparing these two approaches,
a comprehensive understanding of the feature extraction
process is achieved.

3.3.1. MFCC Feature Extraction. As waveforms cannot be
directly processed by tools and speech modelling, they are
transformed into a set of acoustical feature vectors. Tis
research employs the MFCC feature extraction method,
which involves a set of MFCC coefcients and energy
measures. Te study will use three sets of MFCC vectors,
comprising 13 MFCC vectors (including 12 cepstral features
and an energy measure), 25 MFCC vectors (containing the
12 cepstral features’ change rates and the energy measure’s
change rate), and 39 MFCC vectors (which comprise 12
cepstral features, an energy measure, as well as the velocities
and rates of change of these 13 features).

Table 1: Hardware specifcations.

Table 1 Machine
hardware specifcations

CPU Intel® Core™ i7-6820HQ CPU @ 2.70GHz× 8
GPU Intel® HD graphics 530 (SKL GT2)
RAM 8GB
CUDA version 9.1
OS Ubuntu 18.04
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3.3.2. Filter Bank Feature Extraction. Te flter bank rep-
resentation serves as a simplifed model, crucially simulating
the initial stages of transduction in the human auditory
system, thereby playing a vital role in speech processing.Tis
concept is supported by two signifcant factors. Firstly,
according to the “place theory,” the maximum displacement
location along the basilar membrane, in response to pure
tones, correlates directly with the logarithm of the tone’s
frequency. Secondly, extensive studies on human perception
have demonstrated the challenge of distinguishing fre-
quencies of complex sounds within a specifc bandwidth
surrounding a nominal frequency, unless one of the sound
components exceeds that bandwidth. Tis range of fre-
quencies is referred to as the critical bandwidth [26, 27].

In light of these fndings, the proposed paper adopts
three sets of flter bank vectors, encompassing 40 vectors, 80
vectors, and 120 vectors, respectively. Tis choice allows for
a more comprehensive exploration and analysis of the flter
bank representation’s efectiveness in speech processing.

3.4. CMU Sphinx Language Model. A language model (LM)
is a probabilistic statistical model capable of generating
fctional word sequences. In the realm of speech recognition,
one commonly used language model is the N-gram model,
which operates as a two-word model. Tis model takes into
account a set of preceding words, predicts the probability of
the next word, and assigns scores to the likelihood of
generating complete sentences [28]. Te language model
plays a crucial role in system confguration, providing the
decoder with information about potential word sequences
for recognition. Various models, such as phonetic language
models, statistical language models, and keyword lists, ex-
hibit diferent performance characteristics. During runtime,
you have the option to choose a decoding mode that meets
your needs and can switch between modes. With the key-
word spotting mode ofered by PocketSphinx, you can
specify the list of keywords to look for and set a threshold for
each keyword to fnd it even in continuous speech. In
comparison, other modes try to identify words based on the
grammar, even if you use words that are not in it. Pock-
etSphinx is the only algorithm that provides support for
keyword lists, while Sphinx4 does not have this capability.
Language models for sequential words use three types of
probabilities: 1-gram, which indicates the likelihood of
a single word in the text; 2-gram, which shows the proba-
bility of two words occurring together in the text; and 3-
gram, which represents the probability of three consecutive
words appearing together in the text [29].

Te study utilized the CMU Sphinx toolkit as its lan-
guage model, which employed n-grams. Initially, the default
unigram count was computed, and then, a task vocabulary

with word frequencies was created. Bi-grams and tri-grams
were generated from the training text, based on this vo-
cabulary. Finally, the n-grams were converted into a binary
format, language model, and standard ARPA format.

3.5. Model Recognizer. Tis section provides an in-depth
discussion of the model recognizer, encompassing three
distinct techniques. Te frst technique involves employing
CNN-LSTM architecture with MFCC 4.5.2 as the feature
extraction method. Te second technique explores the uti-
lization of CNN-LSTM with flter bank 4.5.3 for feature
extraction. Lastly, the third technique focuses on the
implementation of the Sphinx-4 tool recognizer 4.5.4. By
exploring and comparing these three techniques, a com-
prehensive analysis of the model recognizer is achieved,
highlighting the strengths and capabilities of each approach.

3.5.1. CNN-LSTM Technique. Te CNN algorithm is highly
recognized and extensively applied in the realm of deep
learning. It possesses a unique advantage over earlier
methods as it can identify crucial features without the need
for human involvement. LSTM stands for long short-term
memory, and it belongs to the category of recurrent neural
networks (RNNs) but with a more intricate computational
unit. LSTM is well-suited for processing inputs of varying
lengths and excels at capturing intricate long-range de-
pendencies due to the presence of a forget gate [30].

Te CNN-LSTM model is powered by PyTorch, and the
attention method is utilized in the sequential process of the
model, as illustrated in the next sections. Preprocessing of
corpus data and lexicon, as well as language modelling, is the
initial step, followed by feature extraction. Languagemodelling
is further trained and developed in the subsequent stages. Te
encoder is constructed using CNN and LSTM technology,
while the decoder is constructed using attention technology.
Te data preprocessing and feature extraction phases were
conducted by the procedures outlined previously. Tis model
leverages the training and collected data to generate and train
an external language model (LM). Te external language
model consists of approximately 262936 words with 28682
separate words. Te CMU sphinx language model was used to
extract the language model, as described in Section 3.4.

An encoder-decoder model has been developed for
network training and recognition. Te acoustic model is
built using a hybrid CNN-LSTM method in the encoder
section. Te input sequences are transformed into vectors,
using CNN layers and then fed into the LSTM [31]. A 4-layer
architecture is employed, which applies 2D convolution and
(3; 3) kernel size to the feature and time frame axis, which
was utilized in previous studies [32, 33]. To achieve results in

Dataset
Data Pre-
processing

Feature
Extraction

Language Model

Recognizer
Character Error Rate &

Word Error Rate &
Accuracy

Figure 1: Te main steps of this research.
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frames that are one-fourth the time length after convolution,
downsampling at layers 1 and 3 was applied, reducing the
signal’s sampling rate by a factor of 2x. After passing through
the stacked convolution layers, the output is then fed into
three layers of bidirectional LSTMs [34]. Word encoding is
performed one word at a time, relying on the stacked CNN
and current status.

Following this, the status is updated and made available
for subsequent steps. Meanwhile, the encoder produces
a series of encoded vectors, depending on the number of
words in the input sentence. Training is carried out using N
epochs, with the initial epochs utilizing gold labels and the
subsequent ones supporting scheduled sampling [35]. While
training, the training probability p was scheduled, and
a lower probability was used to encourage the model. To
enhance the accuracy, label smoothing [36] was applied
during the calculation of cross-entropy loss. In addition,
temporal smoothing [37] was combined with a distribution
probability mass to generate the neighbouring token unit in
the transcript for label smoothing.

Te decoder employs the attention mechanism [38, 39],
which takes in the encoder output and its hidden state to
compute the current hidden states v 1, v 2, . . . , v n. Tis
mechanism uses the states s_1, s_2, . . ., s_n as queries and the
hidden states h_(1 :n) of the encoder sides as the keys and
values.Te attentionmechanism then returns the fnal hidden
representation, which is a weighted sum of the values.

3.5.2. CNN-LSTM Using MFCC. Te CNN-LSTM tech-
nique, illustrated in Figure 2, was employed in this research.
As discussed in Section 3.5.1, the method is based on MFCC
feature extraction with 13, 25, and 39 features, as described
in Section 3.3.1, and utilizes the CMU Sphinx language
model, as outlined in Section 3.4.

3.5.3. CNN-LSTM Using Filter Bank. Te CNN-LSTM
method used in this research is depicted in Figure 3 and
explained in Section 3.5.1. Te technique applies the flter
bank feature extraction approach, which projects features
into a higher-dimensional space for classifcation en-
hancement [31]. Te current representation utilizes a flter
bank of 40, 80, and 120 coefcients to assess its recognition
performance, as explained in Section 3.3.2. Furthermore, the
approach incorporates the CMU Sphinx language model, as
outlined in Section 3.4.

3.5.4. Sphinx-4 Tool Recognizer. A signifcant portion of the
CMU Sphinx project, a group of speech recognition algo-
rithms developed at Carnegie Mellon University [40], has
been made available as open-source packages. Te project
encompasses CMU Sphinx I and II, and the development
and training of CMU Sphinx III and CMU Sphinx-4 were
facilitated by the CMU Sphinx train. Te Sphinx train serves
as the acoustic training environment for the Sphinx family of
recognition engines, including Sphinx-2, Sphinx-3, and
Sphinx-4. It consists of a collection of scripts, programs, and
documentation aimed at creating acoustic models from data.

By converting continuous speech waveforms into a sequence
of evenly spaced, discrete parameter vectors, individuals can
develop models capable of recognizing the symbolic se-
quence of spoken syllables. Te Sphinx train tool must be
employed to create this model, provided there is enough
acoustic data for the language and condition at hand. Te
Sphinx-4 architecture is designed with fexibility and
adaptability in mind. It is a collection of tools for creating
acoustic models from data from the Sphinx recognition
engine, including algorithms, scripts, and documentation.
Te authors should be able to build models for any language
and condition with sufcient acoustic data through this
contribution. Recognition cannot proceed without an
acoustic model, which is necessary to compare the data from
the front end. Te Sphinx train tool must be used to create
this model. Te fnal recognition result is generated by
Sphinx-4 by obtaining the most probable word sequence
through the result parser and subsequently outputting it
[41]. Tis section aims to develop a structure that can
recognize continuous Arabic speech using the tools provided
by Carnegie Mellon University Sphinx, as illustrated in
Figure 4.

Dataset

Data Pre-processing

Feature Extraction MFCC
CMU-Sphinx

Language Model

Encoder (CNN Layer, LSTM)

Character Error Rate (CER) & Word Error Rate (WER)

Decoder (LSTM, Attention Layer)

Figure 2: CNN-LSTM for automatic Arabic speech recognition
using MFCC.

Dataset

Data Pre-processing

Feature Extraction Filter bank CMU-Sphinx Language Model

Encoder (CNN Layer, LSTM)

Character Error Rate (CER) & Word Error Rate (WER)

Decoder (LSTM, Attention Layer)

Figure 3: CNN-LSTM for automatic Arabic speech recognition
using flter bank.
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(1) Sphinx-4 Front End. Te process of speech acquisition
begins with the loading of an audio fle into our algorithm,
which contains a sound pressure wave that forms an acoustic
signal. Every speech has its unique features, and this research
utilized Mel frequency cepstral coefcients (MFCC) to ex-
tract these features. Te Mel-cepstrum technique is the most
commonly used feature in speaker recognition. It is based on
the auditory algorithm and has a high discriminating power
at low frequencies compared to high frequencies. Te
cepstrum coefcient is capable of representing vocal tract
changes dealing with convolution channel distortions and is
highly resistant to noise [42].

(2) Sphinx-4 Linguist. Te acoustic model is created by the
linguist, which is a representation of the relationship be-
tween an acoustic signal and the phonemes (or other
linguistic building blocks) that composes speech. Tis
model is trained on a collection of audio recordings and
associated transcriptions, as well as a phonetic dictionary
constructed using a rule-based model. In addition, the
language model assigns a probabilistic value to the whole
sequence and includes a probability distribution for word
sequences. By combining the knowledge from the three
components, a linguist can generate a search graph suitable
for the given task [43].

(3) Sphinx-4 Decoder. Te search manager is generated by
the decoder and is responsible for creating the scorecard,
the pruner, and the active list. Te scorecard is then asked
to compare each token in the list to the next feature vector
received from the front end, resulting in a score for each
active route. Te pruner uses specifc heuristics to reduce
the number of tokens or active routes. Te result of the
application is the highest-ranking path. Te Sphinx-4 ar-
chitecture, depicted in Figure 5, consists of three primary
components: frontend, decoder, and linguist are utilized in
this research. Te components are based on pocket Sphinx,
Sphinx base, and Sphinx train. Te architecture is applied
to Gaussian mixture distributions (2, 4, 8, 16, and 32),
utilizing MFCC feature extraction with 13, 25, and 39

features, as illustrated in Section 3.3.1. In addition, the
CMU sphinx language model is utilized, as described in
Section 3.4.

4. Experimental Results and Discussion

Te present research provides fndings for three techniques:
the initial technique employs CNN-LSTM with MFCC, the
second technique employs CNN-LSTM with flter bank, and
the third technique employs Sphinx-4 recognizer. All of
these techniques use the continuous Arabic speech dataset
and rely on the CMU Sphinx language model.

4.1. Datasets. Te proposed paper used diferent datasets as
shown in the next sections.

4.1.1. First Dataset. Te frst speech corpus dataset (DS1)
used consists of 415 recorded Arabic sentences. To construct
the corpus, 367 carefully crafted sentences with phonetic
richness and balance were developed by KACST [44] and
used for training the acoustic model. An additional set of 48
sentences, representing Arabic proverbs, was created by an
expert in Arabic language for testing the acoustic model.Te
recordings for the speech corpus were performed by a total
of 40 native Arabic speakers, including 20 males and 20
females, representing 11 diferent Arab countries. Tese
speakers were selected to cover three major regions in the
Arab world: the Levant, the Gulf, and Africa. Te recording
process took place in a soundproof studio using Sound Forge
8.0 software. It spanned approximately 3 months, starting
from March 2009 until June 2009. Te speech corpus was
intentionally diversifed to encompass various characteris-
tics of Arabic native speakers.Tis diversifcation considered
factors such as diferent age groups, nationalities, Arab
regions, professions, academic qualifcations, and levels of
Arabic mastery. Te comprehensive nature of this speech
corpus, with its wide representation of Arabic speakers and
attention to various characteristics, provides a valuable re-
source for training and evaluating ASR systems. It ensures

Application

Control
Result

Recognizer

Decoder
SearchManager

ActiveList

Scorer Pruner

FrontEnd

Input

Feature SearchGraph

ConfigurationManager

Linguist
AcousticModel

Dictionary

LanguageModel

Instrumentation

Figure 4: Carnegie Mellon University (CMU) sphinx [40].
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the robustness and efectiveness of the developed acoustic
model across diferent Arabic dialects, regions, and speaker
attributes.

4.1.2. Second Dataset. Te second dataset (DS2) [45] fea-
tures recordings of a male speaker with a Damascian accent

in South Levantine Arabic. Te recordings were conducted
in a professional studio using a Neumann TLM 103 Studio
microphone.Te transcript for this corpus was sourced from
the language learning website “Al Jazeera Learn,” specifcally
chosen for its fully diacritised text, which facilitates pho-
netisation. To aid the speaker during recording sessions, the
transcript was divided into utterances based on punctuation.
Te corpus has been successful in generating high-quality,
natural-sounding synthesized speech. It comprises 759 ut-
terances, totalling 2.1 hours of normal speech. Tis package,
version 2.0 of the corpus, includes 759.wav fles of spoken
utterances, corresponding text utterances, and phonetic
transcriptions in separate text fles, following the format
“[wav_flename]” “[Phoneme Sequence]” on each line.

4.2. Performance Evaluation. Te proposed ASR algorithms
are evaluated for their performance using various indicators,
including the percentage of word error rate (WER), which is
represented by equation (1); the percentage of character
error rate (CER), represented by equation (2); and the
percentage of accuracy, described in equation (3) [46].

WER � 100%-percentage of word accuracy, (1)

CER � 100%-percentage of character accuracy, (2)

Percent accuracy �
N − D − S − I

N
× 100. (3)

Te numerical value (N) indicates the number of cor-
rectly identifed labels in reference transcription; the nu-
merical value (D) indicates the numerical value of errors
caused by deletion. Te numerical value (S) represents the
numerical value of the substitution error, and the numerical
value (I) is the numerical value of the error caused by
insertion.

4.3. CNN-LSTM Using MFCC Results. Table 2 shows the
results of a meticulously conducted experiment that thor-
oughly examined the performance of a CNN-LSTM model
using MFCC across multiple datasets. Te frst dataset is
presented in detail in Section 4.1.1, and the second dataset is
elaborated upon in Section 4.1.2. Te examination employed
WER and CER metrics. Te model comprises a hybrid
CNN-LSTM for encoding and an attention-based decoding
model, while the language model used CMU Sphinx with
17236 uni-grams, 42659 bi-grams, and 50147 tri-grams. Te
experiment also involved MFCC feature extraction with
varying numbers of features, specifcally 13, 25, and 39.

Te fndings presented in Table 2 unequivocally dem-
onstrate that the utilization of MFCC 25 features yields
superior results in terms of word error rate in DS2 compared
to DS1 across all features of MFCC. Moreover, the evalu-
ation of the character error rate reveals that the performance

of MFCC 25 features in DS2 surpasses that of MFCC 25
features in DS1, once again across all features of MFCC.
Tese results robustly highlight the consistent advantages
ofered by MFCC 25 features in both word and character
error rates, underscoring their efectiveness and reliability in
speech-processing applications.

4.4. CNN-LSTM Using Filter Bank Results. Table 3 displays
the experimental fndings, presenting an evaluation of the
performance of a CNN-LSTM model that employs flter
banks across various datasets. Te frst dataset, extensively
discussed in Section 4.1.1, and the second dataset, elaborated
on in Section 4.1.2, are both examined in detail to provide
a comprehensive understanding of the results. Te evalua-
tion was created using data from WER and CER. Te model
consists of a hybrid CNN-LSTM for encoding and an
attention-based decoding model, while the language model
used CMU Sphinx with 17236 uni-grams, 42659 bi-grams,
and 50147 tri-grams. Te experiment also involved flter
bank feature extraction with varying numbers of features,
specifcally 40, 80, and 120, as presented in the table.

Te analysis of the outcomes presented in Table 3 un-
ambiguously demonstrates the superiority of flter bank 120
features in terms of word error rate in DS2 compared to DS1
across all features of flter bank. In addition, the evaluation of

Dataset

Data Pre-processing

Feature Extraction MFCC CMU-Sphinx Language Model

Accuracy & Word Error Rate (WER)

Sphinx Tools Recognizer

Figure 5: Sphinx-4 architecture for automatic Arabic speech
recognition.
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the character error rate reveals that the performance of flter
bank 80 features in DS2 outperforms that of DS1, once again
across all features of the flter bank. Tese compelling results
emphasize the consistent advantages ofered by flter bank 120
features in word error rate, as well as the efectiveness of flter
bank 80 features in character error rate. Together, these fndings
underscore the robust performance and reliability of flter bank
features across a range of speech-processing applications.

4.5. Sphinx-4 Recognizer Results. In this experiment, a variety
of MFCC feature methods were tested using Sphinx-4. Tese
methods included MFCC_0 with 13 features, MFCC_D with
25 features, MFCC_D_A with 39 features, and MFCC_E_-
D_A_Z with 52 features. Te experiment also employed
a CMU Sphinx language model based on 17236 uni-grams,
42659 bi-grams, and 50147 tri-grams. Gaussian mixture dis-
tributions with diferent numbers (2, 4, 8, 16, and 32) were used
in conjunction with the frst dataset [44].

A thorough examination of the outcomes presented in
Table 4 unequivocally demonstrates the exceptional per-
formance of MFCC 25 features and Gaussian 8 in terms of
word error rate and accuracy when evaluated based on DS1.
Notably, across all features of MFCC and Gaussian degrees,
the results consistently indicate that MFCC 25 features and
Gaussian 8 exhibit the highest level of efcacy. Tese
compelling fndings emphasize the robustness and reliability
of utilizing MFCC 25 features and Gaussian 8, highlighting
their signifcant impact on improving word error rate and
accuracy in various speech-processing applications.

4.6. Statistical Analysis for the Results in the Proposed Paper.
Table 5 and Figure 6 show conducting two experiments on
two distinct datasets, namely, the large dataset DS1 and
the small dataset DS2, utilizing the CNN-LSTM tech-
nique. Our fndings revealed crucial insights. Specifcally,
we observed that the flter bank 120 features exhibited
signifcant advantages and yielded higher profciency
when applied to the large dataset DS1 which has 3.63%
WER as a standard comparison measurement. Con-
versely, the MFCC 25 features demonstrated superior
performance and greater profciency when employed on
the small dataset DS2, which has 1.26% WER. Tese in-
sightful conclusions highlight the importance of tailoring
feature selection based on dataset characteristics, thereby
maximizing the efectiveness and profciency of the
chosen techniques in diferent scenarios.

By conducting an extensive comparative analysis between
the current paper and the work presented by Abushariah et al.
[47], a meticulous examination of the performance criteria
was undertaken. Notably, Table 6 serves as a valuable re-
source, presenting comprehensive insights into the word
error ate (WER) metric as a standard comparison mea-
surement and shedding light on the efectiveness of the se-
lected approach. Tese insightful fndings were obtained
through the utilization of DS1, wherein Gaussian mixture
distributions were carefully confgured to 2, 8, 16, and 32.
Furthermore, the Sphinx-4 model was employed as the
designated speech recognition engine, ensuring the reliability,
consistency, and robustness of the obtained results.

Table 3: WER and CER results of CNN-LSTM using flter.

No. of flter bank
features

WER CER
DS1 (%) DS2 (%) DS1 (%) DS2 (%)

40 features 4.21 4.21 4.42 2.98
80 features 4.50 3.54 4.12 1. 7
120 features 3.63 3.46 4.05 1.82
Te bold values indicate the best results of CNN-LSTM using flter bank from WER and CER.

Table 2: WER and CER results of CNN-LSTM using MFCC.

No. of MFCC features
WER CER

DS1 (%) DS2 (%) DS1 (%) DS2 (%)
13 features 4.21 2.26 4.18 3.61
25 features 4.04 1. 6 3.83  .86
39 features 4.04 1.43 3.82 3.36
Te bold values indicate the best results of CNN-LSTM using MFCC from WER and CER.

Table 4: WER and accuracy results of Sphinx-4 recognizer.

MFCC
features

Gaussian 2 Gaussian 4 Gaussian 8 Gaussian 16 Gaussian 32

WER (%) Acc.
(%) WER (%) Acc.

(%) WER (%) Acc.
(%) WER (%) Acc.

(%) WER (%) Acc.
(%)

13 features 13.39 86.61 11.02 88.98 11.13 88.87 10.85 89.15 14.25 85.75
25 features 10.77 89.23 8.45 91.55 8.17 91.83 8.65 91.35 10.85 89.15
39 features 14.70 85.30 12.78 87.22 10.91 89.09 10.77 89.23 13.86 86.14
52 features 23.60 76.56 20.81 79.19 18.41 81.59 18.33 81.67 32.01 76.99
Te bold values indicate the best results of Sphinx-4 recognizer from WER and accuracy.
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By conducting a meticulous analysis of the results, it was
observed that Gaussian 8 yielded the best outcome in this
research by using the Sphinx-4 recognizer. Furthermore,
upon comparing the results of this research with those of
Abushariah et al. [47], it became evident that this research’s
implementation of Gaussian 16 extracted superior results
compared to the work by Abushariah et al. [47], which has
8.65% WER compared to 14.44% of Abushariah et al. [47].
Tese comparative fndings highlight the advancements and
improvements achieved in this research, particularly in
terms of Gaussian mixture distributions, emphasizing the
enhanced performance and potential for more accurate
speech recognition.

 . Conclusion and Future Work

Tis study aimed to develop a continuous Arabic speech
recognition algorithm using two techniques. Te frst
technique involves a hybrid encoding model consisting of
CNN and LSTM, and a decoding model based on attention.
Te second technique is Sphinx-4, which uses two types of

feature extraction (MFCC and flter bank) and a language
model that includes uni-grams, bi-grams, and tri-grams
created using CMU Sphinx. Te experiment involved ana-
lysing 6139 WAV fles from diferent speakers, totalling
7 hours of recording. Te CNN-LSTM technique achieved
a WER of 3.63% using 120 features for flter bank and 4.04%
WER using 39 features for MFCC, while the Sphinx-4
recognizer achieved a WER of 8.17% and an accuracy of
91.83% using 25 features for MFCC and 8 Gaussian mix-
tures. Our future research will involve examining a com-
bined CNN-LSTM model and an end-to-end technique that
uses attention to other vast datasets. Furthermore, we
propose enhancing the external language model to improve
the accuracy and efectiveness of the models, reducing the
word error rate.
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article [44] and the second dataset is included in the article
[45].

Conflicts of Interest

All authors declare that they have no potential conficts of
interest.

References

[1] Z. J. Mohammed Ameen and A. Abdulrahman Kadhim,
“Deep learning methods for Arabic autoencoder speech
recognition system for electro-larynx device,” Advances in

Table 5: Comparison of WER results based on diferent datasets using the CNN-LSTM technique.

Features
CNN-LSTM technique

DS1 (%) DS2 (%)
MFCC 13 features 4.21 2.26
MFCC 25 features 4.04 1. 6
MFCC 39 features 4.04 1.43
Filter bank 40 features 4.21 4.21
Filter bank 80 features 4.50 3.54
Filter bank 120 features 3.63 3.46
Te bold values indicate the best comparison of WER results based on diferent datasets using the CNN-LSTM technique.

MFCC 13
Features

MFCC 25
Features

MFCC 39
Features

Filter Bank
40 Features

Filter Bank
80 Features

Filter Bank
120 Features

Feature Extraction

DS1
DS2

0.00

1.00

2.00

3.00

4.00

5.00

W
ER

 (%
)

Figure 6: Comparison of WER results based on diferent datasets using the CNN-LSTM technique.

Table 6: Comparative WER results between this research and
Abushariah et al. [47].

Gaussian
mixture distributions

Sphinx-4 recognizer
Tis research (%) Abushariah et al. [47]

Gaussian 2 10.77 —
Gaussian 4 8.45 —
Gaussian 8 8.17 —
Gaussian 16 8.65 14.44%
Gaussian 32 10.85 —

Journal of Electrical and Computer Engineering 9



Human-Computer Interaction, vol. 2023, Article ID 7398538,
11 pages, 2023.

[2] E. Alsharhan and A. Ramsay, “Investigating the efects of
gender, dialect, and training size on the performance of
Arabic speech recognition,” Language Resources and Evalu-
ation, vol. 54, no. 4, pp. 975–998, 2020.

[3] D. Vergyri, K. Kirchhof, K. Duh, and A. Stolcke,Morphology-
based Language Modeling for Arabic Speech Recognition, SRI
International Menlo Park United States, Menlo Park, CA,
USA, 2004.

[4] H. Satori, H. Hiyassat, M. Haiti, and N. Chenfour, “In-
vestigation Arabic speech recognition using CMU sphinx
system,” Te International Arab Journal of Information
Technology, vol. 6, no. 2, 2009.

[5] A. Ali, H. Mubarak, and S. Vogel, “Advances in dialectal
Arabic speech recognition: a study using twitter to improve
egyptian asr,” in Proceedings of the 11th International
Workshop on Spoken Language Translation: Papers, pp. 156–
162, Doha, Qatar, December 2014.

[6] P. Cardinal, A. Ali, N. Dehak et al., “Recent advances in ASR
applied to an Arabic transcription system for Al-Jazeera,” in
Proceedings of the Fifteenth annual conference of the in-
ternational speech communication association, Singapore,
September 2014.

[7] F. Diehl, M. J. Gales, M. Tomalin, and P. C. Woodland,
“Morphological decomposition in Arabic ASR systems,”
Computer Speech & Language, vol. 26, no. 4, pp. 229–243,
2012.

[8] O. Hamed and T. Zesch, “A survey and comparative study of
Arabic diacritization tools,” Journal for Language Technology
and Computational Linguistics, vol. 32, no. 1, pp. 27–47, 2017.

[9] I. Hadjir, M. Abbache, and F. Z. Belkredim, “An approach for
Arabic diacritization,” in Natural Language Processing and
Information Systems: 24th International Conference on Ap-
plications of Natural Language to Information Systems, NLDB
2019, pp. 337–344, Springer, Salford, UK, 2019.

[10] M. A. Hassan, A. Rehmat, M. U. Ghani Khan, and
M. H. Yousaf, “Improvement in automatic speech recognition
of south asian accent using transfer learning of deepspeech2,”
Mathematical Problems in Engineering, vol. 2022, Article ID
6825555, 12 pages, 2022.

[11] Y. Belinkov, A. Ali, and J. Glass, “Analyzing phonetic and
graphemic representations in end-to-end automatic speech
recognition,” 2019, https://arxiv.org/abs/1907.04224.

[12] T. Nagamine, M. L. Seltzer, and N. Mesgarani, “Exploring
how deep neural networks form phonemic categories,” in
Proceedings of the Sixteenth Annual Conference of the In-
ternational Speech Communication Association, Dresden,
Germany, September 2015.

[13] T. Nagamine, M. L. Seltzer, and N. Mesgarani, On the Role of
Nonlinear Transformations in Deep Neural Network Acoustic
Models, Interspeech, Sydney, Australia, 2016.

[14] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech rec-
ognition with word-based RNN language models,” in Pro-
ceedings of the 2018 IEEE Spoken Language Technology
Workshop (SLT), pp. 389–396, IEEE, Athens, Greece, De-
cember 2018.

[15] P. Motlicek, D. Imseng, B. Potard, P. N. Garner, and
I. Himawan, “Exploiting foreign resources for DNN-based
ASR,” EURASIP Journal on Audio Speech and Music Pro-
cessing, vol. 2015, pp. 17–10, 2015.

[16] M. Attia, Y. Samih, K. Shaalan, and J. Van Genabith, “Te
foating Arabic dictionary: an automatic method for updating
a lexical database through the detection and lemmatization of

unknown words,” in Proceedings of COLING 2012, pp. 83–96,
Mumbai, India, December 2012.

[17] A. Ahmed, Y. Hifny, K. Shaalan, and S. Toral, “End-to-end
lexicon free Arabic speech recognition using recurrent neural
networks,” in Computational Linguistics, Speech and Image
Processing for Arabic Language, pp. 231–248, World Scientifc,
Singapore, 2019.

[18] K. Khatatneh, “A novel Arabic Speech Recognition method
using neural networks and Gaussian Filtering,” International
Journal of Electrical, Electronics and Computer Systems,
vol. 19, no. 1, 2014.

[19] A. E.-D. Mousa, H.-K. J. Kuo, L. Mangu, and H. Soltau,
“Morpheme-based feature-rich language models using deep
neural networks for lvcsr of Egyptian Arabic,” in Proceedings
of the 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 8435–8439, IEEE, Vancouver, BC,
Canada, May 2013.

[20] T. AlHanai, W.-N. Hsu, and J. Glass, “Development of the
MIT ASR system for the 2016 Arabic multi-genre broadcast
challenge,” in Proceedings of the 2016 IEEE Spoken Language
Technology Workshop (SLT), pp. 299–304, IEEE, San Diego,
CA, USA, December 2016.

[21] A. Ali, Y. Zhang, P. Cardinal, N. Dahak, S. Vogel, and J. Glass,
“A complete KALDI recipe for building Arabic speech rec-
ognition systems,” in Proceedings of the 2014 IEEE spoken
language technology workshop (SLT), pp. 525–529, IEEE,
South Lake Tahoe, NV, USA, December 2014.

[22] A. AbdAlmisreb, A. F. Abidin, and N. M. Tahir, “Maxout
based deep neural networks for Arabic phonemes recogni-
tion,” in Proceedings of the 2015 IEEE 11th International
Colloquium on Signal Processing & its Applications (CSPA),
pp. 192–197, IEEE, Kuala Lumpur, Malaysia, March 2015.

[23] M. A Azim, A. Aziza Hamid, N. L Badr, and M. Tolba, “Large
vocabulary Arabic continuous speech recognition using tied
states acoustic models,” Asian Journal of Information Tech-
nology, vol. 18, no. 2, pp. 49–56, 2019.

[24] H. A. Alsayadi, A. A. Abdelhamid, I. Hegazy, and Z. T. Fayed,
“Arabic speech recognition using end-to-end deep learning,”
IET Signal Processing, vol. 15, no. 8, pp. 521–534, 2021.

[25] T. Kudo and J. Richardson, “Sentencepiece: a simple and
language independent subword tokenizer and detokenizer for
neural text processing,” Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System
Demonstrations, 2018, https://arxiv.org/abs/1808.06226.

[26] J. G. Roederer, “Te perception of music by the human brain:
an introductory course,” Journal of the Acoustical Society of
America, vol. 105, no. 2, p. 1054, 1999.

[27] T. S. Shanthi and C. Lingam, “Review of feature extraction
techniques in automatic speech recognition,” International
Journal of Scientifc Engineering and Technology, vol. 2, no. 6,
pp. 479–484, 2013.

[28] Y. Xu, “English speech recognition and evaluation of pro-
nunciation quality using deep learning,” Mobile Information
Systems, vol. 2022, Article ID 7186375, 12 pages, 2022.

[29] M. Malik, M. K. Malik, K. Mehmood, and I. Makhdoom,
“Automatic speech recognition: a survey,” Multimedia Tools
and Applications, vol. 80, no. 6, pp. 9411–9457, 2021.

[30] Y. He, Y. Liu, S. Shao et al., “Application of CNN-LSTM in
gradual changing fault diagnosis of rod pumping system,”
Mathematical Problems in Engineering, vol. 2019, Article ID
4203821, 9 pages, 2019.

[31] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-
to-end continuous speech recognition using attention-based

10 Journal of Electrical and Computer Engineering

https://arxiv.org/abs/1907.04224
https://arxiv.org/abs/1808.06226


recurrent nn: frst results,” 2014, https://arxiv.org/abs/1412.
1602.

[32] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional
networks for end-to-end speech recognition,” in Proceedings
of the 2017 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 4845–4849, IEEE, New
Orleans, LA, USA, March 2017.

[33] S. Watanabe, T. Hori, S. Karita et al., “Espnet: end-to-end
speech processing toolkit,” 2018, https://arxiv.org/abs/1804.
00015.

[34] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional
LSTM networks for improved phoneme classifcation and
recognition,” in Artifcial Neural Networks: Formal Models
and Teir Applications ICANN 2005: 15th International
Conference, pp. 799–804, Springer, Warsaw, Poland, 2005.

[35] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled
sampling for sequence prediction with recurrent neural
networks,” Advances in Neural Information Processing Sys-
tems, vol. 28, 2015.

[36] C. Szegedy, V. Vanhoucke, S. Iofe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818–2826, Las Vegas, NV, USA, June
2016.

[37] J. Chorowski and N. Jaitly, “Towards better decoding and
language model integration in sequence to sequence models,”
2016, https://arxiv.org/abs/1612.02695.

[38] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” 2014,
https://arxiv.org/abs/1409.0473.

[39] T. Luong, H. Pham, and C. D. Manning, “Efective approaches
to attention-based neural machine translation,” 2015, https://
arxiv.org/abs/1508.04025.

[40] H. Satori, M. Harti, and N. Chenfour, “Arabic speech rec-
ognition system using cmu-sphinx4,” 2007, https://arxiv.org/
abs/0704.2201.

[41] X. Wang, “Research on open oral English scoring system
based on neural network,” Computational Intelligence and
Neuroscience, vol. 2022, Article ID 1346543, 9 pages, 2022.

[42] P. Lamere, “Te CMU SPHINX-4 speech recognition system,”
IEEE International Conference on acoustics, speech and signal
processing (icassp 2003), hong kong, vol. 1, pp. 2–5, 2003.
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