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Wireless Sensor Network (WSN) has inexpensive, small, and less energy sensor nodes, which are allocated in random ways in
particular areas for measuring the phenomenon or events in that feld. In recent days, WSN has played a vital role in various
applications, like industrial monitoring, medical treatments, agricultural monitoring, and military operations. However, the
security challenges and network lifetime are the main issues in the existing methods. In order to overcome these issues, the Taylor-
Spotted Cat Optimization (Taylor-SCO) approach is devised in this paper. Here, the Cluster Heads (CHs) are selected based on the
developed optimization method, named Taylor CSO. Moreover, the delay, distance, and energy parameters are considered for
efective Cluster Head Selection (CHS). Here, route maintenance is also done for increasing network lifetime and reducing
complexities. In addition, the Modifed K-Vertex Disjoint Paths Routing (KVDPR) model is established for routing. Te
modifcation of KVDPR is carried out using several factors, such as link reliability, throughput, and various trust factors.
Moreover, the developed Taylor-SCO algorithm is developed by combining the Spotted Hyena Optimizer (SHO), Cat Swarm
Optimization (CSO) algorithm, and Taylor series. Te Taylor-SCO achieved better performance with energy consumption, trust,
and throughput of 0.00037 J, 0.51, and 793160 kbps.

1. Introduction

WSN is a rising low cost and fexible solution, which permits
controlled monitoring of the environment. Generally, WSN
includes a huge amount of sensing devices, which can
communicate wirelessly and process the data. Te sensor
nodes are arranged in several environments for executing
applications like industrial automation, military surveil-
lance, habitat monitoring, smart grids, and industrial and
home automation [1–3]. A large amount of WSN applica-
tions determine physical parameters, namely, object posi-
tion, humidity, and temperature. Te energy needed for the
transmission of data is hundred times larger than the energy
needed for the processing of data [3, 4]. Generally, WSN is
a group of sensor nodes, which uses radio waves for com-
munication [5–8]. In addition, WSN is a predictable wireless

ad-hoc network where it can gather, combine, and broadcast
the data separately [9]. However, the vital problem in WSN
is how to accumulate energy of node, when maintaining
essential network behavior. Many sensor network platforms
are battery operated, and it is signifcant in excessive energy
restriction [3, 10].

Since sensor nodes are activated based on battery, energy
efciency is a main concern in WSN. As a result, energy use
is monitored to increase the system’s lifespan. Te sensor
node in a wireless sensor network (WSN) typically has two
tasks: gathering data from the physical environment is the
frst task, and routing data from the sink node and gathering
data from the WSN to be processed is the last task.
Meanwhile, multihop routing is a familiar method utilized in
large-scale networks to transfer data straight to sink nodes
[11, 12]. When the communication process is started, WSN
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faces energy as the main challenge. Terefore, the amount of
transmissionmust be decreased to ofer efective routing and
achieve an enlarged system lifetime. WSN includes nodes,
where coordinated and sensed data is associated. Te
continual monitoring is a basic example of the WSN system.
Additionally, WSN applications experience energy limita-
tions because nodes transmit the acquired data to sink
nodes. Terefore, the utilization of various paths to collect
data inWSN has the capability of balancing network lifetime
and energy [12]. Moreover, the lifetime of the network is
embedded in sensor grouping for saving energy and de-
creasing long-distance communication. Tus, long-distance
communication is avoided for enhancing node lifespan
[13, 14]. Furthermore, the clustering approach uses
a probability value for creating a CH, and it is profcient to
communicate with other nodes in a short range. Hence,
multihop routing helps for routing process in a network, and
it is restricted by energy factor [15, 16]. Here, the delay is
decreased, whereas the consumption of energy is high, thus
the routing process accumulates the energy [16, 17].

Te Fuzzy A-star-based Cost Efective Routing (FACER)
is developed for the WSN process in [10, 18]. Tis approach
is employed for identifying the perfect short path from the
source node to the sink node. Recently, the optimization
methods are developed to select the optimal route to manage
secure communication in WSNs [19–21]. Routing is per-
mitted in a professed manner by sensor nodes, and the fuzzy
theory is used for fnding CHs. Here, the A-star search
process is applied for identifying the shortest path. More-
over, the Energy-Aware Cluster-Based Multihop (EACBM)
routing model is devised in [10, 22] for WSN.Tis approach
uses clustering knowledge and multihop communication to
decrease energy usage. Te Application Treshold-based
Centralized Energy Efcient Clustering (ATCEEC) ap-
proach is introduced in [9, 23]. In [9, 24], Node Density-
based Clustering and Mobile Collection (NDCMC) is in-
tegrated with hierarchical routing with data collection in
WSN. Besides, energy efciency is enhanced by the dis-
tributed clustering technique in [9, 25]. Te hybrid distant-
dependent clustering approach was developed, and it in-
cludes relative distance to Base Station (BS) and residual
energy at CHs [9]. Additionally, a protocol, termed as
energy-efcient cluster-based routing system using multi-
hop routing and fuzzy logic was developed in [12, 26], where
cluster size is dynamic. Here, the fuzzy logic technique and
confguration of cluster size are used to implement the
protocol. Te method, named Two-Tier Distributed Fuzzy
Logic-based Protocol (TTDFP), is introduced in [12, 27] to
enlarge theWSN lifespan by estimating routing efciency. In
addition, this model is termed as a distribution adaptive
system which efectively operates in sensor network appli-
cations. Tis approach utilized fuzzy clustering to optimize
WSN performance.

1.1. Motivation. WSN is a quickly developing information
acquirement technology which combines the recent at-
tainment of technology with communications, networks,
and microelectronics. Terefore, WSN is a necessary

element in several domains, such as urban transport systems,
industry control, monitoring of the environment, and
military. Te challenges experienced by the existing CHS
approach are described as follows:

(i) Te energy conservation, reliability, and security are
the major issues in the large-scale WSNs.

(ii) Some methods may have the communication
overhead issues.

(iii) Te network connectivity maintenance is
a challenging issue.

Te challenges faced by existing CHS and data routing
approaches are considered as the inspiration for devising
a novel CHS model. Te primary goal of this study is to
create the suggested Taylor-SCO algorithm for
a successful CHS.

Te main contributions of the research are elaborated
below:

(i) An efcient CHS selection approach is devised using
the Taylor-SCO.

(ii) Here, the developed Taylor-SCO approach is uti-
lized for selecting the best CH to perform secure
data routing.

(iii) Te developed Taylor-SCO algorithm is a combi-
nation of SHO, CSO, and Taylor series.

(iv) In addition, the modifed KVDPR model is devised
for the routing process.

(v) Furthermore, the ftness function is computed based
on energy, distance, delay, link reliability, and
throughput.

Te remainder of the paper is structured as follows: Te
literature review and issues with current CHS and data
routing methods in WSN are explained in Section 2. Te
LLTmodel, mobility model, and system model are all shown
in Section 3. Te created Taylor-SCO technique for CHS is
explained in Section 4, and the Taylor-SCOmodel’s output is
shown in Section 5. In Section 6, the paper’s conclusion is
discussed.

2. Literature Survey

Daneshvar et al. [3] developed a Grey Wolf Optimizer
(GWO) for clustering. In this method, solutions were rated
based on the current energy of individual sensor nodes and
predicted energy. In addition, it uses a clustering scheme in
various successive rounds for improving energy efciency.
Tis approach guarantees balanced and least consumption of
energy, but still, it failed to consider fault tolerance schemes
for better performance. Vinitha et al. [16] devised a Cat Salp
SwarmAlgorithm (C-SSA) approach to choose optimal hops
in routing. Te CHS was carried out based on the Low-
Energy Adaptive Clustering Hierarchy (LEACH) protocol.
Furthermore, the best path was chosen by a hybrid opti-
mizationmodel with energy parameters, such as delay, inter-
cluster distance, distance, energy, Link Life Time (LLT), and
intracluster distance. Tis model obtained a better tradeof

2 Journal of Electrical and Computer Engineering



between the exploration stage and exploitation stage, al-
though this scheme has a high computation time. Pattnaik
and Sahu [10] modeled Elephant Herding Optimization
(EHO)-Greedy model for routing in WSN. Tis approach
was considered split BS of fxed andmutable for reducing the
power consumption. Tis approach highly decreased energy
usage and enhanced the network life span. However, it has
not decreased the CH burden. Vijayalakshmi and Anandan
[9] presented Tabu Particle Swarm Optimization (PSO) for
CHS in WSN. In this model, the LEACH protocol was
employed for expanding the network lifetime. Besides, the
PSO model was established for estimating the optimal path
to transfer data. Tis model highly increased the network
lifetime and energy efciency, even though, the Tabu-PSO
technique failed to eradicate the blockage in a network.

Mehta and Saxena [28] developed a Multiobjective CH-
based Energy-aware Optimized Routing (MCH-EOR) al-
gorithm in WSN. Here, the CHS was done with respect to
multiple objectives based ftness function. Once CHS was
completed, Sail Fish Optimizer (SFO) was devised for
choosing the optimal path for transmission of data. Tis
model improved the lifetime of the network but failed in the
reduction of the execution time. Vinitha et al. [12] in-
troduced the Taylor-based Cat Salp Swarm Algorithm
(Taylor C-SSA) for secure multihop routing inWSN. At frst,
energy-efcient CHS was done by the LEACH for efectual
transmission of data. Furthermore, sensor nodes transmit
data to the sink node by selecting the optimal hop. Here, the
optimal hop selection was carried out using Taylor C-SSA.
Finally, security-aware multihop routing was done by trust
models which involved data forwarding rate, indirect trust,
direct trust, and integrity trust. Tis model obtained better
performance in terms of delay, throughput and energy, but
the computational time was high. Rodrigues and John [29]
devised a novel trust-based routing approach for secure
routing. In addition, the Chicken Dragonfy (CHicDra)
optimization approach was developed for predicting optimal
CH in a network. After CHS, multiobjective Taylor Crow
optimization model was developed in which trusted nodes
were fnalized based on trust parameters. At last, an

optimally selected path was utilized for secure and energy-
efcient data transmission. Tis approach obtained less
delay during data transmission, even though it failed to
introduce fuzzy logic for better performance. Sreedharan
and Pete [6] presented the Fuzzy Multicriteria Decision
Making (MCDM) technique for the routing process. Here,
the optimal CH was selected based on a Generalized
Intuitionistic Fuzzy Soft Set (GIFSS) which includes shark
smell optimization and a genetic algorithm for routing. In
this model, nodes were permitted to be set in a cluster
structure, and the optimal CH was selected between the
numbers of nodes. Tis routing process obtained better
accuracy, although the overhead of computation was high.

3. System Model

Assume a WSN system with e amount of nodes as
K � K1, K2, · · · Ks, · · · Ke , and a single sink node or BS is
denoted as D and the entire CHs are represented as
C � C1, C2, · · · Ct, · · · Cf . Te wireless connection among
sensor nodes indicates direct communication in a trans-
mission range. Every node has its own communication range
and sensor nodes are evenly isolated with length of Ng and
Og meters. Meanwhile, every node includes unique ID, and
the nodes are grouped to create a cluster in the network. Te
BS is located in a network at length of 0.5Ng, 0.5Og . Te
sink node is employed for receiving data packets from other
sensor nodes by CH. Moreover, every coordinate rate of Nt

and Ot specifes the position of individual sensor nodes. All
nodes transmit data packets to a sink node. Te CH of
individual cluster group is represented as C, which includes
the amount of sensor nodes. After the creation of cluster
group, nodes transmit a data packet to I with their relevant
CH. Te WSN system architecture is depicted in Figure 1.

3.1. Energy Model. Here, the initial energy of all nodes is
specifed as Q0. Let us assume that the energy of nodes is not
rechargeable [30]. Te energy dissipated, while transmitting
k data bytes is indicated by

Qdisi Ks(  � Qelec ∗ k + Qamp ∗ k∗ ‖Ks − Ct‖
4
; if ‖Ks − Ct‖

4 ≥ z0,

Qdisi Ks(  � Qelec ∗ k + Quz ∗ k∗ ‖Ks − Ct‖
2
; if ‖Ks − Ct‖

2 < z0.
(1)

where Qelec denotes the electronic energy, which considers
several factors, such as digital coding, fltering, amplifcation,
modulation, and spreading.

Qelec � Qtrans + Qagg , (2)

where Qamp is the energy of power amplifer, Qtrans
specifes transmitter energy, Qagg indicates data aggre-
gation energy, and ‖Ks − Ct‖ represents the distance
between sth node and tth CH. When receiving k bytes
of data, the energy dissipated at the receiver end is
illustrated by

Qdisi Ck(  � Belec ∗ k. (3)

After receiving or transmitting k data bytes, the energy
value of an individual node is updated.

Ql+1 Ks(  � Ql Ks(  − Qdisi Ks( ,

Ql+1 Ct(  � Ql Ct(  − Qdisi Ct( .
(4)

3.2.MobilityModel. Temobility model [31] is employed to
identify sensor node movement, and it is utilized to describe
velocity changes, acceleration, and position with respect to

Journal of Electrical and Computer Engineering 3



time. Let us assume the initial node location s and m as
(R1, S1) and (R2, S2). Te nodes s and m moves with various
velocities in particular directions with ϕ1 and ϕ2 angles. In
addition, Euclidean distance between s and m node is
represented as

W(sm,0) �

�������������������

|R1 − R2|
2

+ |S1 − S2|
2



, (5)

where W indicates Euclidean distance between two nodes.

3.3. LLT Model. LLT [32] is computed at every hop during
route request packet transmission. All sensor nodes esti-
mated path lifetime between the previous hop and the
current hop. Te node coordinate s is denoted as (Ns, Os)

and m coordinate node is represented as (Nm, Om). Along
with this, the motion distance of sensor nodes s and m nodes
are signifed as ps and pm, and the mobility speed of s and m

nodes is represented as ϕs and ϕm. Te LLT is computed
based on the following equation:

LLT �
− (ab + xy) +

��������������������
a
2

+ b
2

 n
2

− (ay − bx)
2



a
2

+ x
2

 
, (6)

where a � ps cos ϕs − pm cos ϕm

b � Ns − Nm,

x � ps sinϕs − pm sinϕm,

y � Ns − Om.

(7)

4. Proposed Taylor-Spotted Cat Optimization
Algorithm for Cluster Head Selection inWSN

Te developed Taylor-SCO algorithm for CHS in WSN is
described in this section. Here, the nodes are simulated in

the WSN network where the nodes are grouped to generate
clusters. Once the clusters are generated, then CH is selected
by the developed Taylor-SCO approach. Furthermore, the
CHS is performed by considering several parameters. Ten,
the routing process is carried out using modifed KVDPR
[33]. On the other hand, themodifcation of KVDPR is made
by including various factors, namely trust factors,
throughput, and link reliability with distance and energy for
efective data routing. Finally, route maintenance is executed
for eradicating the obstacles and network failure. Moreover,
the developed Taylor-SCO technique is introduced by in-
tegrating the CSO algorithm [34], SHO [35], and Taylor
series [36]. Te block diagram of the Taylor-SCO is depicted
in Figure 2.

4.1. ClusterHead SelectionUsing Proposed Taylor-Spotted Cat
Optimization Algorithm. In this section, the CHS process
using the developed Taylor CSO is explained. Te CHS
process is necessary for efective data routing in WSN. In
addition, the packet loss is highly decreased and efcient
routing is guaranteed by CHS in WSN. In this method, the
WSN nodes are initially considered for the CHS process.
Here, the CHS is performed using the developed Taylor CSO
approach, which is devised by combining SHO [35], CSO
algorithm [34] and Taylor series [36]. Te CSO algorithm is
devised based on the stimulation of behavior of cats. Te
CSO algorithmmainly includes two modes, such as seeking
mode and tracing mode, which inspire the hunting and
resting character of the cat. Te cat chases prey at repli-
cation of the tracing style. Normally, the cat decides the
direction and activity speed at seeking mode using the
location and speed of prey. On the other hand, SHO is
a bio-inspired optimization approach, which imitates the
spotted hyena’s character. It efciently utilized to move
a search agent towards the global solution by eradicating
local optima. Meanwhile, the Taylor series includes the
complex variable function, which is the infnite term
function expansion. Te SHO algorithm and Taylor series
are included with CSO for creating optimal solutions for an
optimization problem.

4.1.1. Solution Encoding. Te solution vector, which iden-
tifes CHS to create efcient data routing, is represented by
the solution encoding. Nevertheless, a CH is a node that
dissipates less energy and has the least amount of delay and
distance. Figure 3 shows the solution encoding of the Taylor-
SCO. Here,m represents the number of nodes and n specifes
the number of CHs.

4.1.2. Fitness Function. Te ftness function is calculated
considering a number of factors, including distance, latency,
and energy dissipation. Additionally, a node with a lower
ftness function is chosen to be the CH.

Fitness �
1
3



m

w�1
Lw + Mw + Nw , (8)

Inter cluster communication
Intra cluster communication

Source node

Cluster head

Sensor node

Base station

Cluster 1

Cluster 2

Cluster ρ

Figure 1: System model of WSN network.
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where Lw indicates node energy, Mw specifes node distance,
and Nw represents delay. Here, the delay is estimated by
considering the amount of nodes in every cluster group to
the whole quantity of nodes in a network.

4.1.3. Algorithmic Process of Developed Taylor-SCO. Te
algorithmic steps of developing Taylor-SCO for CHS are
described below.

(1) Initialization. Initially, the population is initialized as Gr

with q overall solutions, which is given by

Gr(r � 1, 2, . . . , q), (9)

(2) Compute Fitness Measure. Te ftness measure of every
search agent is used for selecting the CH, and the ftness
value computation is indicated in equation (8).

(3) Hunting Process. Spotted hyenas are able to locate the
prey and typically survive in packs in this area. While re-
sidual search agents form a group towards the optimal
solution, the optimal search agent possesses knowledge
regarding the prey’s position. To update the location, the best
solutions are also kept. Te spotted hyena’s propensity for
hunting is demonstrated by

Routing

WSN Nodes

Cluster head
selection

Proposed Taylor-Spotted
Cat Optimization

algorithm

Spotted Hyena Optimizer Taylor seriesCat Swarm Optimization

Modified K-
Vertex Disjoint
Paths Routing

Route
Maintenance

Target preyGroup of Hyenas

Seeking mode
(Sleeping and

looking)

Tracing mode
(Chasing laser

pointers)

Figure 2: Block diagram of developed Taylor-SCO for CHS in WSN.

1 2 …

1 2 … n

m

Figure 3: Solution encoding of developed Taylor-SCO algorithm.
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A
→

d � |H
→

· G
→

r − G
→

K| ,

G
→

K � G
→

r − B
→

· A
→

d,

M
�→

d � G
→

K + G
→

K+1 +, . . . , + G
→

K+x,

(10)

where the representation of the best-spotted hyena location
is G

→
r, the other spotted hyenas location representation is

G
→

k, X specifes the whole amount of spotted hyenas, and H
→

and B
→

represent the coefcient vector, and it is illustrated by

H
→

� 2 · I1

B
→

� 2 c
→

· I2 − c
→

c
→

� 5 − l∗
5

lmax
  ; l � 1, 2, ..lmax

(11)

where I1 and I2 are a random number ranging from [0, 1]

and c
→ linearly decreased from 5 to 0.

(4) Encircling Behavior Based Solution Update. Te spotted
hyena is typically the most adept at locating its victims and
surrounding them. Target prey is currently the best option
because it is almost at an optimal value. Remaining agents
adjust their places once the optimal search agent has been
determined. Te modifed answer for the spotted hyena’s
encircling character is shown here as

G
→

(l + 1) �
1

(l − 2 B
→

)
G
→

x(l)(l − B
→
H
→

) − 2 B
→

1.3591G
→

(l − 1) − 1.359G
→

(l − 2) + 0.6795G
→

(l − 3)

− 0.2259G
→

(l − 4) + 0.0555G
→

(l − 5) − 0.0104G
→

(l − 6)

+ 1.38e
− 3

G
→

(l − 7) − 9.92e
− 5

G
→

(l − 8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (12)

where G
→

x(l) specifes the location prey vector, and B
→

and H
→

are coefcient vectors. On the other hand, the tracing mode
equation of the CSO algorithm is illustrated as

G
→

(l + 1) � G
→

(l) + F(l),

G
→

(l + 1) � G
→

(l) + F(l) + i1j1 G
→

best − G
→

(l) ,

G
→

(l + 1) � G
→

(l) + F(l) + i1j1 G
→

best − i1j1 G
→

(l),

G
→

(l + 1) � G
→

(l) 1 − i1j1(  + F(l) + i1j1 G
→

best,

G
→

best �
G
→

(l + 1) − G
→

(l) 1 − i1j1(  − F(l)

i1j1
.

(13)

Since G
→

X(l) is a target position, G
→

best � G
→

X(l).
To fnd the best answer, the tracing mode equation of the

CSOmethod is also merged with Taylor-SHO. Equation (12)
is substituted for equation (13)

G
→

(l + 1) �
1

(1 − 2 B
→

)

G
→

(l + 1) − G
→

(l) 1 − i1j1(  − F(l)

i1j1
(1 − B

→
H
→

) − 2 B
→

1.3591G
→

(l − 1) − 1.359G
→

(l − 2)

+0.6795G
→

(l − 3) − 0.2259G
→

(l − 4)

+0.0555G
→

(l − 5) − 0.0104G
→

(l − 6)

+1.38e
− 3

G
→

(l − 7) − 9.92e
− 5

G
→

(l − 8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(14)

6 Journal of Electrical and Computer Engineering



G
→

(l + 1) �
1

(l − 2 B
→

)

G
→

(l + 1)

i1j1
(1 − B

→
H
→

)

−
1

(1 − 2 B
→

)

G
→

(l) 1 − i1j1(  + F(l)

i1j1
(l − B

→
H
→

) + 2B
→

,

1.3591G
→

(l − 1) − 1.359G
→

(l − 2),

+0.6795G
→

(l − 3) − 0.2259G
→

(l − 4),

+0.0555G
→

(l − 5) − 0.0104G
→

(l − 6),

+1.38e
− 3

G
→

(l − 7) − 9.92e
− 5

G
→

(l − 8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

G
→

(l + 1) −
1

(l − 2B
→

)

G
→

(l + 1)

i1j1
(l − B
→
H
→

) � −
1

(l − 2B
→

)

G
→

(l) l − i1j1(  + F(l)

i1j1
(l − B
→

H
→

) + 2B
→

,

1.3591G
→

(l − 1) − 1.359G
→

(l − 2),

+0.6795G
→

(l − 3) − 0.2259G
→

(l − 4),

+0.0555G
→
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where i1 ranges from [0, 1] and j1 is constant F(l) signifes
the velocity of the cat.

(5) Feasibility Checking. Te least ftness measure is con-
sidered as best result.

(6) Termination. Te aforementioned steps are repetitive
until the best solution is achieved. Te pseudocode of the
Taylor-SCO is illustrated in Algorithm 1.

4.2. Secured KVDPR Technique for Data Routing. Once the
CHs are selected, data routing is achieved based on the
modifed KVDPR method. Te modifed KVDPR scheme is
developed by modifying the KVDPR model, and it utilizes
various parameters, like average distance, residual energy, link
reliability, and trust of the CHs. Normally, modifed KVDPR
[33] determined k-disjoint paths between the sink node and
CH.Moreover, modifed KVDPR is a distributed technique in
which individual CH chooses a k-vertex disjoint path using
average distance, link reliability, residual energy, and trust.

Here, the residual energy is estimated based on the
following equation:

Rene �


V
o�1 Acur(o)(I)

V
, (20)

where I specifes the vertices amount, Acur is an energy value
at the current level, and I denotes the node.

Moreover, the CH estimates the average distance based
on the below equation:

Bd �


V
o�1 Bd(I)

V
. (21)

Te link reliability is estimated by

χ � probability (Y) � e
− βY

, (22)

where Y specifes average link failure, which is the inverse of
link lifetime (Y � 1/T), and T indicates link lifetime.

In addition, in the trust factor, every node obtains a trust
degree value for all of its neighbors. Trust value [37] is
a measure of the trust level in its neighbor. Furthermore, the
trust value is estimated by local information, like local to-
pology details. Te trust of CHs is estimated by

L CHY,Z  � P1L
dt
Y,Z(i) + P2L

idt
Y,Z(i), (23)

where Ldt
Y,Z(i) is a direct trust, Lid

Y,Z(i) represents the indirect
trust. P1 and P2 are weighting factors in which P1 + P2 � 1.
Moreover, the direct trust is expressed as

L
dt
Y,Z(i) �

EYZ(i)

HYZ(i)
, (24)

where HYZ(i) signifes the number of packets forwarded
from Zth CH CH at time i, and EYZ(i) is a number of packets
successfully received by Zth CH CH from Yth CH CH at
time i.

Similarly, the indirect trust is formulated as

L
idt
Y,Z(i) �

1
O



O

T�1
L

dt
EZ(i), (25)

where O is the amount of CH selected for the routing
process.Terefore, routing is performed by considering CHs
having maximum trust, link reliability, residual energy, and
permitted distance.

4.3. Route Maintenance. Te route maintenance process
is used for monitoring the delivery function of data
packets and depicts the link failure error. Te route
may not be present between the nodes, while node mobility
is increased. Evert CH sets a timer X before the trans-
mission of data. Te CH transmits route maintenance
requests to every CH in a network once, X terminates, and
probability (Y)> τ. Here, the term τ indicates the
threshold factor. Tus, CH resets and X carried out a re-
routing process.

 . Results and Discussion

Tis section illustrates the results and discussion of the
Taylor-SCO in terms of throughput, energy consumption,
and trust.

5.1. Experimental Setup. Te implementation of the Taylor-
SCO is done in MATLAB tool with 4GB RAM, Intel i3
processor, andWindows 10OS.Te simulation parameter of
the Taylor-SCO is elaborated in Table 1.
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5.2. Performance Metrics

5.2.1. Troughput. Troughput is a measure, which iden-
tifes the amount of data packets transmitted through
a channel with regards to a particular time interval.

5.2.2. Energy Consumption. It is a measure used to estimate
the amount of energy consumed during the execution
process.

5.2.3. Trust. Trust is a performance metric estimated to
identify the trust level of neighbor, which is expressed in
Section 4.2.

5.3. Experimental Result. Figure 4 displays the experimental
outcome of the Taylor-SCO with several nodes. Figure 4(a)
shows the simulation result of the Taylor-SCO with 50
nodes, Figure 4(b) represents the simulation outcome of the
Taylor-SCO with 100 nodes, and the simulation result of the
Taylor-SCO with 150 nodes is depicted in Figure 4(c).

5.4.ComparativeMethods. Te existing approaches, namely,
Distributed Energy Efcient Heterogeneous Clustering
(DEEHC) [33], GWO [3], Tabu PSO [9], EHO-Greedy [10],
Taylor-Spotted Hyena Optimization (Taylor-SHO) algo-
rithm, C-SSA [16], and MCH-EOR [28] are analyzed for
evaluating the performance of Taylor-SCO.

5.5. Comparative Analysis. Tis section deliberates the
comparative analysis of the Taylor-SCO with respect to 50,
100, and 150 nodes.

5.5.1. Comparative Analysis Using 50 Nodes. Te analysis of
the Taylor-SCO for 50 nodes by varying the number of
rounds is expressed in Figure 5. Te analysis of energy
consumption is depicted in Figure 5(a). Te energy con-
sumption of existing methods, like GWO, DEEHC, EHO-
Greedy, Tabu PSO, C-SSA, MCH-EOR, and Taylor-SHO are
0.00178 J, 0.00201 J, 0.00161 J, 0.0017 J, 0.00203 J, 0.00181 J,
and 0.00089 J, and Taylor-SCO achieved 0.00069 J at 100th
round. Moreover, the analysis of throughput is shown in
Figure 5(b). At 100th round, the throughput value of GWO is
978.43 kbps, DEEHC is 955.94 kbps, EHO-Greedy is
940.60 kbps, Tabu PSO is 920.16 kbps, C-SSA is
946.38456 kbps, MCH-EOR is 968.652432 kbps, Taylor-SHO
is 1022.4 kbps, and Taylor-SCO obtained 1124.64 kbps.
Likewise, Figure 5(c) represents the analysis of trust by
varying number of rounds. Te trust value obtained by
Taylor-SCO is 0.525, when the GWO is 0.503, DEEHC is
0.502, EHO-Greedy is 0.502, Tabu PSO is 0.506, C-SSA is
0.497, MCH-EOR is 0.498, and Taylor-SHO is 0.517 for 100
numbers of rounds.

5.5.2. Analysis Based on 100 Nodes. Figure 6 depicts the
analysis of the Taylor-SCO for 100 nodes by changing the
round. Figure 6(a) represents the analysis of energy con-
sumption. Te energy consumption value obtained by
Taylor-SCO is 0.000362 J, when the GWO is 0.00089 J,
DEEHC is 0.00111 J, EHO-Greedy is 0.00071 J, Tabu PSO is
0.00080 J, C-SSA is 0.00113 J, MCH-EOR is 0.00090 J and
Taylor-SHO is 0.00044 J for 100 numbers of rounds.
Figure 6(b) shows the analysis of throughput. At 100th

round, the throughput value of GWO is 1223.04 kbps,
DEEHC is 1194.93 kbps, EHO-Greedy is 1175.76 kbps, Tabu
PSO is 1150.2 kbps, Taylor-SHO is 1329.12 kbps, C-SSA is
1182.98 kbps, MCH-EOR is 1210.82 kbps, and Taylor-SCO
obtained 1462.03 kbps. Additionally, the analysis of trust is
illustrated in Figure 6(c). Te trust value of GWO, DEEHC,
EHO-Greedy, Tabu PSO, C-SSA, MCH-EOR, and Taylor-
SHO is 0.504, 0.502, 0.505, 0.502, 0.497, 0.499, and 0.527,
and the Taylor-SCO is 0.533 at 100th round.

Table 1: Simulation parameter.

Free space energy 10∗0.000000000001
Receiver energy 50∗0.00000000151
Transmitter energy 50∗0.00000000014
Energy of power amplifer 0.00136∗0.00000000001
Energy of data aggregation 5∗0.000000001

(1) Input:Gr

(2) Output: G
→

(l + 1)

(3) Start
(4) Initialize a parameters, c, H, B, and X
(5) Estimate the ftness function
(6) Group every far optimal solution
(7) while (l< lmax) do
(8) for every search agent do
(9) Change the location of the search agent using equation (19)
(10) end for
(11) Verify whether any search agent moves away from the search space
(12) Group update
(13) l � l + 1
(14) end while
(15) return the best solution
(16) Stop

ALGORITHM 1: Pseudocode of developed Taylor-SCO technique.
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Figure 4: Simulation results of developed Taylor-SCO method for, (a) 50 nodes, (b) 100 nodes, and (c) 150 nodes.
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Figure 5: Continued.
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Figure 5: Comparative analysis of developed Taylor-SCO with 50 nodes, (a) energy consumption, (b) throughput, (c) trust.
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Figure 6: Comparative analysis of Taylor-SCO with 100 nodes, (a) energy consumption, (b) throughput, (c) trust.
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5.5.3. Analysis Based on 150 Nodes. Te analysis of the
developed Taylor-SCO model with respect to energy con-
sumption, throughput, and trust for 150 nodes by varying the
number of rounds is expressed in Figure 7. Te analysis of
energy consumption by varying the rounds is depicted in
Figure 7(a). At 100th round, the energy consumption of
DEEHC is 0.00111 J, GWO is 0.00089 J, Tabu PSO is 0.00080 J,
EHO-Greedy is 0.00071 J, C-SSA is 0.00113 J, MCH-EOR is
0.00090 J, Taylor-SHO is 0.00044 J, and Taylor-SCO obtained
0.00034 J. In addition, the analysis of throughput by varying
number of rounds is displayed in Figure 7(b).Te throughput
of existing methods, like DEEHC, GWO, Tabu PSO, EHO-
Greedy, C-SSA, MCH-EOR, and Taylor-SHO are
1212.94 kbps, 1241.48 kbps, 1167.53 kbps, 1193.48 kbps,
1200.81 kbps, 1229.07 kbps, and 1349.15 kbps, and Taylor-
SCO algorithm obtained1484.07 kbps at 100th round.

Figure 7(c) represents the analysis of trust by varying number
of rounds. Te trust value obtained by Taylor-SCO is 0.502,
when the existing method, such as DEEHC is 0.501, GWO is
0.5, Tabu PSO is 0.502, EHO-Greedy is 0.5, C-SSA is 0.496,
MCH-EOR is 0.495, and Taylor-SHO is 0.5 for 100 numbers
of rounds.

5.6. Comparative Discussion. Te comparative analysis of
several existing approaches and Taylor-SCO is deliberated in
this section. Table 2 depicts the comparative discussion of
the developed method with respect to energy consumption,
trust, and throughput. From the below table, it is well noted
that the Taylor-SCO obtained less energy consumption of
0.00037 J, a high throughput of 7931.60 kbps, and a high
trust of 0.51 with 150 nodes.
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Figure 7: Comparative analysis of Taylor-SCO with 150 nodes, (a) energy consumption, (b) throughput, (c) trust.
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5.7. Computational Time. Te computational time of the
models are depicted in Table 3. Here, due to the integration
of the optimization algorithm, the devised Taylor-SCO
needed a minimum computational time of 9.875 sec.

6. Conclusion

Tis paper presents an efcient CHS technique, named as
Taylor CSO technique. At frst, theWSN nodes are simulated
in a network where the nodes are grouped to create clusters.
After that, the CH is selected based on the Taylor-SCO. Te
developed method selects the CH based on ftness function
using the factors, such as energy dissipation, delay, trust, and
distance. Once the CHS is completed, a routing approach is
carried out using modifed KVDPR. Te modifcation of
KVDPR is performed by various parameters, like link re-
liability, energy, distance, throughput, and various trust
factors for executing efective data routing. Finally, route
maintenance is performed for eradicating the complexities
and failure of the network. Te performance of the Taylor-
SCO is evaluated using energy consumption, trust, and
throughput with better performance of 0.00037 J, 0.51, and
793160 kbps. Te future work of the research would be the
development of other optimization techniques for efective
CHS for enhancing the performance of the network during
data routing.
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