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Te cloudifcation of telecommunication network functions with 5G is a novelty that ofers higher performance than that of
previous generations. However, these virtual network functions (VNFs) are exposed to internet threats when hosted in the cloud,
resulting in new security challenges. Another fact is that many VNFs vendors with diferent security policies will be implied in 5G
deployment, creating a heterogeneous 5G network. Te authorities also require data privacy enhancement in 5G deployment and
there is the fact that mobile operators need to inspect data for malicious trafc detection. In this situation, how can network trafc
inspections be conducted efectively without infringing on data privacy? Tis study addresses this gap by proposing a novel state-
of-the-art hybrid deep neural network that combines a convolutional neural network (CNN) stacked to bidirectional long short-
term memory (BiLSTM) and unidirectional long short-term memory (LSTM) for the deep inspection of network fow for
malicious trafc detection. Te approach utilizes federated learning (FL) to facilitate multiple VNFs vendors to collaboratively
train the proposed model without sharing VNFs’ raw data, which can mitigate the risk of data privacy violation. Te proposed
framework incorporates transport layer security (TLS) encryption to prevent data tempering or man-in-the-middle attacks
between VNFs. Te framework was validated through simulation using open-access benchmark datasets (InSDN and
CICIDS2017). Tey achieved 99.99% and 99.58% accuracy and 0.048% and 0.617% false-positive rates for the InSDN and
CICIDS2017 datasets, respectively, for FL. Tis study demonstrates the potential of hybrid deep learning-based FL for het-
erogeneous 5G network VNFs security monitoring.

1. Introduction

Fifth-generation (5G) mobile network, also known as
IMT-2020 [1], will have a signifcant impact on numerous
felds and societies in the future [2]. It provides better user
experience and fexibility in diferent scenarios with diferent
Quality of Service (QoS) requirements. To achieve this, 5G
integrates the concept of replacing hardware-based network
functions with cloud (or software)-based network functions.
Because network functions are no longer physical, they are
called virtual network functions (VNFs). Te concept of
network function virtualization (NFV) [3] enables many
new services such as massive Internet of Tings (mIoT),
virtual reality (VR), augmented reality (AR), telemedicine,

autonomous vehicles (AVs), and many other services that
require low-latency communication [4]. However, VNFs
hosted in the cloud are susceptible to a range of security
threats, while integrating numerous VNFs from various
vendors with diferent security measures is necessary tomeet
5G requirements [5]. Tis creates a complex and diverse
network, resulting in new security challenges [6], as well as
exacerbating existing security vulnerabilities.

Many critical attacks can target 5G VNFs from the
Internet as follows [7]: an attacker who gains unauthorized
access to a VNF, such as a load balancer, can reconfgure it to
bypass an intrusion prevention system (IPS) and launch
a Denial of Service (DoS) attack against a web service, thus
making it inaccessible. An adversary can use an unexpected
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VNF or VNF-in-the-middle technique to connect an un-
authorized VNF to an active network that can eavesdrop on
network trafc. Another type of attack is a fow classifcation
anomaly, which consists of an attacker modifying the
classifcation rules of VNFs, making end services in-
accessible to users or authorizing malicious trafc. DDoS
attacks, hyperjacking, exploitation of known vulnerabilities
in open-source software, insecure interfaces, and malicious
application programming interfaces (APIs) also target 5G
VNFs [8]. Another type of attack is the side-channel
attack [9].

Data privacy challenges and all potential risks in 5G
networks [5, 10] havemotivated authorities to emphasize the
importance of data privacy, whichmust be strengthened. For
mobile operators to develop machine learning (ML)-based
security monitoring systems, they must consider the re-
quirements of authorities for data privacy preservation.
Another important factor to consider is the heterogeneity of
5G network VNFs provided by vendors with diferent
technologies and security policies. Traditional state-of-
the-art ML solutions are limited to sustainable application
solutions for 5G network scenarios.

In this study, these critical challenges are addressed by
proposing an all-in-one security framework tailored to 5G
network VNFs security monitoring. It integrates federated
learning (FL) with a customized state-of-the-art hybrid deep
neural network model composed of a customized single-layer
convolutional neural network (CNN), bidirectional long
short-term memory (BiLSTM) layer, and unidirectional long
short-termmemory (LSTM) layer (CNN+BiLSTM+LSTM).
Te FL allows diferent VNFs vendors to train the model
without the need to share raw data and prevent data privacy
violation.Temodel is designed to capture complex temporal
dependencies in network trafc for the accurate detection of
known and unknown malicious trafc. FL requires VNFs to
train the model locally and share only the trained model
hyperparameters with a server for aggregation. To ensure the
safe transmission of the hyperparameters, the transport layer
security (TLS) protocol is integrated. Te overall framework
has the advantage of providing an efcient malicious trafc
detectionmodel with a secure FL for data privacy preservation
and trust collaboration among VNFs vendors.

Te main contributions of this study to the feld are as
follows:

(1) A federated learning-based security monitoring
system is proposed for 5G virtual network functions
(VNFs) to improve privacy preservation and facili-
tate collaboration among VNF vendors to build
strong security monitoring systems.

(2) A state-of-the-art customized hybrid deep neural
network model (CNN+BiLSTM+LSTM) capable of
capturing valuable network trafc features for the
efective detection of known and unknown attacks is
proposed.

(3) TLS 1.3 Encryption is implemented to guarantee the
integrity of the data transmitted between the clients
and the server during the federated learning process.

Tis is very important in the 5G VNFs security
application scenario, where the VNFs can be hosted
in diferent clouds.

(4) Te proposed model’s performances are compared
with the literature and presented.

(5) Finally, an architecture integrating the proposed
system and the 3rd Generation Partnership Project
(3GPP) 5G network architecture is suggested.

Te remaining sections are organized as follows. Section
2 outlines the related work. Section 3 outlines the study’s
methodology. Section 4 describes the datasets and simula-
tion process used to evaluate the proposed model. In Section
5, the results are discussed. Section 6 presents the imple-
mentation solution for the proposed system in the 3GPP 5G
network architecture. Finally, the conclusion and future
works are presented in Section 7.

2. Previous Works

Federated learning is a recent concept used by researchers
for cyber security and is yet to be explored, particularly for
its application in 5G virtual network function security. Tis
section discusses previous studies on federated learning
domains of applications, deep learning for security moni-
toring, and federated learning for security monitoring in 5G
networks. In our context, “security monitoring” is limited to
the detection of attacks through network trafc inspection.

2.1. Federated Learning Domains of Application. Jithish et al.
[11] recently discussed the use of FL in many domains. Te
authors summarized the use of FL in smart homes, healthcare,
electric vehicles, image processing, and smart grids. Sub-
ramanya and Riggio [12] used federated learning for VNF
autoscaling in 5G networks. Tis concept has been specifcally
applied to multidomain 5G networks. Qu et al. [13] proposed
in their paper a survivable service function chain (SFC) de-
ployment method using federated learning. It has also been
applied to multidomain networks. Sivalingam et al. [14]
evaluated the application of deep learning with federated
learning by reporting LSTM and gated recurrent unit (GRU)
model utilization. Tam et al. [15] applied federated learning to
massive IoTcommunication (mIOT) with deep reinforcement
learning (DRL) to increase efciency. To predict the resources
required for VNFs during their migration in a network, Tang
et al. [16] proposed FedBi-GRU, which is a combination of
federated learning and bidirectional GRU. Gupta et al. [17]
used federated learning to detect anomalies associated with
various diseases in smart healthcare. In the feld of telecom-
munications, Niknam et al. [18] discussed the use of federated
learning for wireless communication, particularly in the 5G
context. Te authors discussed its applicability to edge com-
puting and caching, spectrum management, and 5G core
networks. Te authors of [19–21] used federated learning to
detect malware and anomalies in Internet of Tings (IoT)
networks and devices. As is evident, federated learning has
been utilized in numerous areas; however, its potential for
future telecommunication network security, such as 5G, is yet
to be explored.
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2.2. Deep Learning for Security Monitoring. Tis section
examines the use of deep learning in security monitoring. A
survey conducted by Xin et al. [22] discussed some of the key
detailed studies on deep learning (DL) methods used for
intrusion detection. Te evaluated models were CNN, re-
current neural network (RNN), BiLSTM, and LSTM. Te
reported accuracies ranged from 79% to 99% based on the
model. Abdulqadder et al. [23] proposed a security frame-
work as a VNF that uses hybrid fuzzy logic with an artifcial
neural network (HF-ANN) for network fow packet classi-
fcation as normal or malicious. Normal packets are allowed
to access applications, whereas malicious packets are
dropped from the VNF. Te authors of [24] proposed
a CNN-based hybrid deep learning model for intrusion
detection in a software-defned network (SDN). Te authors
claimed that their model achieved accuracies of 99.28% for
binary classifcation and 98.92% for multiclass classifcation.
Another intrusion detection system for SDN was proposed
by Assis et al. [25] using the GRU deep learning method.
Tey reported the model to be promising through simula-
tion using CICIDDoS-2019 and the CICIDS-2018 datasets.
In the feld of the Internet of Medical Tings, Manimurugan
et al. [26] proposed a deep belief network (DBN) algorithm
model for intrusion detection. Te reported accuracy of the
model was 99.37%. Yao et al. [27] proposed a bidirectional
generative adversarial network (BiGAN) to detect intrusions
in IoT. Te UNSW-NB15 and CIC-IDS2017 datasets were
used to evaluate the proposed model. It achieved a 4%
accuracy increase compared to the literature and a 4% false-
alarm rate reduction while maintaining computational ef-
fciency. In [28], the authors discussed the use of RNN,
CNN, generative adversarial networks (GANs), and trans-
formers for anomaly detection from log messages. Ferrag
et al. [29] compared RNN, CNN, restricted Boltzmann
machines (RBMs), DBNs, deep neural networks (DNNs),
and deep autoencoders in terms of their performance in
intrusion detection datasets. Teir accuracies ranged from
97% to 98% based on customized hyperparameters. A hybrid
deep learning model, DCNNBiLSTM, built through
a combination of CNN and BiLSTM, was proposed by
Hnamte and Hussain [30] for intrusion detection in the IoT.
Teir model achieved accuracies of 100% and 99.64% using
the CICIDS2018 and Edge IIoTdatasets, respectively. Ilango
et al. [31] proposed a feedforward-convolutional neural
network (FFCNN) for low-rate DDoS attacks in IoT net-
works. In [32], Yadav et al. proposed an autoencoder to
detect attacks in IoT with a 5G network. Teir model
achieved an accuracy of 99.76%. Te application of DL to
intrusion detection has been demonstrated to be efective in
various domains. Tis potential can be exploited to enhance
intrusion detection in 5G VNFs. Te decision to use deep
learning combined with federated learning in this study was
based on its good performance in malicious trafc detection,
as can be observed in the literature.

2.3. Federated Learning for Security Monitoring in 5G
Networks. According to our research, this is the frst study
to propose secured hybrid deep learning-based federated

learning for the security monitoring of 5G VNFs [33, 34].
Most studies have focused on the security of IoT and its
related applications or on the security of 5G network ar-
chitecture layers.

In this section, only the most related studies that used
federated learning are discussed. Several researchers have
investigated the use of federated learning for security
monitoring in 5G networks. Bandara et al. [35] used
blockchain with federated learning to detect attacks on 5G/
6G networks. Te authors considered a scenario with IoT
device attacks in 5G/6G networks and reported their so-
lution to be efcient. Boualouache and Engel [36] introduced
multilayer perceptron (MLP)-based federated learning to
detect passive mobile attackers in 5G vehicular edge com-
puting. Te simulation yielded a maximum accuracy of 95%.
Fan et al. [37] proposed an IoT defender to protect 5G IoT
against intrusion using federated transfer learning. Te
proposed model achieved an accuracy of 91.93%. Kholidy
and Kamaludeen [38] used a Hashgraph-based federated
learning approach (HFLA) to protect 5G networks from
poisoning and membership inheritance attacks. Te authors
claimed that their model was superior to existing federated
learning approaches. Jayasinghe et al. [39] adopted an ANN-
based federated learning to secure 5G networks. Te ac-
curacy of the proposed model was 93.6%. For intrusion
detection in 5G smart grids, Sun et al. [40] designed a neural
network that utilized a transformer and hierarchical fed-
erated learning.Te authors reported an accuracy of 99.48%.
Belenguer et al. [41] proposed the GowFed to detect threats
in industrial-level networks. Tis is a combination of fed-
erated learning and Gower dissimilarity matrices. A median
accuracy of 95.5% was reported. Based on the literature
reviewed thus far, the absence of federated learning applied
to 5G VNFs security monitoring can be observed, making
this study a new contribution to the literature.

3. Methodology

Tis section describes the techniques used to conduct ex-
periments for evaluate and validate the proposed framework.

3.1. Federated Learning. Federated learning (FL) is used to
overcome the weaknesses of traditional centralized machine
learning methods regarding the preservation of data privacy
and mitigation of computational costs during training. FL
allows multiple devices (VNFs) to train a shared model
without sharing raw local data. By employing federated
learning, diverse VNFs belonging to diferent vendors can
efectively contribute with their local data insights for
training an improved global model while safeguarding the
confdentiality and autonomy of their data sources. Figure 1
shows the FL architecture approach for heterogeneous 5G
networks.

In this architecture, we consider a network with VNFs
from three diferent vendors deployed in the same operator
network: vendor A (VNF 1), vendor B (VNF 2 and VNF 4),
and vendor C (VNF 3 andVNF 5). Only fve VNFs were used
as examples in this architecture. In real-world scenarios,
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there are many more network functions. Te security policy
of one vendor can difer from that of another and collab-
oration for sharing data cannot be guaranteed. Instead of
sending raw data to the server to train the deep learning
model, each VNF from each vendor trains the model using
local data and sends only the training parameters to the
server. Te server aggregates all the VNFs models’ param-
eters to build a single global model that will be distributed to
each client for use. Finally, each VNF benefts from other
VNFs models without the idea of raw data. Terefore, the
risk of data privacy violations can be mitigated. Te integrity
of the data sent between entities is preserved by adding a TLS
security layer (discussed later) for data encryption between
the server and clients. Algorithm 1 describes the FL process
secured by transport-layer security (TLS) protocol.

3.2. Proposed Model: CNN+BiLSTM+LSTM. Te model
proposed in this study is a customized hybrid deep neural
network built fromwell-known neural network models from
the literature. It is a combination of CNN, BiLSTM, and
LSTM layers. Each layer parameters were carefully selected
to obtain a high-performancemodel. To avoid repetition, the
mathematical equations of the models are not described in
this paper; readers will be redirected to previous studies that
used the same models. A CNN is a type of neural network
that uses flters to extract features from input data. Mostly

used for image processing, it can also be used for processing
time-series data. Readers can refer to previous articles
[42–44] to gain a more comprehensive understanding of
CNN and the mathematics behind them. BiLSTM is a type of
RNN built from the following two LSTM layers: one that
processes the sequence in the forward direction and the
other in the backward direction.Te architecture of BiLSTM
is described in [30]. For LSTM, readers can refer to [45] for
details.

Te combination of a convolutional neural network
(CNN), bidirectional long short-term memory (BiLSTM),
and long short-term memory (LSTM) is strategically chosen
to synergistically capture spatial and temporal patterns in
network data for deeper inspection of network trafc. Te
CNN component excels at spatial feature extraction, dis-
cerning local patterns indicative of malicious activity.
Meanwhile, the BiLSTM and LSTM layers focus on learning
sequential dependencies, leveraging bidirectionality to
comprehend both past and future contexts and LSTM’s
ability to capture long-term dependencies. Tis compre-
hensive approach enables the model to robustly recognize
complex hierarchical representations, combining the
strengths of each architecture for enhanced accuracy in
distinguishing normal trafc from malicious trafc. Te
CNN additionally contributes in reducing parameters count,
mitigating overftting concerns, particularly benefcial when
dealing with limited labeled intrusion data.

Model

Each VNF trains its local model using
its own data and then sends the
trained model to the server, which
then builds a global model that is sent
back to each VNF for use.

VNF 1

VNF 2 VNF 3
VNF 4

VNF 5
Vendor A

Vendor B
Vendor B

Vendor C

Vendor C

SERVER

Figure 1: Federated learning overview in the heterogeneous architecture.
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By combining these three algorithms, we were able to
build an efcient customized hybrid model that performed
better thanmost existing models in the literature.Te overall
architecture of the model is shown in Figure 2.

In the following, the characteristics of the model are
described layer by layer.

(1) Te frst layer is a time-distributed one-dimensional
convolution (Conv1D) layer. Te number of flters
was set to thirty two (32), and the kernel size pa-
rameter, which defnes the size of the flters, was set
to one (1). Te input shape is specifed as (1, 35, 1),
indicating that the input data have a sequence length
of 1, 35 features, and one channel. Te activation
function “softmax” is used in the layer.

(2) Time-distributed maxpooling and fattened layers
were added to the previous layer. Te frst performs
downsampling, and the second reshapes the input
tensor into a one-dimensional vector, which is re-
quired before passing it to the next layer.

(3) Te BiLSTM layer comes next, with thirty-two (32)
units or memory cells, and uses softmax as the ac-
tivation function, similar to the frst layer.

(4) Te next layer is the dropout layer. It takes 0.1 as
a parameter, which indicates a dropout rate of 10%,
helping to regularize the network and prevent
overftting.

(5) Another LSTM layer was added, but this time, it was
a unidirectional LSTM layer. Te number of units
(memory cells) was set to 16, with softmax as the
activation function.

(6) A dropout layer is added and takes 0.1 as
a parameter.

(7) Te output layer is a dense layer that is fully con-
nected to a previously defned layer. It uses one
neuron as the number of units and a hyperbolic

tangent function (tanh) as the activation function.
Te output is a binary value: one (1) for malicious
trafc and zero (0) for benign trafc.

3.3. TLS Version 1.3 for More Security. Although federated
learning protects clients’ local data privacy, the training
parameters exchanged between the clients and server can be
vulnerable to numerous attacks and compromised. Te TLS
protocol, recommended by 3GPP [46] for communication
security between 5GVNFs, can guarantee the integrity of the
data between VNFs during the training process. Te current
TLS version (version 1.3) was used in the simulation to
encrypt the proposed model parameters sent between the
VNFs and the server. To achieve this, a self-signed certif-
cation generation method was used. Te generation of
certifcates and keys was possible using the Openssl (version
1.1.1t) line command tool. Te details of this process are as
follows.

Step 1: an RSA private key of size 4096 bits is generated
and stored in a fle named “ca.key”.
Step 2: the key generated in step 1 is used to create
a self-signed certifcate and stored in a fle named
“ca.crt.” It is used as a root certifcate authority (CA) for
signing other certifcates or for other purposes that
require a trusted certifcate.Tis is used by the client for
authentication with the server.
Step 3: a server-side private key, with a size of 2048 bits,
is generated and stored in a fle named “server.key.”
Tis server key is essential for establishing secure
connections, decrypting data received from clients and
creating digital signatures for authentication and data
integrity.
Step 4: the previously generated server private key is
used to create a certifcate signing request (CSR), which
is stored in the fle name “server.csr.”

Input: number of rounds T, number of local epochs E, and number of participating clients N
Output: fnal global model W after T rounds of federated learning

(1) Initialize: Global model W0;
(2) for t� 1 to T do
(3) for i� 1 to N do
(4) Establish a secure TLS connection between the client and the server;
(5) Retrieve local data Xi and associated labels Yi

(6) Initialize: Local model parameters Wi � Wt;
(7) for e� 1 to E do
(8) Update Wi using Xi and Yi through local training;
(9) end
(10) Securely send the updated local model Wi to the server using the established TLS connection;
(11) end
(12) Aggregate and update the global model Wt+1 using the received local models;
(13) Send the updated global model Wt+1 to all participating clients using the TLS connection;
(14) end

ALGORITHM 1: Federated averaging learning procedure with TLS encryption.
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Step 5: CSR “server.csr” is signed with the previously
generated self-signed CA certifcate “ca.crt” and its
corresponding private key “ca.key”. Te signed cer-
tifcate is saved in the fle “server.pem”.

After generating all necessary fles in the simulation
environment, the clients were confgured to use the “ca.crt”
fle, and the server is confgured to use the “ca.crt”, “serv-
er.pem”, and “server.key” fles for authentication and en-
cryption key exchange. All communications between the
server and VNFs were encrypted during training. Tis
prevents the data from being tempered by a Man-In-Te-
Middle (MITM) attack, thereby maintaining the integrity of
the training hyperparameters.

4. Performance Evaluation

4.1. Datasets Overview and Preprocessing. Te benchmark
datasets used to evaluate the proposed model were InSDN
[47] and CICIDS2017 [48]. Tese are among the most recent
publicly available datasets used by researchers to evaluate the
performance of intrusion detection systems.

4.1.1. Datasets Overview. Te InSDN dataset, published in
2020, was developed specifcally for a software-defned net-
work (SDN) scenario, which makes it applicable to 5G VNFs
in this study. SDN is a 5G-enabled technology block re-
sponsible for decoupling the control plan from the user plan
for more efciency in the network Quality of Service (QoS)
fow [49]. Te attacks in the dataset were classifed into the
following four vectors: attacks on the data plane, attacks on
control-plane communication, attacks on the SDN controller,
and attacks on the application plane. Te total number of
dataset instances was 343,889 for normal and attack trafc
after labeling. Further details are presented in Table 1. Te
fully labeled dataset was preprocessed and used for model
performance evaluation. Te CICIDS2017 dataset is older
than InSDN but closer to it in terms of features. It covers
a comprehensive range of attack scenarios that have not been
addressed in previous datasets. Used by many researchers to

evaluate intrusion detection systems, this is the second choice
for evaluating the proposedmodel.Te initial dataset contains
2830743 samples with 79 features; however, it integrated
many missing entries and redundant samples that needed to
be cleared. Te Benign samples (2273097) were very large
compared to the attack samples. We retained all attack
samples but randomly undersampled benign samples to avoid
normal entry bias during the training process. Table 2
presents more details of the fnal dataset distribution be-
fore normalization and feature selection.

4.1.2. Normalization and Features Selection. Data normal-
ization and feature selection were among themost important
preprocessing tasks before proceeding with the experiments.
Te model supports only numerical values, whereas some
features are object types that need to be standardized and
normalized. In the following section, the normalization and
feature selection processes are explained step by step.

Step 1: all features of type object are categorically
encoded using the label encoder function of scikit-
learn, except for the label feature, which is binary
encoded by setting zero (0) to benign and one (1) to the
others. Subsequently, all int64 values were converted to
int32, and the other values were converted to foat32.
Step 2: all redundant rows and rows containing missing
or infnite values are removed.
Step 3: the correlation values for each feature were
calculated, and those with a high correlation value
greater than 85% were identifed. Subsequently, all
highly correlated features were excluded. Tis process
aims to select only the relevant features for anomaly
detection.
Step 4: Z-score normalization was performed for all
feature values. It is a measure of the deviation of
a particular data point from the mean relative to the
variability (standard deviation) of the data.Te formula
for calculating the Z-score of a data point is given in
equation (6).
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Figure 2: Proposed model (CNN+BiLSTM+LSTM) architecture.
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Z �
(X − µ)

σ
, (1)

where Z is the Z-score, X is the data point, μ is the mean
of the data, and σ is the standard deviation of the data.
Step 5: after step 4, all the “Not a Number” (NaN)
values are replaced with the mean value.

Te abovementioned steps were implemented on both
datasets, as required. Table 3 lists the datasets employed in
the simulations after normalization and feature selection.

4.2. SimulationProcess. Te simulation was conducted using
a Windows 11 system with an AMD Ryzen 7 4800H pro-
cessor and a maximum of 4Ghz. It has 24GB of RAM and
512GB SSD of local storage, integrates a Radeon graphics
card of 6GB, and NVIDIA GeForce RTX 2060 GPU. For
comparison, the experiments were performed in two steps.
Te frst step was to evaluate the performance of the CNN-
BiLSTM-LSTM model using a centralized learning method,
and the second step was to evaluate the model using fed-
erated learning. Te Flower framework [50] combined with
TensorFlow was used for the federated learning setup. Only
TensorFlow is necessary for centralized learning. Python was
used as the programming language. Te Flower federated
framework is used to connect the simulation VNFs and the
server to be able to proceed with federated learning. Ten-
sorFlow was used to implement the CNN-BiLSTM-LSTM

model on each VNF and load the local dataset onto the VNF.
NVIDIA compute unifed device architecture (CUDA) was
used for the training with a GPU. CUDA serves as a parallel
computing platform and programming model built by
NVIDIA specifcally for general-purpose computing on
GPUs (graphics processing units). CUDA can be used to
accelerate compute-intensive workloads on NVIDIA GPUs,
extending its utility beyond graphics processing. CUDA
support is integrated into widely used deep learning
frameworks like TensorFlow and PyTorch, enhancing their
capabilities for GPU acceleration.

Te experiments were conducted using, respectively,
three (3) clients, six (6) clients, nine (9) clients, and twelve
(12) clients. Te federated average (FedAVG) was used to
aggregate the clients’ local models to build a better global
model. Before training the model, each dataset was divided
into training (70%) and testing (30%) subsets. Each training
set was then divided based on the number of clients to
represent the local VNF data. Ten percent (10%) of the local
data were used to validate the local model.Te testing set was
used to evaluate the performance of the global model on data
that were not exposed during training and validation. For
centralized learning, in contrast to federated learning, only
one device was used to train the model, with 70% of the
dataset used for training and 30% for testing. Te optimal
hyperparameters were determined and are listed in Tables 4
and 5. Customed hyperparameters were used for each
dataset to test the model.

Table 1: InSDN dataset distribution.

Dataset Classes Instances Percentage (%)

InSDN

Normal 68,424 19.89711797
Probe 98,129 28.53507963
DDoS 73,529 21.3816086
DoS 53,616 15.59107735

DDoS∗ 48,413 14.07808915
BFA 1,405 0.408562065

Web attack 192 0.055831969
BOTNET 164 0.047689807

U2R 17 0.004943456

Table 2: CICIDS2017 dataset distribution.

Dataset Classes Instances Percentage (%)

CICIDS2017

BENIGN 425,875 50.0000
DoS Hulk 172,846 20.2905
DDoS 128,016 15.0295

PortScan 90,819 10.6631
DoS goldeneye 10,286 1.2108
FTP-Patator 5,933 0.6973
DoS slowloris 5,385 0.6326

DoS Slowhttptest 5,228 0.6149
SSH-Patator 3,219 0.3787

Bot 1,953 0.2296
Web attack: brute force 1,47 0.1726

Web attack: XSS 652 0.0766
Infltration 36 0.0042

Web attack: SQL injection 21 0.0025
Heartbleed 11 0.0013
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4.3. Evaluation Metrics. Te proposed system model was
evaluated using commonmetrics from the literature, such as
accuracy (ACC), precision (PR), recall (R), F1-score, false
positive rate (FPR), training time, and detection time. Ac-
curacy defnes the correct classifcation rate of the model,
precision defnes the positive predictive value, recall (also
called sensitivity) represents the true positive rate (TPR),
and the F1-score is defned as the average harmonic mean of
the precision and the recall. Te detection time is the time
taken by the model to detect a network trafc as malicious or
benign. Te equations related to each metric are as follows:

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
, (2)

Precision �
TP

(TP + FP)
, (3)

Recall �
TP

(TP + FN)
, (4)

F1-score � 2 ∗
(Precision∗Recall)
(Precision + Recall)

, (5)

FPR �
FP

(FP + TN)
, (6)

with TP�Ttue positives (positive instances predicted cor-
rectly). TN� true negatives (negative instances predicted
correctly). FP� false positives (positive instances predicted
incorrectly). FN� false negatives (negative instances pre-
dicted incorrectly).

5. Results and Discussion

All the simulation results presented in this section, which are
displayed in the tables, were derived from the testing sets
utilized to assess the fnal model’s performance. Te graphs
are the training performance graphs that support the testing
results presented. To conduct a comprehensive evaluation of
training time, the model underwent training initially on
a CPU and subsequently on a GPU. In the comparison with
previous works concerning FL, only the best results obtained
were used. Te FL best results were obtained with 3 clients.

5.1. Main Findings. First of all, the proposed model is
assessed using the CL method where all the data is used to
train the model in a centralized server. Te model training
time was largely reduced using the GPU. Te results are
presented in Tables 6–10.Temodel outcomes are very good
with 99.99% of accuracy for the InSDN testing set and
99.68% of accuracy for the CICIDS2017 testing set. An FPR
of 0.0089% and 0.39% were observed for the same testing
sets, respectively.

Te assessment using federated learning (FL) was con-
ducted with varying numbers of clients ranging from 3 to 12.
Te objective of this evaluation was to examine the model’s
performance as the number of clients increased while
keeping the size of the dataset constant.Te tables 7, 8, 9, and
10 show the results of the FLmodel in relation to the number
of clients used. Te model produced accurate results with
accuracies ranging from 99.94% to 99.99% on the InSDN
testing set and from 98.97% to 99.58% on the CICIDS2017
testing set.Te best results were achieved with 3 clients in the

Table 3: Datasets information after preprocessing.

Dataset Total samples Selected features Training samples Testing samples
InSDN 343,889 40 240,723 (70%) 103,167 (30%)
CICIDS2017 851,750 35 596,225 (70%) 225,525 (30%)

Table 4: Optimal hyperparameters for FL and CL with the InSDN dataset.

Parameters Federated learning Centralized learning
Learning rate 0.0015 0.01
Number of rounds 8 —
Number of epochs 5 20
Batch size 128 128
Number of clients 3, 6, 9, 12 —
Loss function Adam Adam

Table 5: Optimal hyperparameters for FL and CL with the CICIDS2017 dataset.

Parameters Federated learning Centralized learning
Learning rate 0.01 0.01
Number of rounds 10 —
Number of epochs 40 200
Batch size 120 120
Number of clients 3, 6, 9, 12 —
Loss function Adam Adam
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FL setup, and performance slightly decreased as the number
of clients increased. Tis suggests that the FL model per-
forms better when there is an ample amount of data for local
models’ training. Te results also show very good compu-
tation improvement when the model is trained using a GPU
rather than a CPU. GPUs are already known in the literature
to be compute efcient in terms of time in DL models
training. Another interesting metric is the proposed model
detection time turning around 0.07ms, which is a good
sensitivity for real-world applications.

On both FL and CL, the proposed hybrid model yielded
good performance. However, the model exhibited superior
performance when employing CL compared to FL, as evi-
denced by its higher accuracy, precision, recall, F1-score,
and lower false-positive rate (FPR). Tis can be attributed to
the distinct training methodologies; FL involves training by
multiple collaborative clients, resulting in the aggregation of
local models to form a global average model, whereas CL
employs centralized training in a single location. But in
terms of training computation time, FL obtained a higher
score because the training process is handled by many

clients, reducing the global training time when compared to
CL.What concerns data privacy?Tis is where FL takes a big
advantage compared to CL which needs to collect data from
diferent sources and send it to a centralized place for use. In
the context of this study, where 5G VNFs can be provided by
diferent vendors hosted in diferent clouds, FL can provide
data privacy preservation between third-party VNFs,
allowing them to train a high-performance intrusion de-
tection model without sharing raw data to avoid data vio-
lation risks. If we consider the tradeof between data privacy
and high-performing malicious trafc detection, federated
learning is preferable for real-world application scenarios.

In terms of latency (which is very important in 5G
networks), FL is such that only the local trained model
parameters are send through the network, reducing com-
putational cost and mitigating bandwidth consumption
compared to CL where large amount of raw data need to be
sent to a centralized server. Te proposed model stored in
the system exhibited a size of 668.75 kilobytes, a notably
compact scale when considering the substantial capacities of
current computers and networks.

Table 6: Simulation results for centralize learning (CL).

Dataset\metric Accuracy (%) Precision (%) Recall (%) F1-score
(%) FPR (%) Training time

(CPU) (s)
Training time
(GPU) (s)

Detection time
(ms)

InSDN 99.99 99.99 99.99 99.99 0.0089 244.74 45.86 0.091
CICIDS2017 99.68 99.61 99.76 99.68 0.39 4928.51 636.32 0.059

Table 8: Simulation results for federated learning (FL) with 6 clients.

Dataset\metric Accuracy (%) Precision (%) Recall (%) F1-score
(%) FPR (%) Training time

(CPU) (s)
Training time
(GPU) (s)

Detection time
(ms)

InSDN 99.98 99.98 99.99 99.99 0.048 208.81 24.20 0.066
CICIDS2017 98.98 98.31 98.69 98.99 1.72 4335.94 339.59 0.071

Table 9: Simulation results for federated learning (FL) with 9 clients.

Dataset\metric Accuracy (%) Precision (%) Recall (%) F1-score
(%) FPR (%) Training time

(CPU) (s)
Training time
(GPU) (s)

Detection time
(ms)

InSDN 99.94 99.96 99.97 99.96 0.151 206.74 24.19 0.077
CICIDS2017 98.98 98.31 98.69 98.99 1.79 4333.82 340.03 0.071

Table 10: Simulation results for federated learning (FL) with 12 clients.

Dataset\metric Accuracy (%) Precision (%) Recall (%) F1-score
(%) FPR (%) Training time

(CPU) (s)
Training time
(GPU) (s)

Detection time
(ms)

InSDN 99.94 99.96 99.97 99.96 0.156 206.41 24.03 0.065
CICIDS2017 98.97 98.31 98.68 98.98 1.89 4334.06 338.70 0.070

Table 7: Simulation results for federated learning (FL) with 3 clients.

Dataset\metric Accuracy (%) Precision (%) Recall (%) F1-score
(%) FPR (%) Training time

(CPU) (s)
Training time
(GPU) (s)

Detection time
(ms)

InSDN 99.99 99.99 99.99 99.99 0.029 209.31 27.03 0.088
CICIDS2017 99.58 99.38 99.78 99.58 0.617 4709.67 342.32 0.073
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5.2. Proposed Model Comparison with Previous Works:
CentralizedLearning. In this subsection, the performance of
the proposed model when trained using a centralized
learning method is presented and compared to previous
related works. Te simulation results showed very good
performance of the proposed model for both datasets
(InSDN and CICIDS2017). Te graphs in Figures 3 and 4
show the model training performance for each dataset.
Table 11 summarizes the comparison results. Only previous
studies that used datasets containing more than four types of
attack classes were considered.

Te proposed model performed better than previous
models. It showed a very high accuracy for the InSDN
dataset with a very low FPR, surpassing previous studies that
used the same dataset. In addition, for the CICIDS2017
dataset, the model performed better than those in the lit-
erature that used the same dataset.

5.3. Proposed Model Comparison with Previous Works: Fed-
erated Learning. In contrast to centralized learning, feder-
ated learning involves using many virtual clients to train the
proposed model. In the experiments conducted, TLS version
1.3 encryption was used to encrypt the data between the
clients and the server during the training process. Te
proposed model performed well on the InSDN and
CICIDS2017 datasets. Figures 5 and 6 support this con-
clusion. Tey show the training accuracy and loss graphs of
the model for each dataset. Each round in FL is the results of
several epochs of the local models training. It can be ob-
served that the convergence of the model start stabilizing at 3
rounds on the InSDN training set and at 7 rounds on the
CICIDS2017 training set. We kept themodel training for few
more rounds to allow it to achieve its best training capacity
which yielded to the best accuracy on the testing sets de-
scribed previously.

Te evaluation using the InSDN testing dataset yielded
better results, with 99.99% accuracy and 0.029% FPR. For the
CICIDS2017 testing set, themodel achieved 99.58% accuracy
with an FPR of 0.617%. Te GPU allowed a large reduction
of the training time and the improvement of the detection
time for both testing sets. To validate the proposed system, it
was compared with previous studies that used federated
learning for intrusion detection. Table 12 summarizes this
comparison with the results of previous studies. We found
that most previous studies did not consider the encryption of
communication between clients and server during federated
learning. In real-world scenarios, particularly for 5G virtual
network functions, the server and VNFs can be hosted in
diferent cloud networks. Tus, encryption between VNFs is
required to avoid data tempering. Te proposed system,
which integrates an encryption layer, is more realistic for 5G
network applications.

In both traditional and federated learning, the proposed
model proved its efciency by surpassing the models pro-
posed in the literature for the same datasets. Despite the
encryption of communication for FL, the training time of the
model remained lower than that for CL. Tis can be
explained by the fact that for FL, the computational cost is

divided between the participating clients using their own
local resources to train the model, whereas for CL, only one
device is used to train the model. Using a GPU helped for
better training time experience compared to when the model
is trained using a CPU. We admit that the proposed hybrid
deep neural network model based on a single-layer CNN,
single-layer BiLSTM, and single-layer LSTM is efcient for
adoption with FL under TLS encryption for 5G VNFs se-
curity monitoring. Te framework can efectively detect
malicious trafc, mitigate potential data privacy violations
and data-tempering risks between VNFs from diferent
vendors, andmake it easy for vendors to collaboratively train
a strong intrusion detection system without sharing
raw data.

One limitation of the experiments was that the bench-
mark dataset sizes used were limited. Te model underwent
evaluation with 3, 6, 9, and 12 clients. Te fndings revealed
that the performance of the federated learning (FL) model is
adversely afected by an increase in the number of clients.
Tis impact is attributed to the diminishing dataset size
employed by the local models as the client count rises. As
a result, the experiments conducted with 3 clients demon-
strated superior performance. Conversely, the experiments
involving 12 clients exhibited greater performance degra-
dation. Despite these limitations, the proposed system
proved to be efective for malicious trafc detection. Te
framework design is more suitable for 5G VNFs security-
monitoring applications than those in the literature. Te
next section describes the implementation of the system in
the 3GPP 5G architecture.

6. Proposed System Integration with 3GPP
5G Architecture

In this section, we present and describe the integration of the
proposed solution into a 5G core network for security
monitoring. Te 5G network architecture, as defned by
3GPP, includes a signifcant component known as the
network data analytic function (NWDAF). Tis network
function plays a critical role in facilitating efcient data
collection and analysis at the edge of a 5G network and is
designed to work with artifcial intelligent technologies [18].
By leveraging the existing infrastructure of NWDAF, the
proposed solution can be seamlessly integrated without
necessitating any modifcations to the underlying 5G ar-
chitecture. For a more comprehensive and detailed un-
derstanding of other 5G virtual network functions, readers
can refer to the online accessible book, 3GPP TS 23.501 [56].
Figure 7 illustrates the implementation of the solution
within the 5G core network. Te NWDAF can play the role
of an aggregation server allowing the core network VNFs
from diferent vendors hosted in diferent clouds to col-
laboratively train the same model under the TLS security
protocol. Te advantage of this approach is that even dif-
ferent mobile operators can collaborate to train a common
intrusion detection model with more diverse data without
sharing sensitive raw data. Furthermore, FL is designed to be
compatible with all types of network architectures, as long as
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Figure 3: CL accuracy and loss graphs when the model is trained using the InSDN dataset. (a) Accuracy. (b) Loss.
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Figure 4: CL accuracy and loss graphs when the model was trained using the CICIDS2017 dataset. (a) Accuracy. (b) Loss.

Table 11: Proposed model compared with previous works (traditional learning).

Reference Year Technique used Dataset utilized Accuracy (%) FPR (%)

Proposed model 2023 CNN-BiLSTM-LSTM InSDN
CICIDS2017

99.99
99.68

0.0089
0.39

[31] 2022 CNN CICIDS2017 99.0 0.67
[26] 2020 DBN CICIDS2017 97.73 —
[24] 2021 Hybrid CNN InSDN 99.28 —

[51] 2021 DFFNN NSL-KDD
UNSW-NB15

99.0
98.9

1.0
1.1

[52] 2022 LSTM-BiLSTM-GRU-BiGRU NSL-KDD
UNSW-NB15

87.44
82.46

20.47
37.61

[53] 2022 MLP UNSW-NB15 96.7 —
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Figure 5: FL accuracy (a) and loss (b) graphs when the model is trained using the InSDN dataset.
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Figure 6: FL accuracy (a) and loss (b) graphs when the model was trained using the CICIDS2017 dataset.

Table 12: Comparison with previous studies that used FL for intrusion detection.

Reference Year Technique used Dataset utilized Accuracy (%) Precision (%) Encryption technique
[36] 2022 Multi-layer perceptron (MLP) Private dataset 95 — None
[37] 2020 Transfer learning CICIDS2017 91.93 — None
[39] 2022 ANN based-FL UNSW-NB15 93.6 — None
[40] 2022 Neural network that uses transformer NSL-KDD 99.48 99.49 None
[41] 2023 Gower dissimilarity matrices TON_IOT 95.5 96 None
[54] 2020 MLP NSL-KDD 98.11 — None
[55] 2021 CNN+GRU Industrial CPS 99.20 98.86 None

Our model CNN+BiLSTM+LSTM InSDN
CICIDS2017

99.98
99.58

99.98
99.38 TLS V 1.3
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the clients and server can interact with one another. In the
context of 5G networks, all virtual network functions
(VNFs) within the operator’s network, regardless of archi-
tecture, are connected to the NWDAF for centralized
monitoring, making the implementation of FL even more
streamlined.

Implementing an FL network security monitoring sys-
tem into a real world heterogeneous 5G network can present
various challenges. Successful implementation requires
collaboration among vendors providing VNFs within the
system. Typically, each vendor employs its own team of
engineers responsible for administering their VNFs within
the telecommunications service provider network. Te
success of FL implementation hinges on fostering efective
cooperation among these engineering teams who must work
together to enable FL functionalities. However, achieving
seamless collaboration proves challenging, as engineers
often need to operate concurrently while ensuring the
compatibility and interoperability of their respective VNFs.
Tis collaboration is essential for overcoming barriers and
ensuring the smooth integration of FL based security
monitoring into the complex landscape of a 5G network. At
this stage, quantifying the complexity of this procedure is

challenging, given its dependence on factors such as the
telecommunication operator network architecture, the en-
terprise culture, and the business policies established among
vendors. In summary, the proposed model integration
complexity will depend on how the network operator will
handle the collaboration between the VNFs vendors located
in diferent clouds.

7. Conclusion and Future Work

Te virtualization and heterogeneity of 5G networks neces-
sitate the reconsideration of existing security monitoring
systems in terms of the data privacy required by authorities
and deep network trafc inspection for malicious trafc
detection. Determining the tradeof between data privacy and
efcient network trafc inspection for malicious trafc de-
tection requires further research. Federated learning with
a hybrid deep neural network model is proposed in this study
to improve data privacy safeguarding between 5GVNFs while
building strong and sustainable security monitoring systems.
Te proposed model performed well; its integration with the
3GPP 5G core network architecture is presented, and the
implementation challenges are highlighted.
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For further investigation, the following can be explored:

(i) Te available datasets are limited in terms of sample
size to accurately refect future 5G core network
VNFs scenarios. Terefore, it is necessary to address
this gap by developing larger datasets for large scale
simulation using hundreds of clients.

(ii) Researchers can explore the possibility of encrypted
data inspection in a federated learning setup where
diferent clients use diferent encryption
technologies.
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