
Research Article
Network Intrusion Detection Using Knapsack Optimization,
Mutual Information Gain, and Machine Learning

Akindele S. Afolabi 1 and Olubunmi A. Akinola 2

1Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
2Department of Electrical and Electronics Engineering, College of Engineering, Federal University of Agriculture,
Abeokuta, Nigeria

Correspondence should be addressed to Olubunmi A. Akinola; akinolaoa@funaab.edu.ng

Received 1 June 2023; Revised 11 March 2024; Accepted 29 April 2024; Published 1 June 2024

Academic Editor: Kusum Verma

Copyright © 2024 Akindele S. Afolabi and Olubunmi A. Akinola. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Te security of communication networks can be compromised through both known and novel attack methods. Protection against
such attacks may be achieved through the use of an intrusion detection system (IDS), which can be designed by training machine
learning models to detect cyberattacks. In this paper, the KOMIG (knapsack optimization and mutual information gain) IDS was
developed to detect network intrusions. Te KOMIG IDS combined the strengths of optimization and machine learning together
to achieve a high intrusion detection performance. Specifcally, KOMIG IDS comprises a 2-stage feature selection procedure; the
frst was accomplished with a knapsack optimization algorithm and the second with amutual information gain flter. In particular,
we developed an optimization model for the selection of the most important features from a network intrusion dataset. Ten,
a new set of features was synthesized from the selected features and combined with the selected features to form a candidate
features set. Next, we applied an information gain flter to the candidate features set to prune out redundant features, leaving only
the features that possess the maximum information gain, which were used to train machine learning models. Te proposed
KOMIG IDS was applied to the UNSW-NB15 dataset, which is a well-known network intrusion evaluation dataset, and the
resulting data, after optimization operation, were used to train four machine learning models, namely, logistic regression (LR),
random forest (RF), decision tree (DT), and K-nearest neighbors (KNN). Simulation experiments were conducted, and the results
revealed that our proposed KNN-based KOMIG IDS outperformed comparative schemes by achieving an accuracy score of
97.14%, a recall score of 99.46%, a precision score of 95.53%, and an F1 score of 97.46%.

1. Introduction

Network size and real-time trafc have gotten more so-
phisticated and vast as a result of the rapid development and
widespread adoption of 5G, IoT, cloud computing, and
other technologies. Cyberattacks have also developed into
a broader range of complex operations, posing signifcant
difculties to the security of cyberspace [1–3]. A malicious
tenant, for example, can stay in a virtual machine (VM),
successfully hijack other VMs in the cloud, and then use the
puppet machines to distribute malicious software or per-
form a distributed denial of service (DDoS) attack [4, 5]. Te
network intrusion detection system (NIDS) is usually the
second line of defense behind the frewall and is responsible

for identifying malicious network attacks, providing real-
time monitoring, implementing dynamic security measures,
and developing strategies [1]. NIDSs play an important role
in cybersecurity by alerting security managers about mali-
cious activities such as distributed denial-of-service (DDoS),
port scans, SQL injection attacks, and others [6]. Tese
activities could degrade the overall network performance
and may result in network failures and sometimes endanger
human lives [7].

Network intrusion can be defned as any illegal action
that compromises the confdentiality, integrity, or avail-
ability (CIA) of data inside a network [8–10]. Network
intrusion may drastically hurt enterprises by causing
monetary losses, reputational damage, legal liabilities, and

Wiley
Journal of Electrical and Computer Engineering
Volume 2024, Article ID 7302909, 21 pages
https://doi.org/10.1155/2024/7302909

https://orcid.org/0000-0002-5596-0346
https://orcid.org/0000-0001-6532-1698
mailto:akinolaoa@funaab.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

the loss of sensitive information [11]. Intrusion detection
involves the task of observing, analyzing, and identifying
activities that compromise a network’s security policy [12].
In addition to frewalls, security managers often use pass-
word protection systems, encryption methods, and access
restriction approaches to secure networks from intrusion
[8, 13]. Tese methods do not, however, go far enough to
safeguard the system. To monitor network trafc and
identify malicious attempts, many administrators, therefore,
choose to utilize intrusion detection systems (IDSs)
[8, 14–16].

Network-based IDS and host-based IDS are the twomost
often used forms of IDS [17, 18]. By examining end-user
behavior, an NIDS keeps an eye on the network trafc and
looks for suspicious activities. IDSs use two diferent cate-
gories of detection techniques [19]: signature-based [20, 21]
and anomaly-based techniques [22–26]. On the one hand,
signature-based IDS (or host-based IDS) recognizes patterns
(i.e., signatures) in IDS to detect attacks. Anomaly-based
IDS, on the other hand, are built on the premise of dis-
criminating between abnormal and regular network events.
In this method, the behavior profles of the system’s users are
frst identifed, and behaviors that deviate from normal
behavior are classifed as abnormal [27]. Subsequently,
timely countermeasures can be taken to ensure that the
security of the communication network is not
compromised [28].

Machine learning (ML) techniques for improved AIDS
(MLAIDS) have been considered recently [9, 17, 22]. Tese
algorithms categorize the processed data into normal and
abnormal classifcations to assess the state of the network.
Tey develop and evaluate AIDS for identifying attacks,
and they gauge its fexibility in using various datasets by
looking at its false alarm rate and accuracy. However, the
bulk of these datasets exhibits a severe cybersecurity im-
balance, with the majority (98%) of these datasets being
classifed as normal and the remaining (2%) as attacks
[22, 29].

Te existing public datasets for intrusion detection have
both benefts and drawbacks [29]. Some of their faws in-
clude (1) failure to refect contemporary network threats; (2)
an augmentedminority dataset possessing restricted features
to reproduce the nature of network attacks. As a result, real-
time capture is required; (3) many of the existing public
datasets have not been tested against the recently released
domain name system over HTTPS (DoH) protocol. Most
published datasets exhibit conventional DDoS attacks and
variations; (4) many of the public datasets do not contain
layer 3 information in their column characteristics; and (5)
a few research works reveal inconsistent analysis and clas-
sifcation fndings.

Our contributions to this paper are as follows:

(1) We frst defned an optimization problem for the
selection of features from a network intrusion
dataset.

(2) Ten, we transformed the optimization problem into
an easy-to-solve form and developed an algorithm
for solving it.

(3) Next, we described a procedure for synthesizing new
features from the features selected by the optimi-
zation model. Te synthesized features were com-
bined with the selected features to form the
candidate feature set.

(4) Finally, we applied an information gain flter to the
candidate features set to pick features that possess
high information gain. Tese features were used to
train machine learning models for network intrusion
detection.

2. Literature Review

In this study, optimization and machine learning tools were
applied to detect the intrusion of a communication network.
Te decision to combine optimization and machine learning
was inspired by the works of Leyva–Pupo et al. [30] in which
the degradation of the quality of service (QoS) of a 5G
communication network was prevented through the ap-
plication of machine learning and optimization techniques.
Te authors used machine learning methods to forecast the
QoS status at the next timestamp, which determines whether
optimization regarding service latency satisfaction is re-
quired. If it is required, optimization algorithms which
include integer linear programming (ILP) and a heuristic
algorithm are executed. A major diference between their
setup and ours is in the order of the optimization and
machine learning blocks. In their work, the output of the
machine learning block feeds the optimization block
whereas in ours (as will be seen later), the output of the
optimization block feeds the machine learning block.

Classical optimization and nature-inspired optimization
methods have attracted signifcant attention in the research
community. Classical methods such as linear programming,
mixed integer programming, quadratic programming,
polynomial goal programming, and others are more useful
in optimization problems that have certain mathematical
properties such as diferentiability, continuity, and con-
vexity. Nature-inspired optimization methods, on the other
hand, thrive even when these mathematical properties are
not satisfed. Examples of nature-inspired optimization al-
gorithms include genetic algorithm [31], artifcial bee colony
algorithm [32], particle swarm algorithm [33, 34], farmland
fertility algorithm [35], mountain gazelle optimizer [36],
fruit fy optimization algorithm [37], frefy algorithm [34],
simulated annealing [38], fower pollination algorithm [39],
whale optimization algorithm [40], manta–ray foraging
optimizer [41], African vulture optimization algorithm [42],
grasshopper optimization algorithm [43], moth fame al-
gorithm [44], biogeography-based algorithm [45], imperi-
alist competitive algorithm [46], grey wolf optimizer [47],
Harris hawks optimization algorithm [48], gravitational
search algorithm [49], slime mould algorithm [50], and bat
algorithm [51].

Saheed et al. [52] proposed a new strategy that combines
the bat metaheuristic algorithm with the residue number
system (RNS) for feature selection in intrusion detection
systems. In particular, they used a mix of RNS and the bat
algorithm to remove extraneous features while principal

2 Journal of Electrical and Computer Engineering

component analysis (PCA) was used to perform feature
extraction. Te bat algorithm’s longer training and testing
periods were addressed by using RNS to reduce processing
time. Trafc classifcation was done using naive Bayes and
KNN. Simulation results indicate that combining RNS with
the bat algorithm leads to signifcantly improved detection
accuracy, precision, and F scores and, in addition, a reduced
processing time.

Gharehchopogh [48] proposed variations of the Harris
hawk optimization (HHO) algorithm which included Im-
proved HHO opposition-based learning (IHHOOBL), im-
proved HHO Lévy fight (IHHOLF), and improved HHO
chaotic map (IHHOCM). Tese algorithms were designed
such that exploitation and exploration were balanced out
and they were tested using normalized mutual information
(NMI) and modularity criteria on 12 distinct datasets. Te
results showed that the IHHOOBL approach outperforms
the IHHOLF and IHHOCM methods in terms of detection
accuracy. Furthermore, the researchers compared
IHHOOBL with an existing cutting-edge algorithm, which
has outperformed up to 7.8 percent.

Te researchers in [53] suggested the application of
a multiagent system along with metaheuristic algorithms
(MAMAH) for the detection of e-mail spam. Te approach
considered several agents as independent actors and each
attempted to accomplish its objectives while competing and
working with other agents to attain shared objectives. Te
technique proved to be highly efective in solving high-
dimensional optimization problems and outperformed
existing metaheuristic algorithms in terms of precision in
detecting spam emails.

BFFA (binary farmland fertility algorithm), a binary
variant of the farmland fertility algorithm (FFA), was
implemented in [35] for feature selection in IDS. In BFFA,
a V-shaped function was used to shift the FFA processes to
the binary space, thereby, changing the continuous location
of the solutions in the FFA algorithm to a binary mode. To
achieve a fast and robust IDS, a hybrid solution that in-
corporates classifers and the BFFA was developed. Te
BFFAmethod was compared with existing classifers such as
K-nearest neighbor (KNN), support vector machine (SVM),
decision tree (DT), random forest (RF), AdaBoost
(ADA_BOOST), and Naive–Bayes (NB), and it was shown
to outperform them in terms of accuracy, precision, and
recall; It also has a shorter run time in the FS operation.

In [42], the enhanced African vultures optimization
algorithm (AVOA) was used in multithreshold picture
segmentation, which used three binary thresholds (Kapur’s
entropy, Tsallis entropy, and Ostu’s entropy). To enhance
AVOA performance, the quantum rotation gate (QRG)
mechanism boosted population variety in optimization
phases and optimized local trap escapes. Te association
strategy (AS) method was used to fnd and search for op-
timum solutions more quickly. Because the AVOA algo-
rithm concentrates on the exploration phase almost entirely
in the frst half of the iterations, these two processes boosted
the variety of production solutions in all optimization
phases. So, using this strategy, it is feasible to ensure a broad
range of solutions while avoiding the local optimum trap.

Standard criteria and datasets were used to assess the
proposed algorithm’s performance, which was then com-
pared to existing optimization techniques. Te experimental
fndings from the AVOA showed that it has an excellent and
substantial performance gain.

Paraneswari et al. [54] used the optimization-enabled
deep learning model rat swarm hunter prey optimization-
deep maxout network (RSHPO-DMN)method for intrusion
detection. Tey applied Z score data normalization for data
preprocessing and then translated the data into a useable
format by considering chord distance. Te translated data
were retrieved using the convolutional neural network
(CNN) feature, and the extracted feature was translated into
vector format for the network intrusion detection procedure.
Te DMN was used for intrusion detection, while the
RSHPO model was used to improve the intrusion detection
rate of the classifer. Results showed that the RSHPO-DMN
model achieved a detection accuracy of 90.88%.

Te authors of [55] surveyed several applications of
quantum computing (QC) in metaheuristics. Te paper also
provided a taxonomy of quantum-inspired metaheuristic
algorithms in optimization issues and analyzed their ap-
plications in science and engineering. Te slime mould al-
gorithm (SMA) is studied in [50], and the study covered four
topics: hybridization, progress, modifcations, and optimi-
zation. Te use of SMA in the aforementioned topics is
stated in the paper to be 15%, 36%, 7%, and 42%, re-
spectively. According to the authors, SMA has been rou-
tinely used to solve optimization problems, which expectedly
will be benefcial to engineers, professionals, and academic
scientists.

Te article in [31] proposed an enhancement of the
cuckoo search optimization (CSO) technique with a genetic
algorithm (GA) technique for community detection in
complex networks. In the paper, GA operators were used
dynamically to improve the speed and accuracy of the CSO.
Te population size was continually modifed depending on
the quantity of exploration and exploitation. Te modu-
larity objective function and NMI were used as optimi-
zation functions. Te approach was evaluated with GA,
artifcial bee colony (ABC), grey wolf optimizer (GWO),
and CSO, with varied iterations in modularity and NMI
criterion. Te fndings revealed that the approach out-
performed existing algorithms by an average of 54% in
modularity and 88% in NMI. It is evident from the papers
on optimization discussed so far that the application of
optimization algorithms to real-life problems results in
improved system performance.

Just as optimization is highly relevant in improving
system performance, the feld of machine learning has also
proven to be highly relevant in achieving the same feat.
Machine learning applications are rapidly penetrating our
everyday lives and have been applied in the health sector
[56], the banking sector [57], the agriculture sector [58], the
power sector [59], and the education sector [60]. Te suc-
cesses of machine learning and the rising complexity and
severity of security threats on networks have prompted
security researchers to adopt various machine learning
technologies to safeguard businesses’ data and reputation.

Journal of Electrical and Computer Engineering 3

Te approaches used include supervised learning, un-
supervised learning, reinforcement learning, and deep
learning [61–64].

In [64], an intrusion detection and prevention system
(IDPS) that used machine learning and software-defned
networking (SDN) to identify and mitigate IEC 60870-5-104
attacks was presented. Te intrusion detection system was
based on a classifcation and regression tree (CART) clas-
sifer that used TCP/IP network fow data as well as IEC
60870-5-104 payload fow statistics. Te evaluation results
indicated that IDPS achieved 81.73% accuracy.

In [65], an efcient wrapper feature selection method,
based on the Firefy algorithm, was proposed for selecting
important features in wireless sensor network (WSN) trafc.
Using a minimum-maximum normalization strategy, trafc
data was preprocessed and the frefy algorithm was then
utilized for feature dimensionality reduction. Subsequently,
the C5.0 algorithm was used for classifcation, and simu-
lation results show that this approach yields a signifcantly
high detection accuracy.

Kasongo, in [66], developed an IDS that used GA for
feature selection and the random forest (RF) model in the
GA ftness function. Classifers used in the intrusion de-
tection procedures included the RF, linear regression (LR),
Naive Bayes (NB), decision tree (DT), extra-trees (ET), and
extreme gradient boosting (XGB). Te UNSW-NB15 was
used to evaluate the performance of the IDS, and the results
showed that the GA-RF obtained a detection accuracy of
87.61%.

In the research work presented in [67], a wrapper-based
feature selection technique, Tabu search-random forest (TS-
RF), was used for intrusion detection. Te TS-RF wrapper
made use of the Tabu search metaheuristic algorithm for
feature fnding and weighting, as well as RF as a learning
method. Te evaluation results indicated that TS-RF
achieved an intrusion detection accuracy of 83.12%.

A GA-based RF model was developed in [24] to cate-
gorize normal and abnormal network trafc for intrusion
detection.Te GA was used to choose optimal values for two
RF parameters. Tese parameters were the minimum
number of instances for each split and the number of trees in
the forest, which helped to optimize the RF classifer and
improve anomaly classifcation and intrusion detection
accuracy. Results showed that this method achieved an
intrusion detection accuracy of 86.70%.

Using the deep learning approach, the authors of [26]
developed an anomaly-based IDS solution for IoTnetworks.
A flter-based feature selection deep neural network (DNN)
model with strongly correlated features was described in
particular. Te model was fne-tuned using diferent
hyperparameters. To tackle class imbalance difculties in the
used dataset, generative adversarial networks (GANs) were
applied to generate synthetic data of minority attacks. Te
model’s accuracy was found to be 91%.

Te study in [68] developed an IDS by using the
XGBoost method for feature selection in combination with
several ML approaches such as artifcial neural network

(ANN), KNN, DT, logistic regression (LR), and SVM. Te
binary and multiclass classifcation parameters were taken
into account in the study. Results showed that XGBoost-
ANN, XGBoost-KNN, XGBoost-DT, XGBoost-LR, and
XGBoost-SVM achieved intrusion detection accuracies of
84.39%, 84.46%, 90.85%, 77.64%, and 60.89%, respectively.

In [69], the authors presented a dependable IDS model.
Teir approach relied on the deep transfer learning-based
ResNet model, and their major contributions included ef-
fective attribute selection, which improved the ability of the
design to identify normal and attack situations while making
use of only a small size of labeled data. Results showed that
the dependable IDS model achieved a detection accuracy of
87%. Some existing works on IDS are summarized in Table 1.

It can be observed in Table 1 that the detection accuracies
of most of the existing works on IDS need improvement with
many of them having values of 90% or less. To improve on
the intrusion detection accuracy, we propose a two-stage
feature selection technique such that in the frst stage,
a knapsack optimization-based algorithm selects a set of
high-quality features which are synthesized into new fea-
tures through a combination process. Te synthesized and
original features are merged and presented to a mutual
information gain flter which constitutes the second stage of
the feature selection procedure. Te flter passes the most
important features to machine learning algorithms and
models are developed and trained to detect malicious net-
work intrusion trafc.

3. Materials and Methods

In this section, we present our proposed network intrusion
detection system, and its framework is illustrated in Figure 1.

As will be detailed later, it relies on the knapsack op-
timization technique for initial feature selection and on the
mutual information gain method for fnal feature selection.
It is, therefore, named KOMIG (knapsack optimization and
mutual information gain) IDS. We assume that the KOMIG
IDS operates at layer 2 and detects trafc patterns that
deviate from the expected behavior.Tis category of trafc is
subsequently classifed as intrusion trafc by some machine
learning algorithms.

To enable this capability in KOMIG, annotated data
comprising intrusion and normal trafc were used to train
some machine learning models. Once the models have been
trained and ascertained to be generalizing properly, they
gain the capability of classifying new trafc as either normal
trafc or intrusion trafc. However, before data can be
presented to the machine learning algorithm, it has to be
prepared in the format that the algorithm can operate on.
Some steps are involved as illustrated in Figure 2.

3.1. Data Preprocessing. Preprocessing operation transforms
raw data into a format that is appropriate for machine
learning algorithms. Data preparation involves normalizing
the data and using data encoding to transform categorical
information into numerical form.

4 Journal of Electrical and Computer Engineering

Table 1: Some related works on network intrusion detection.

Ref. Method used Dataset Accuracy (%) Limitation
[64] CART Own dataset 81.73 Low accuracy
[66] GA-RF UNSW-NB15 87.61 Low accuracy
[67] TS-RF UNSW-NB15 83.12 Low accuracy
[24] GA-RF UNSW-NB15 86.70 Low accuracy
[26] GAN-DNN UNSW-NB15 91.00 Medium accuracy
[68] XGBoost-DT UNSW-NB15 90.85 Medium accuracy
[69] P-ResNet Own dataset 87.00 Low accuracy
[70] Specifcation heuristics IDS UNSW-NB15 91.77 Medium accuracy
[71] Integrated classifcation UNSW-NB15 84.83 Low accuracy
[27] CNN+LSTM UNSW-NB15 93.21 Medium accuracy
[72] Ensemble UNSW-NB15 93.88 Medium accuracy

Figure 1: Framework of the proposed KOMIG Intrusion Detection System.

Dataset

• Data Cleaning
• One-hot-encoding
• Data scaling
• Data balancing
• KOMIG feature
 selection

Training
Set

Testing
Set

Model Training
(i) Logistic Regression
(ii) Random Forest
(iii) Decision Tree
(iv) K-Nearest Neighbors

Detect
Intrusion

Positive
Negative

Training Set Only

Figure 2: Workfow of the proposed intrusion detection system.

Journal of Electrical and Computer Engineering 5

3.1.1. Data Cleaning. Data cleaning is used to correct some
faws in the dataset.Tis involves handling null samples, case
conversion of text data, and encoding of text data which are
described as follows:

(i) Samples containing nulls are either deleted or flled
with the average or the most frequently occurring
value as the case may be

(ii) Text-type data containing both lower and uppercase
cases are unifed by converting all textual values into
a single case

(iii) Text-type data are converted into numbers using
one-hot-encoding

3.1.2. One-Hot-Encoding. One-hot encoding represents
category (i.e., text-based) variables as binary vectors. First,
integer values are mapped to each categorical value. Ten,
each integer value is represented as an all-zero binary vector
(except for the integer’s index, which is indicated with a 1).

3.1.3. Normalization. Following the addition of numerical
values to a dataset, the scale of each feature (i.e., column) is
usually diferent from the next. Tis can lead to skewed
results when ftted by a machine learning algorithm because
features with larger scales might dominate the ones with
lower scales. Tis can be avoided by normalizing the data.
Te normalization method used in this work was the z score.
In this method, the column mean is subtracted from each
data entry in the column, and the result is divided by the
column standard deviation. Te result obtained replaces the
original data entry.

3.1.4. Data Balancing. A dataset with an unbalanced
number of classes performs poorly when machine learning-
based classifers are used, especially when the ratio of the
number of instances in the majority class to the minority
class is high. In this case, it is necessary to lower the number
of instances in the majority, or raise that of the minority, or
do both to balance the dataset. In this work, the SMOTE
algorithm was used to raise the number of instances of the
minority class to achieve a balanced dataset.

3.2. Feature Processing and Selection. In this section, we
present our proposed KOMIG-IDS scheme. Assuming
a dataset comprises of M features and K sample instances
such that M � 1, 2, 3, · · · , M{ } and K � 1, 2, 3, · · · , K{ }.
Given a selected sample instance k, a feature can be
expressed as

Fm � F1,m, F2,m, · · · , FK,m􏽮 􏽯, m � 1, 2, · · · , M, (1)

where M is the number of features in the dataset and Fm is
the mth feature in the dataset. Let the set of all features be
denoted by

G � F1,F2, · · · ,FM􏼈 􏼉. (2)

Ten, the intrafeature variance of feature Fm can be
computed as

vm �
􏽐

k
k�1 Fk,m − Fm􏼐 􏼑

2

K
∀m ∈ 1, 2, 3, · · · , M{ }, Fk,m ∈Fm,

(3)
where Fk,m is the kth entry in the mth feature and Fm is the
mean of all the K entries in the mth feature. Te scale of
variance vm of each feature may difer from one feature to
another, but each feature’s variance is on the same scale with
its own average feature value Fm. We, therefore, normalized
each variance by dividing it by the feature average value.

vm⟵
vm

Fm

. (4)

It is desired to fnd a set of featuresN ⊂ G of size D that
maximizes the sum as

maximize
m

􏽘
m∈M,Fm∈N,|N|�D

vm.
(5)

By introducing a binary decision variable xm, the op-
timization problem in (5) can be transformed into

maximize 􏽘
m∈ 1,2,···,M{ }

xmvm, (6)

s.t:

􏽘

M

m�1
xm ≤D,

(7)

xm ∈ 0, 1{ }, m � 1, 2, · · · , M. (8)

Once the associated xm of each feature is determined, the
optimum feature set N can be obtained as

N � ⋃
M

m�1,xm≠0
Fm. (9)

Te transformed optimization problem is a knapsack
problem that has capacity D and equal weights. It is an easy-
to-solve optimization problem whose solution can be ob-
tained in polynomial time. Te solution is presented in
Algorithm 1. In Algorithm 1, the featuresFm ∈ G are sorted
based on the descending order of magnitude of the values of
their variances vm. Tis is because the weights of all the
variance values are 1; hence, sorting in descending order of
magnitude and picking the frstD variance values maximizes
the objective function in (5). As can be observed in Algo-
rithm 1, the corresponding set of features having the highest
intrafeature variance values are compiled as N.

Using the features set N, another set of features is
synthesized by systematically combining them to form
a polynomial of a desired order. Te higher the order, the
higher the complexity of the resulting machine-learning
model. How they are combined will be described shortly.
Te synthesized features are in 3 categories as follows:

(1) Te bias (the value of 1.0)
(2) Each feature value is raised to a power for each

degree, e.g., (Fk,1)
1, (Fk,2)

2, (Fk,3)
3, . . .

(3) A combination of pairs of feature elements inN, e.g.,
(Fk,1) × (Fk,2), (Fk,1) × (Fk,3), . . .

6 Journal of Electrical and Computer Engineering

Te number of synthesized features is computed as

R �
(D + E)!

D! × E!
, (10)

where E is the order of the polynomial used in the synthesis
operation andD is the cardinality ofN, which is the number
of features in N. For example, if the number of selected
features is 3 and the element of the selected features at
instance k are given as {a, b, c}, and the selected order of the
polynomial is 2, then, D= 3 and E= 2. Hence, the number of
synthesized features, R, is computed as

R �
(3 + 2)!

3! × 2!
�

5!

3! × 2!
�
5 × 4 × 3!

3! × 2!
�
5 × 4
2 × 1

� 10. (11)

Let the synthesized feature be denoted by qr ∈ Q, where
Q has a dimension K × R. A synthesized feature qr can be
expressed as

qr � q1,r, q2,r, · · · , qK,r􏽮 􏽯, r � 1, 2, · · · , R, (12)

and the set of synthesized features at an instance k is
expressed as qk,1, qk,2, · · · , qk,R􏽮 􏽯, k � 1, 2, · · · , K. For the case
when the element of the selected features at instance k is
given as {a, b, c}, the synthesized features are determined as
follows:

qk,1, qk,2, · · · , qk,R􏽮 􏽯 � 1, a, b, c, a
2
, b

2
, c

2
, a × b, a × c, b × c􏽮 􏽯.

(13)

It can be observed in (13) that the selected features setN
is duplicated in the synthesized feature set Q; they are
therefore expunged and Q is updated as

Q⟵Q − N. (14)

Te synthesized features are merged with the original
features, and the original features set is updated as

G⟵G∪Q. (15)

Te resulting total number of features after the syn-
thesized features have beenmerged with the original features
is

M⟵M + R − D. (16)

Since the synthesized features that were added to the
existing features have been carefully selected through an
optimization process, their addition would increase the
overall information gain of the dataset although some of
them would be redundant and can dropped by a flter that is
discussed next. Given feature Fm and the corresponding
target class set Y, the information gain (IG) is computed as
[73]

IG Y,Fm(􏼁 � H(Y) − H Y |Fm(􏼁, m ∈ 1, 2, · · · , M{ },

(17)

where

H(Y) � − 􏽘
B

b�1
p yb(􏼁log2p yb(􏼁, (18)

and

H Y |Fm(􏼁 � − 􏽘

Z

z�1
p Fz,m􏼐 􏼑H Y |Fm � Fz,m􏼐 􏼑, m ∈ 1, 2, · · · , M{ }. (19)

In equation (17), H(Y) is the entropy of the target class
set, Y, while H(Y |Fm) is the conditional entropy of Y given
the mth feature,Fm. Te information gain of each feature is
computed using (17), and W number of features that share
the most mutual information gain with the target class set is

selected for developing the machine learning model. Te
entropy of the target class, H(Y), is computed in (18), in
which B is the number of diferent classes in the target class
set, and p(yb) is the probability of value yb in the target class
set. In this paper, B= 2 because there are only 2 target classes

Procedure
for m� 1 to M− 1
for j�m+ 1 to M
if (vj < vm)

swap(vj, vm)
swap(Fj,Fm)

end if
end for

end for
N � ⋃Dm�1Fm

End Procedure

ALGORITHM 1: Optimization-based features selection procedure.

Journal of Electrical and Computer Engineering 7

(i.e., the intrusion class and the normal class). Te condi-
tional entropy of the target class, H(Y |Fm), is computed in
(19). Te number of occurrences of an element Fz,m in
feature Fm is denoted by Z in (19), and p(Fz,m) is the
probability of Fz,m in Fm. Te block diagram of the feature
selection steps in KOMIG IDS is illustrated in Figure 3.

A fowchart that summarizes the whole process is il-
lustrated in Figure 4. In the fowchart, data trafc is pre-
processed by making it undergo data cleaning, one-hot
encoding, normalization, and data balancing operations.
After the data preprocessing operation, the data trafc is
passed to the KOMIG algorithm where the feature selection
operation is performed. Tis operation involves initial
feature selection through knapsack optimization, feature
synthesis, and fnal feature selection using the information
gain-based flter. Te selected features of the data trafc are
then presented to the trained machine learning models
where the core operation of intrusion detection is per-
formed. At this stage, a binary classifcation operation is
performed and the trafc is either classifed as normal trafc

if no threat is detected in the trafc or as malicious trafc if
threat is detected. If the data trafc is classifed as normal
trafc, it is allowed to pass through the network; and if on the
other hand, it is classifed as malicious trafc, it is dropped.

3.3. Evaluation Metrics. Some metrics, including TP, TN,
FP, and FN, are taken into account when assessing the ef-
fectiveness of our proposed KOMIG IDS algorithm. In the
context of this paper, TP stands for “true positive” and it
refers to the number of intrusion trafc instances that were
correctly classifed; TN stands for “true negative” and refers
to the number of normal trafc instances that were correctly
classifed; FP stands for “false positive” and denotes the
number of normal trafc instances that were incorrectly
classifed as intrusion trafc instances; and FN stands for
“false negative,” and it refers to the number of intrusion
trafc instances that were incorrectly classifed as normal
trafc. Using these, the following defnitions of accuracy,
recall, precision, and F1 score are provided as follows [7]:

accuracy �
TP + TN

TP + TN + FP + FN
, (20)

recall of intrusion class �
TP

TP + FN
, (21)

recall of normal class �
TN

TN + FP
, (22)

precision of intrusion class �
TP

TP + FP
, (23)

precision of normal class �
TN

TN + FN
, (24)

F1-score � 2 ×
precision × recall
precision + recall

. (25)

In addition to these metrics, we used an indicator of
performance for classifcation at diferent threshold levels
known as the AUC-ROC (area under the curve-receiver
operating characteristics) curve. Te ROC curve is a two-
dimensional graph that plots a true positive rate (TPR) on
the y-axis against a false positive rate (FPR) on the x-axis. To
demonstrate how classifers discriminate between two
classes, it draws lines across thresholds obtained while
making binary classifcation judgments. Te area under the
curve (AUC) is a popular ROC curve statistic with values
ranging from 0 to 1.

AUC greater than 0.5 indicates how well-trained clas-
sifers assigned a higher probability to accurate predictions
and a lower probability to wrong ones. A poorly trained
classifer has an ROC curve with a diagonal line and an AUC
value close to 0.5.

3.4. UNSW-NB15 Dataset. Te UNSW-NB15 dataset was
used in this paper to validate the proposed KOMIG IDS, and
it is publicly available at [74]. Te UNSW-NB15 dataset was
used because it is a realistic and comprehensive dataset for

8 Journal of Electrical and Computer Engineering

network intrusion detection [75]. Tis dataset has 42 fea-
tures, and it includes contemporary attacks in real networks.
Te Australian Centre for Cyber Security (ACCS) at UNSW
in Canberra has provided the revised UNSW-NB15 dataset,
taking into account the drawbacks of the previous dataset.
Te IXIA PerfectStorm program was used to generate a mix
of recent malicious and benign network trafc character-
istics.Te dataset includes nine kinds of current cyberattacks
labeled as Analysis, Backdoors, DoS, Exploits, Fuzzers,
Generic, Reconnaissance, Shellcode, and Worms, as well as
normal (benign) packets labeled as normal, which have been
captured using the Tcpdump program [74, 76]. Details of the
attack categories are provided in Table 2.

Te most often used datasets, UNSW_NB15_training-
set.csv (with 175,341 entries) and UNSW_NB15_testing-
set.csv (with 82,332 entries) are partial datasets that are
publicly accessible to assist researchers in developing IDSs.
In the “label” column of the dataset, all the attacks are
grouped as one class while the normal trafc represents the

second class. Table 3 displays the sample sizes and per-
centages for each class of the training and testing sets.

3.5. Experimental Setup. Te proposed network intrusion
detection system was developed in Python programming
language. It was executed on an Intel Core i3 CPU with
8 GB of RAM. Te dataset used in this work was the
UNSW-NB15 [74]. Tis dataset was selected because of its
benefts over older standard datasets such as the KDD98,
KDDCUP99, and NSLKDD datasets. Te KDD98,
KDDCUP99, and NSLKDD datasets sufer from a lack of
contemporary cyberattacks, and normal trafc is skewed in
such a manner that stealthy/spy attacks may easily be
disguised as normal activity. Other shortcomings include
an imbalance in the number of records from various kinds
of trafc; noncomprehensive training sets and these
training sets do not refect every attack available in the
testing set.

All
Features

Optimally
select

feature
subset

Synthesize
additional

features
from

feature
subset

Merge
sythesized

and
original
dataset

Perform
mutual

information
gain-based

feature
selection

Selected
Features

Figure 3: Block diagram of KOMIG IDS.

START

INPUT TRAFFIC DATA

PRE-PROCESS DATA

KNAPSACK OPTIMISATION
(SELECT FEATURES)

INFORMATION GAIN FILTER
(SELECT FEATURES)

DETECT INTRUSION
WITH MACHINE

LEARNING MODELS

YES NO
INTRUSION

TRAFFIC DETECTED?

INTRUSION
TRAFFIC

NORMAL
TRAFFIC

STOP

Figure 4: Flowchart of the proposed intrusion detection system.

Journal of Electrical and Computer Engineering 9

3.5.1. Preprocessing of UNSW-NB15 Dataset. Te pre-
processing operation performed on the dataset involved the
conversion of text datatype entries into numeric datatype
entries by using the one-hot encoding method. Also, mul-
tiple text cases were unifed into the same format by con-
verting them all to their respective lower cases. Tree
nominal features (proto, state, and service) were one-hot-
encoded to generate new columns flled with ones and zeros.
After obtaining numeric columns, a z-score was used to
normalize the attribute scales for each column. It was ob-
served that the target class was imbalanced with the attack
class having 119,341 samples while the normal class had
56,000. To correct this imbalance, the minority class was
oversampled using the SMOTE algorithm to raise its fgure
to 119,341 samples. Our proposed algorithm was deployed
on the preprocessed dataset, and the resulting data was the
input of 4 machine learning algorithms namely, logistic
regression (LR), random forest (RF), decision trees (DT),
and K-nearest neighbors (KNN).

3.5.2. Hyperparameter Selection and Tuning. Te values of
the hyperparameters used for the classifers were selected
based on the random and the grid search methods [77].
Firstly, the random search was used to determine the region
of the search space where the best hyperparameters exist

while the grid search was used to fne-tune the result of the
random search. In the random search, a collection of
hyperparameters and their potential values are established
and randomly assessed, and the set that gives the highest
accuracy among them was selected as the initial set of
hyperparameters, which served as the input to the grid
search. In the grid search, the hyperparameters set that was
determined by the random search were used such that a grid
of all possible combinations of its elements was constructed.
Te models were then trained and assessed on each com-
bination of these hyperparameters, and the one that per-
formed best in terms of accuracy was selected as the fnal set
of hyperparameters for a classifer. Table 4 illustrates the fnal
values of hyperparameters selected for the classifers after
performing the random and the grid searches.

3.5.3. Feature Selection and Model Training. Before the
model training operation was performed, the dataset was
partitioned into the training set and the test set in the
proportion of 70 : 30. Tis guarantees that 30% of the data
are set aside for testing the model with previously unseen
data. Tis is a typical machine learning technique since it
enables the validation of training outcomes using previously
unseen data. Once the dataset has been partitioned, the
feature selection process was initiated by executing

Table 2: Te trafc categories of the UNSW-NB15 dataset and their description.

Trafc type Description
Normal A threat-free trafc

Fuzzer
An attack in which the attacker tries to identify security faws in a software,

operating system, or network by fooding it with random data in order to cause it to
crash

Analysis A class of invasions that infltrate online applications via ports (such as port
scanning), emails (such as spam), and web scripts (such as HTML fles)

Backdoor
A method for getting around a covert normal authentication that prevents

unwanted remote access to a device and fnding the entry to plain text, while striving
to go undetected

DoS An intrusion that causes computer resources, such as memory, to become very busy
in order to block authorized requests from reaching a device

Exploit A set of instructions that exploits a faw, fault, or vulnerability produced by
inadvertent or unexpected activity on a host or network

Generic A method for establishing collisions against any block-cipher using a hash function
regardless of the block-cipher’s setup

Reconnaissance An attack that obtains information about a computer network in order to
circumvent its security protections

Shellcode An attack in which the attacker gains control of a compromised computer by
infltrating a little piece of code beginning with a shell

Worm
An attack in which the attacker duplicates itself in order to propagate to other
systems. It often spreads itself over a computer network, relying on security faws in

the target computer to get access to it

Table 3: Sample distribution of the UNSW-NB15 dataset.

Class type Training samples Training samples percentage
(%) Testing samples Testing samples percentage

(%)
Normal 56,000 31.9 37,000 44.9
Attack 119,341 68.1 45,332 55.1
Total 175,341 100 82,332 100

10 Journal of Electrical and Computer Engineering

Ta
bl

e
4:

M
ac
hi
ne

le
ar
ni
ng

hy
pe
rp
ar
am

et
er

va
lu
es
.

A
lg
or
ith

m
s

H
yp
er
pa
ra
m
et
er

va
lu
es

15
fe
at
ur
es

30
fe
at
ur
es

Ra
nd

om
fo
re
st

N
um

be
r
of

es
tim

at
or
s�

38
,m

ax
im

um
de
pt
h

�
5,

cr
ite
ri
on

�
“g
in
i”

T
e
sa
m
e
as

15
fe
at
ur
es

D
ec
isi
on

tr
ee

M
in
im

um
sa
m
pl
es

le
af

�
2,

m
ax
im

um
de
pt
h

�
10
,c
ri
te
ri
on

�
“e
nt
ro
py
”

M
in
im

um
sa
m
pl
es

le
af

�
2,

m
ax
im

um
de
pt
h

�
2,

cr
ite
ri
on

�
“e
nt
ro
py
”

K
-n
ea
re
st

ne
ig
hb

or
s

W
ei
gh

ts
�
“u
ni
fo
rm

,”
nu

m
be
ro

fn
ei
gh

bo
rs

�
10
,d

ist
an
ce

m
et
ri
c�

“e
uc
lid

ea
n,
”
le
af

siz
e�

5
T

e
sa
m
e
as

15
fe
at
ur
es

Journal of Electrical and Computer Engineering 11

Algorithm 1 on the training data. Next, feature synthesis was
performed, the feature selection process was completed by
the information gain flter, and the selected features were
passed to the machine learning module. In the machine
learning module, we used the method used in [19] by ap-
plying stratifed KFold cross-validation (CV). Tis pro-
cedure is intended to lessen the likelihood of the model
overftting or being impacted by selection bias. Te data is
separated into n subsets in stratifed KFold cross-validation,
and the class ratio is retained in all of them. In turn, each
subset, or fold, is preserved for testing, while the remainder
of the data is utilized for training. Tis means that training is
done on the data n times, i.e., the number of folds prepared
earlier. A 5-fold stratifed CV was used in this experiment,
which means that the training set was divided into fve
subsets, each with the same ratio of classes. One of the fve
subsets was preserved for testing, while the other four were
used to train themodels.Te training procedure is efectively
repeated fve times, once for each fold. Once this procedure
was completed, the remaining 30% of the data was used as
test data for a subsequent run. Tis guaranteed that the
models were validated using previously unseen data.

3.6. Machine Learning Algorithms

3.6.1. Logistic Regression. In a logistic regression algorithm,
the chance of an event occurring is predicted by ftting data
to a logistic function. Tis function returns a value between
0 and 1. Te midpoint number, 0.5, is regarded as the
threshold between classes 1 and 0. If the output is larger than
0.5, it is classifed as class 1, and if it is less than 0.5, it is
classifed as class 0.

3.6.2. Random Forest. It is a classifer that is based on de-
cision trees. Random samples are used to form decision trees
and then predictions are made from each tree. Te predicted
class is determined by voting which is cast by the individual
trees. Most of the time, even without the usage of a hyper-
parameter, random forest can provide acceptable results. It
produces quick results even for mixed, noisy, and in-
complete datasets.

3.6.3. Decision Trees. Te structure of a decision tree al-
gorithm is similar to that of a tree, with each internal node
representing a test on an attribute, each branch interpreting
a test result, and each leaf node displaying a class label. DT
can handle both categorical and continuous data and can
accomplish classifcation without needing signifcant
processing.

3.6.4. K-Nearest Neighbors. Te K-nearest neighbors ma-
chine learning algorithm saves all of the training data
upfront. It utilizes this data during categorization to try to
detect similarities between the new data and the existing
data. Its foundation is the Euclidean distance.Te test data is
assigned to a class consisting of its K closest neighbors.
Accuracy may improve if the value of K is increased.

4. Results and Discussion

Recall that in Section 3, W was the number of features that
the mutual information gain flter passed to the machine
learning algorithm. We, therefore, investigated how the
choice ofW afects the performance of KOMIG IDS in terms
of accuracy, recall, precision, F1 score, confusionmatrix, and
AUC. Firstly, we set W� 30 features and determined the
performances of KOMIG IDS when used with LR, RF, DT,
and KNN classifers.

With W set at 30, Table 5 illustrates its efect on the recall,
precision, F1 score, and accuracy scores of LR-based KOMIG
IDS, RF-based KOMIG IDS, DT-based KOMIG IDS, and
KNN-based KOMIG IDS. For brevity, they have been simply
called LR, RF, DT, and KNN in the table. It can be observed in
the table that all the classifers performed well in terms of
recall, precision, F1 score, and accuracy. Table 5 contains 7
categories of results, namely, (i) recall of normal class, (ii)
recall of intrusion class, (iii) precision of normal class, (iv)
precision of intrusion class, (v) F1 score of normal class, (vi)
F1 score of intrusion class, and (vii) accuracy. According to
Table 5, the KNN algorithm had the top score in 5 out of the 7
performance metrics considered while the logistic regression
algorithm had the top score in the remaining 2 (see the bold
fonts in the table). In particular, KNN had the highest scores
in the recall (0.9946) and F1 score (0.9674) of the intrusion
trafc class and also the highest in the precision (0.9930) and
F1 scores (0.9674) of the normal trafc class. It also had the
highest accuracy score of 97.14%. LR classifer had the highest
score in the remaining two metrics, which were the recall of
the normal class (0.9904) and the precision of the intrusion
class (0.9917).

For KNN, a recall value of 0.9946 implies that 99.46% of
actual intrusion instances were correctly detected while
a precision value of 0.9553 implies that out of all instances
that have been classifed as intrusion, 95.53% of them are
actual intrusion instances. In a like manner, recall values of
0.9283, 0.8617, and 0.8990 for LR, RF, and DT, respectively,
imply that 92.83%, 86.17%, and 89.90% of actual intrusion
instances were correctly detected for LR, RF, and DT clas-
sifers, respectively. Furthermore, precision values of 0.9917,
0.9849, and 0.9855 for LR, RF, and DT classifers, re-
spectively, imply that 99.17%, 98.49%, and 98.55% of in-
stances classifed as intrusion instances were correct
intrusion classifcations for LR, RF, and DT classifers,
respectively.

Figures 5(a)–5(d) show the confusionmatrices of the LR,
RF, DT, and KNN classifers, respectively. It can be seen that
all the algorithms performed relatively well since the mis-
classifcation cells (top-right and bottom-left cells) are lightly
shaded while the correct classifcation cells (top-left and
bottom-right) are comparatively more boldly shaded. Most
of the classifers such as LR, RF, and DT had difculty
detecting some instances of intrusion trafc; hence, they
incorrectly classifed such trafc as normal trafc (see the top
right cells of Figures 5(a)–5(c)). For example, LR, RF, DT,
misclassifed, 3,252, 6,271, and 4,582 instances of intrusion
trafc as normal trafc, respectively. Tese amounted to
3.95%, 7.62%, and 5.57% of the total trafc, respectively.

12 Journal of Electrical and Computer Engineering

Te KNN-based KOMIG classifer, on the other hand,
had more difculty classifying normal trafc correctly. For
example, it misclassifed more normal trafc (2,108 in-
stances) as intrusion trafc than intrusion trafc as normal
trafc (246 instances). On a general note, therefore, the
KNN-based KOMIG-IDS classifer outperformed all the 3
other variants of KOMIG IDS in terms of correct classif-
cation and also in terms of misclassifcation.

LR, RF, and DTmisclassifed 4.38%, 8.35%, and 6.3% of
the total trafc, respectively. Tese fgures were obtained by
summing the misclassifed intrusion trafc class percentage
(top-right cell), and the misclassifed normal trafc class
percentage (bottom-left cell). Te closer these fgures are to
zero, the better the performance of the classifer. It is ob-
servable that KNN had the best score of total mis-
classifcation percentage of 2.86%.

Next, we reduced the number of features by half, i.e.,
from 30 features to 15 features, and observed the efect of
the reduction on the performances of the 4 classifers.
Table 6 illustrates the recall, precision, F1, and accuracy
scores of the normal and intrusion classes when the
number of features is set at 15 features. It is interesting to
note in the table that even though the number of features
saw a sharp decline from 30 to 15, there is no corre-
sponding sharp decline in the performances of any of the
classifers. For example, the normal class of the LR
classifer had a recall score of 0.9904 at 30 features and
0.9835 at 15 features. Tis is an insignifcant decline in
performance. Likewise, the intrusion class of the classifer
had a recall of 0.9283 at 30 features and 0.9126 at 15
features. Tis is also an insignifcant reduction in
performance.

Table 5: Recall, precision, F1 score, and accuracy of the normal and intrusion classes when the number of features was set at 30 features.

Classifer Trafc type Recall Precision F1 score Accuracy (%)

Logistic regression Normal 0. 04 0.9185 0.9531 95.62Intrusion 0.9283 0. 17 0.9589

Random forest Normal 0.9838 0.8530 0.9137 91.65Intrusion 0.8617 0.9849 0.9192

Decision trees Normal 0.9838 0.8882 0.9336 93.71Intrusion 0.8990 0.9855 0.9402

K-nearest neighbors Normal 0.9430 0. 30 0. 674 7.14Intrusion 0. 46 0.9553 0. 746
Te bold fonts indicate top performance scores across the considered machine learning models for the intrusion and normal trafc categories.

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

40000

20000

10000

42080
(51.11%)

3252
(3.95%)

354
(0.43%)

36646
(44.51%)

(a)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

20000

10000

39061
(47.44%)

6271
(7.62%)

601
(0.73%)

36399
(44.21%)

(b)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

40000

20000

10000

40750
(49.49%)

4582
(5.57%)

599
(0.73%)

36401
(44.21%)

(c)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

40000

20000

10000

45086
(54.76%)

246
(0.30%)

2108
(2.56%)

34892
(42.38%)

(d)

Figure 5: Confusion matrix of classifers when 30 features are used in the training and testing sets: (a) Logistic regression classifer, (b)
random forest classifer, (c) decision trees classifer, and (d) K-nearest neighbor classifer.

Journal of Electrical and Computer Engineering 13

Comparing the performances of the classifers with each
other, again, just like in the case of 30 features, KNN had the
highest number of best performances. It had the best per-
formances in 5 out of the 7 metrics considered, which are
bold in Table 6 for easy identifcation. Tese are recall
(0.9831) and F1 score (0.9664) of the intrusion class and
precision (0.9784) and F1 score (0.9572) of the normal trafc
class. It also had the highest accuracy (96.23%) among the
classifers. Te performance of the RF classifer was also
impressive as it had the best performance in terms of the
recall of the normal class (0.9852) and the precision of the
intrusion class (0.9858). For the KNN classifer, a recall value
of 0.9831 implies that 98.31% of actual intrusion instances
were correctly detected while a precision value of 0.9502

implies that out of all instances that have been classifed as
intrusion, 95.02% of them are actual intrusion instances. In
a like manner, recall values of 0.9126, 0.8371, and 0.8588 for
LR, RF, and DT classifers, respectively, imply that 91.26%,
83.71%, and 85.88% of actual intrusion instances were
correctly detected for LR, RF, and DTclassifers, respectively.
Furthermore, precision values of 0.9855, 0.9858, and 0.9849
for LR, RF, and DT classifers, respectively, imply that
98.55%, 98.58%, and 98.49% of instances classifed as in-
trusion instances were correct intrusion classifcations for
LR, RF, and DT classifers, respectively.

Figures 6(a)–6(d) show the confusionmatrices of the LR,
RF, DR, and KNN, respectively. It can be seen that all the
algorithms performed relatively well. If Figures 5 and 6 are

Table 6: Recall, precision, F1 score, and accuracy of the normal and intrusion classes when the number of features is set at 15 features.

Classifer Trafc type Recall Precision F1 score Accuracy

Logistic regression Normal 0.9835 0.9018 0.9409 94.45Intrusion 0.9126 0.9855 0.9477

Random forest Normal 0. 852 0.8316 0.9019 90.37Intrusion 0.8371 0. 858 0.9054

Decision trees Normal 0.9838 0.8505 0.9123 91.50Intrusion 0.8588 0.9849 0.9175

K-nearest neighbors Normal 0.9369 0. 784 0. 572 6.23Intrusion 0. 831 0.9502 0. 664
Te bold fonts indicate top performance scores across the considered machine learning models for the intrusion and normal trafc categories.

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

40000

20000

10000

41371
(50.25%)

3961
(4.81%)

610
(0.74%)

36390
(44.20%)

(a)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

20000

10000

37949
(46.09%)

7383
(8.97%)

548
(0.67%)

36452
(44.27%)

(b)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

20000

10000

38932
(47.29%)

6400
(7.77%)

599
(0.73%)

36401
(44.21%)

(c)

In
tr

us
io

n
N

or
m

al

Intrusion Normal

Ac
tu

al
 V

al
ue

s

Predicted Values

30000

40000

20000

10000

44565
(54.13%)

767
(0.93%)

2334
(2.83%)

34666
(42.11%)

(d)

Figure 6: Confusion matrix of classifers when 15 features are used in the training and testing sets: (a) Logistic regression classifer, (b)
random forest classifer, (c) decision trees classifer, and (d) K-nearest neighbor classifer.

14 Journal of Electrical and Computer Engineering

ROC Curve Analysis

Tr
ue

 P
os

iti
ve

 R
at

e

1.0

0.9

1.00.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0.0

0.0
False Positive Rate

LOGISTIC REGRESSION, AUC=0.998
RANDOM FOREST, AUC=0.961
DECISION TREES, AUC=0.937
KNEAREST NEIGHBORS, AUC=0.995

(a)

ROC Curve Analysis

Tr
ue

 P
os

iti
ve

 R
at

e

1.0

0.9

1.00.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0.0

0.0
False Positive Rate

LOGISTIC REGRESSION, AUC=0.993
RANDOM FOREST, AUC=0.950
DECISION TREES, AUC=0.925
KNEAREST NEIGHBORS, AUC=0.993

(b)

Figure 7: AUC-ROC curve for (a) 30 features and (b) 15 features.

Journal of Electrical and Computer Engineering 15

Table 7: Comparison between the proposed KNN-based KOMIG IDS and existing IDSs.

Classifer Data type Recall Precision F1 score Accuracy

Logistic regression [72] Normal 0. 633 0.8683 0.9134 88.30Intrusion 0.7404 0.9191 0.8201

Ensemble [72] Normal 0.9531 0.9514 0.9522 93.88Intrusion 0.9135 0.9163 0.9149

Decision trees [72] Normal 0.8780 0.9375 0.9068 88.44Intrusion 0.8960 0.8052 0.8482

KNN-KOMIG (proposed) Normal 0.9430 0. 30 0. 674 7.14Intrusion 0. 46 0. 553 0. 746
Te bold fonts indicate top performance scores across the considered machine learning models for the intrusion and normal trafc categories.

Models

CNN-BiLSTM
MemAE

RSHPO-DMN
KOMIG (Proposed)

77.16
85.3

90.88
97.14

0

20

40

60

80

100

120

140

Ac
cu

ra
cy

 (%
)

Figure 8: Comparison between KOMIG (proposed), CNN-BiLSTM, MemAE, and RSHPO-DMN IDSs in terms of accuracy.

Models

CNN-BiLSTM
MemAE

RSHPO-DMN
KOMIG (Proposed)

82.63
87.74

93.58 95.53

0

20

40

60

80

100

120

140

Pr
ec

isi
on

 (%
)

Figure 9: Comparison between KOMIG (proposed), CNN-BiLSTM IDS, MemAE, and RSHPO-DMN IDSs in terms of precision.

16 Journal of Electrical and Computer Engineering

compared, it can be observed that there is only a small
decline in terms of misclassifcation performance by each of
the classifers. For example, the total misclassifcation by LR
was 4.38% in Figure 5 but 5.55% in Figure 6. Tis is just
about a 1% decline, which is acceptable when we consider
that it was caused by a whopping 50% reduction in the
number of features. Considering the decline in mis-
classifcation performance of other classifers, RF increased
from 8.35% to 9.64%, DT increased from 6.3% to 8.43%, and
KNN from 2.86% to 3.76%. In these cases, the highest in-
crease in misclassifcation performance was just about 2%
which is acceptable considering that the number of features
has been reduced by 50%.

Next, we compared the classifers, using the AUC-ROC
curve. Te AUC-ROC is often regarded as a more essential
indicator of an algorithm’s quality when compared to the

accuracy. Tis statistic incorporates the trade-ofs between
precision and recall, while accuracy solely evaluates the
number of right predictions. Te AUC-ROC curve of 30
features is shown in Figure 7(a) while that of 15 features is
shown in Figure 7(b). When the number of features was set
at 30 features, it can be seen in Figure 7(a) that the LR
classifer had the highest AUC value of 0.998 and is followed
very closely by the KNN classifer with an AUC score of
0.995. Tis shows that both the LR and KNN classifers have
a very high intrusion detection probability when the number
of features is set at 30. Te RF and DT both had high AUC
scores too with values of 0.961 and 0.937, respectively.

Te AUC-ROC performances of the 4 classifers when 15
features were used to train their models are illustrated in
Figure 7(b). Just like in Figure 7(a), the LR and KNN both
had the highest AUC score of 0.993. Comparing Figure 7(a)

Models

CNN-BiLSTM
MemAE

RSHPO-DMN
KOMIG (Proposed)

79.91
85.3

96.54 99.46

0

20

40

60

80

100

120

140

Re
ca

ll
(%

)

Figure 10: Comparison between KOMIG (proposed), CNN-BiLSTM IDS, MemAE, and RSHPO-DMN IDSs in terms of recall.

Models

CNN-BiLSTM
MemAE

RSHPO-DMN
KOMIG (Proposed)

81.25
85.26

95.04 97.46

0

20

40

60

80

100

120

140

F1
-S

co
re

 (%
)

Figure 11: Comparison between KOMIG (proposed), CNN-BiLSTM IDS, MemAE, and RSHPO-DMN IDSs in terms of F1 score.

Journal of Electrical and Computer Engineering 17

with Figure 7(b), it can be seen that the reduced number of
features used in Figure 7(b) caused only a small drop in the
AUC scores of LR and KNN classifers. LR dropped from
0.998 to 0.993 while KNN dropped from 0.995 to 0.993. Te
drop in the case of RF and DT was not signifcant either.
Tey were from 0.961 to 0.95 and from 0.937 to 0.925,
respectively.

Next, we compared the performance of the proposed
KNN-based KOMIG IDS method with IDSs existing in the
literature as shown in Table 7. Te comparative classifers,
which are shown in Table 7, were the logistic regression
classifer, the ensemble classifer, and the decision trees clas-
sifer. It can be observed that our proposed scheme had the best
performances in 6 out of the 7 metrics considered (please see
the bold fonts in Table 7). Tese are the recall (0.9946), pre-
cision (0.9553), and F1 score (0.9746) of the intrusion trafc
class. It also performed best in terms of the precision (0.9930)
and F1 score (0.9674) of the normal trafc class. Te highest
accuracy of 97.14%was also achieved by our proposedmethod.

Next, we compare the performance of KOMIG to state-of-
the-art IDSs such as CNN-BiLSTM IDS [78], RSHPO-DMN
IDS [54], and the memory-augmented deep auto-encoder
IDS, MemAE [79]. A comparison of the detection accuracies
of the four models is illustrated in Figure 8.

In can be observed in Figure 8 that our proposed KOMIG
IDS has the highest detection accuracy of 97.14%. It is ahead
of RSHPO-DMN by up to 6.26% since RSHPO-DMN has an
accuracy score of 90.88%. RSHPO-DMN is followed by
MemAE, which has accuracy score of 85.30%, while the least
performing IDS is the CNN-BiLSTM with a score of 77.16%.
Figure 9 illustrates the precision scores of the four IDSs. Te
fgure shows that our proposed KOMIG IDS leads all the
others by having a precision score of 95.53%. It is closely
followed by RSHPO-DMN, which has a precision score of
93.58%, while MemAE and CNN-BiLSTM have precision
scores of 87.74% and 82.63%, respectively.

In Figure 10, the recall score of the four IDSs are
compared. KOMIG IDS takes the lead with a recall score of
99.46%, and it is followed by RSHPO-DMN, which has
a recall score of 96.54%. Te recall score of MemAE is
85.30%, while CNN-BiLSTM’s recall score is 79.91% Finally,
the F1 scores of the four IDSs are compared in Figure 11,
where our proposed KOMIG IDS has the highest score of
97.46%. RSHPO-DMN, MemAE, and CNN-BiLSTM have
F1 scores of 95.04%, 85.26%, and 81.25%, respectively.
KOMIG IDS outperformed all the comparative IDSs shown
in Figures 8 through 11 in terms of accuracy, precision,
recall, and F1 score. Tis indicates that the 2-stage feature
selection procedure that is adopted in KOMIG (which
comprises knapsack optimization and information gain-
based fltering) combined with the proposed feature syn-
thesis operation are highly efective and promising when
applied in intrusion detection systems.

5. Conclusions and Future Works

Tis paper discussed KOMIG IDS, which is a new intrusion
detection system that relies on selecting appropriate features
of a dataset to train machine learning models. To realize

KOMIG IDS, we frst defned an optimization problem for
selecting the best features from the dataset of network trafc.
We then transformed the optimization problem into an
easy-to-solve form, and an algorithm for its implementation
was developed. Following that, we presented a method for
synthesizing new features from the features selected by the
optimizer. Ten, we constructed a candidate features set by
combining the synthetic features with the features selected
by the optimizer. Next, we used an information gain flter to
exclude redundant features from the set of candidate fea-
tures while picking the set of features with the highest in-
formation gain. Te size of the feature set after applying the
proposed KOMIG feature selection procedure was 30 fea-
tures. Finally, machine learning models were trained using
the chosen features. Te models that were trained included
logistic regression (LR), random forest (RF), decision trees
(DT), and K-nearest neighbors (KNN) models. Tese
resulted in four variants of our proposed method, namely,
LR-KOMIG, RF-KOMIG, DT-KOMIG, and KNN-KOMIG.
An experiment was set up using a well-known network
intrusion detection evaluation dataset (the UNSW-NB15
dataset) to evaluate the performance of KOMIG IDS in
comparison to existing state-of-the-art IDSs. Results
revealed that the intrusion detection accuracies of LR-
KOMIG, RF-KOMIG, DT-KOMIG, and KNN-KOMIG
were 95.62%, 91.65%, 93.71%, and 97.14%, respectively.
Hence, our proposed KNN-KOMIG which has an accuracy
score of 97.14% was able to outperform some state-of-the-art
comparative IDSs such as the ensemble learner IDS (which
has an accuracy score of 93.88%) and the RSHPO-DMN IDS
(which has an accuracy score of 90.88%). Furthermore, it
outperformed MemAE and CNN-BiLSTM IDSs which have
85.30% and 77.16% accuracy scores, respectively. Te
KOMIG IDS is limited to binary classifcation only. Hence, it
is only capable of detecting whether or not a network in-
trusion has occurred but it is unable to detect the type of
attack.

In the future, we will extend the KOMIG IDS to cover
multiclass classifcation so that it will not only be capable
of detecting network intrusion but also the type of attack
as well. We will also incorporate new optimization al-
gorithms into KOMIG IDS such as the farmland fertility
algorithm, African vultures optimization algorithm,
mountain gazelle optimizer, and artifcial gorilla troops
optimizer. Tese optimization algorithms will be used to
replace the knapsack optimizer proposed in the current
work so that their performances can be evaluated and
compared.

Data Availability

TeUNSW-NB15 trafc data supporting this study are from
previously reported studies and datasets, which have been
cited.Te datasets are available at https://research.unsw.edu.
au/projects/unsw-nb15-dataset.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

18 Journal of Electrical and Computer Engineering

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

Authors’ Contributions

A.S.A. conceptualized the study, A.S.A. and O.A.A. provided
methodology, A.S.A. collected software, O.A.A validated the
study, A.S.A and O.A.A. performed formal analysis, A.S.A.
investigated the study, A.S.A. and O.A.A collected resources,
A.S.A. prepared the original draft of the study, A.S.A. and
O.A.A. reviewed and edited the study, A.S.A. visualized the
study, O.A.A. supervised the study, and O.A.A. adminis-
trated the project. All authors have read and agreed to the
published version of the manuscript.

References

[1] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion detection of
imbalanced network trafc based on machine learning and
deep learning,” IEEE Access, vol. 9, pp. 7550–7563, 2021.

[2] M. L. Hernandez-Jaimes, A. Martinez-Cruz,
K. A. Ramı́rez-Gutiérrez, and C. Feregrino-Uribe, “Artifcial
intelligence for IoMTsecurity: a review of intrusion detection
systems, attacks, datasets and Cloud–Fog–Edge architec-
tures,” Internet of Tings (Netherlands), vol. 23, pp. 100887–
100922, 2023.

[3] O. Chakir, A. Rehaimi, Y. Sadqi et al., “An empirical as-
sessment of ensemble methods and traditional machine
learning techniques for web-based attack detection in in-
dustry 5.0,” Journal of King Saud University-Computer and
Information Sciences-Computer and Information Sciences,
vol. 35, no. 3, pp. 103–119, 2023.

[4] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud
intrusion detection method based on stacked contractive
auto-encoder and Support vector machine,” IEEE Trans-
actions on Cloud Computing, vol. 10, no. 3, pp. 1634–1646,
2022.

[5] A. Kim, M. Park, and D. H. Lee, “AI-IDS: application of deep
learning to real-time web intrusion detection,” IEEE Access,
vol. 8, pp. 70245–70261, 2020.

[6] M. Data and M. Aritsugi, “T-DFNN: an incremental learning
algorithm for intrusion detection systems,” IEEE Access,
vol. 9, pp. 154156–154171, 2021.

[7] L. M. Halman and M. J. Alenazi, “MCAD: a machine learning
based cyberattacks detector in software-defned networking
(SDN) for healthcare systems,” IEEE Access, vol. 11,
pp. 37052–37067, 2023.

[8] G. Karatas, O. Demir, and O. K. Sahingoz, “Increasing the
performance of machine learning-based IDSs on an imbal-
anced and up-to-date dataset,” IEEE Access, vol. 8,
pp. 32150–32162, 2020.

[9] S. Neupane, J. Ables, W. Anderson et al., “Explainable in-
trusion detection systems (X-IDS): a survey of current
methods, challenges, and opportunities,” IEEE Access, vol. 10,
pp. 112392–112415, 2022.

[10] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali,
and J. Ahmad, “Enhancing IoTnetwork security through deep
learning-powered intrusion detection system,” Internet of
Tings (Netherlands), vol. 24, pp. 100936–36, 2023.

[11] M. A. Hossain and M. S. Islam, “Ensuring network security
with a robust intrusion detection system using ensemble-
based machine learning,” Array, vol. 19, pp. 100306–100314,
2023.

[12] N. Ahmad Hamdi Qaiwmchi, H. Amintoosi, and
A. Mohajerzadeh, “Intrusion detection system based on

gradient corrected online sequential Extreme learning ma-
chine,” IEEE Access, vol. 9, pp. 4983–4999, 2021.

[13] Q. Liu, V. Hagenmeyer, and H. B. Keller, “A review of rule
learning-based intrusion detection systems and their pros-
pects in smart grids,” IEEE Access, vol. 9, pp. 57542–57564,
2021.

[14] J. Lansky, S. Ali, M. Mohammadi et al., “Deep learning-based
intrusion detection systems: a systematic review,” IEEE Ac-
cess, vol. 9, pp. 101574–101599, 2021.

[15] L. Cerdà-Alabern, G. Iuhasz, and G. Gemmi, “Anomaly de-
tection for fault detection in wireless community networks
using machine learning,” Computer Communications,
vol. 202, pp. 191–203, 2023.

[16] K. S. Yakub, O. Harazeem Abdulganiyu, and
T. Ait Tchakoucht, “A novel hybrid ensemble learning for
anomaly detection in industrial sensor networks and SCADA
systems for smart city infrastructures,” Journal of King Saud
University-Computer and Information Sciences, vol. 35, no. 5,
pp. 1–18, 2023.

[17] Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa, and
C. F. M. Foozy, “Benchmarking of machine learning for
anomaly based intrusion detection systems in the
CICIDS2017 dataset,” IEEE Access, vol. 9, pp. 22351–22370,
2021.

[18] J. Ashraf, M. Keshk, N. Moustafa et al., “IoTBoT-IDS: a novel
statistical learning-enabled botnet detection framework for
protecting networks of smart cities,” Sustainable Cities and
Society, vol. 72, pp. 103041–103112, 2021.

[19] R. Lazzarini, H. Tianfeld, and V. Charissis, “A stacking en-
semble of deep learning models for IoT intrusion detection,”
Knowledge-Based Systems, vol. 279, pp. 110941–111013, 2023.

[20] M. H. Nasir, J. Arshad, and M. M. Khan, “Collaborative
device-level botnet detection for internet of things,” Com-
puters & Security, vol. 129, pp. 103172–103220, 2023.

[21] Z. Noor, S. Hina, F. Hayat, and G. A. Shah, “An intelligent
context-aware threat detection and response model for smart
cyber-physical systems,” Internet of Tings (Netherlands),
vol. 23, pp. 100843–100920, 2023.

[22] W. Zhong, N. Yu, and C. Ai, “Applying big data based deep
learning system to intrusion detection,” Big Data Mining and
Analytics, vol. 3, no. 3, pp. 181–195, 2020.

[23] T. Wisanwanichthan and M. Tammawichai, “A double-
layered hybrid approach for network intrusion detection
system using combined naive Bayes and SVM,” IEEE Access,
vol. 9, pp. 138432–138450, 2021.

[24] A. Assiri, “Anomaly classifcation using genetic algorithm-
based random forest model for network attack detection,”
Computers, Materials & Continua, vol. 66, no. 1, pp. 767–778,
2020.

[25] S. Alem, D. Espes, L. Nana, E. Martin, and F. De Lamotte, “A
novel bi-anomaly-based intrusion detection system approach
for industry 4.0,” Future Generation Computer Systems,
vol. 145, pp. 267–283, 2023.

[26] B. Sharma, L. Sharma, C. Lal, and S. Roy, “Anomaly based
network intrusion detection for IoT attacks using deep
learning technique,” Computers & Electrical Engineering,
vol. 107, 2023.

[27] H. C. Altunay and Z. Albayrak, “A hybrid CNN + LSTMbased
intrusion detection system for industrial IoT networks,”
Engineering Science and Technology, an International Journal,
vol. 38, pp. 101322–101413, 2023.

[28] S. Wang, W. Xu, and Y. Liu, “Res-TranBiLSTM: an intelligent
approach for intrusion detection in the Internet of Tings,”
Computer Networks, vol. 235, pp. 109982–110016, 2023.

Journal of Electrical and Computer Engineering 19

[29] M. H. M. Yusof, A. A. Almohammedi, V. Shepelev, and
O. Ahmed, “Visualizing realistic benchmarked IDS dataset:
CIRA-CIC-DoHBrw-2020,” IEEE Access, vol. 10, pp. 94624–
94642, 2022.

[30] I. Leyva-Pupo and C. Cervelló-Pastor, “An intelligent
scheduling for 5G user plane function placement and chaining
reconfguration,” Computer Networks, vol. 237, pp. 110037–
110115, 2023.

[31] S. T. Shishavan and F. S. Gharehchopogh, “An improved
cuckoo search optimization algorithm with genetic algorithm
for community detection in complex networks,” Multimedia
Tools and Applications, vol. 81, no. 18, pp. 25205–25231, 2022.

[32] Z. Zhou, Y. Ning, X. Zhou, and F. Zheng, “Improved artifcial
bee colony algorithm-based channel allocation scheme in low
earth orbit satellite downlinks,” Computers & Electrical En-
gineering, vol. 110, 2023.

[33] S. Ding, T. Zhang, C. Chen et al., “An efcient particle swarm
optimization with evolutionary multitasking for stochastic
area coverage of heterogeneous sensors,” Information Sci-
ences, vol. 645, 2023.

[34] S. O. Ogundoyin and I. A. Kamil, “Optimal fog node selection
based on hybrid particle swarm optimization and frefy al-
gorithm in dynamic fog computing services,” Engineering
Applications of Artifcial Intelligence, vol. 121, 2023.

[35] T. S. Naseru and F. S. Gharehchopogh, “A feature selection
based on the farmland fertility algorithm for improved in-
trusion detection systems,” Journal of Network and Systems
Management, vol. 30, pp. 1–27, 2022.

[36] S. Santra and M. De, “Mountain gazelle optimisation-based
3DOF-FOPID-virtual inertia controller for frequency control
of low inertia microgrid,” IET Energy Systems Integration,
vol. 5, no. 4, pp. 405–417, 2023.

[37] G. S. Nijaguna, J. A. Babu, B. D. Parameshachari,
R. P. de Prado, and J. Frnda, “Quantum Fruit fy algorithm
and ResNet50-VGG16 for medical diagnosis,” Applied Soft
Computing, vol. 136, 2023.

[38] Y. Zhang, C. Han, and S. Liu, “A digital calibration technique
for N-channel time-interleaved ADC based on simulated
annealing algorithm,”Microelectronics Journal, vol. 133, 2023.

[39] S. Manda and C. Singh, “CVFP: energy and trust aware data
routing protocol based on Competitive Verse Flower Polli-
nation algorithm in IoT,” Computers & Security, vol. 127,
2023.

[40] Q. Yang, J. Liu, Z. Wu, and S. He, “A fusion algorithm based
on whale and grey wolf optimization algorithm for solving
real-world optimization problems,” Applied Soft Computing,
vol. 146, 2023.

[41] E. H. Houssein, G. N. Zaki, A. A. Z. Diab, and E. M. Younis,
“An efcient Manta Ray Foraging Optimization algorithm for
parameter extraction of three-diode photovoltaic model,”
Computers & Electrical Engineering, vol. 94, 2021.

[42] F. S. Gharehchopogh and T. Ibrikci, “An improved African
vultures optimization algorithm using diferent ftness
functions for multi-level thresholding image segmentation,”
Multimedia Tools and Applications, vol. 83, no. 6,
pp. 16929–16975, 2023.

[43] R. C. Jebi and S. Baulkani, “Mitigation of coverage and
connectivity issues in wireless sensor network by multi-
objective randomized grasshopper optimization based se-
lective activation scheme,” Sustainable Computing: In-
formatics and Systems, vol. 35, 2022.

[44] A. Seyfollahi, M. Moodi, and A. Ghafari, “MFO-RPL: a secure
RPL-based routing protocol utilizing moth-fame optimizer

for the IoT applications,” Computer Standards & Interfaces,
vol. 82, 2022.

[45] X. Xue, S. K. Palanisamy, D. S. Selvaraj, O. I. Khalaf, and
G. M. Abdulsahib, “A Novel partial sequence technique based
Chaotic biogeography optimization for PAPR reduction in
eneralized frequency division multiplexing waveform,”
Heliyon, vol. 9, no. 9, 2023.

[46] J. Cai, H. Yang, T. Lai, and K. Xu, “A new approach for
optimal chiller loading using an improved imperialist com-
petitive algorithm,” Energy and Buildings, vol. 284, 2023.

[47] V. R. Ekhlas, M. Hosseini Shirvani, A. Dana, and N. Raeisi,
“Discrete grey wolf optimization algorithm for solving k-
coverage problem in directional sensor networks with net-
work lifetime maximization viewpoint,” Applied Soft Com-
puting, vol. 146, 2023.

[48] F. S. Gharehchopogh, “An improved Harris Hawks optimi-
zation algorithmwith multi-strategy for community detection
in social network,” Journal of Bionics Engineering, vol. 20,
no. 3, pp. 1175–1197, 2023.

[49] S. Yalçın and E. Erdem, “Efective cluster scheduling scheme
using local gravitation method for wireless sensor networks,”
Expert Systems with Applications, vol. 233, 2023.

[50] F. S. Gharehchopogh, A. Ucan, T. Ibrikci, B. Arasteh, and
G. Isik, “Slime Mould algorithm: a comprehensive survey of
its variants and applications,” Archives of Computational
Methods in Engineering, vol. 30, no. 4, pp. 2683–2723, 2023.

[51] S. Eskandari and M. Seifaddini, “Online and ofine streaming
feature selection methods with bat algorithm for redundancy
analysis,” Pattern Recognition, vol. 133, 2023.

[52] Y. K. Saheed, T. O. Kehinde, M. A. Raji, and U. A. Baba,
“Feature selection in intrusion detection systems: a new hy-
brid fusion of Bat algorithm and Residue Number System,”
Journal of Information and Telecommunication, vol. 19, 2023.

[53] H. Mohammadzadeh and F. S. Gharehchopogh, “A multi-
agent system based for solving high-dimensional optimization
problems: a case study on email spam detection,” In-
ternational Journal of Communication Systems, vol. 34, no. 3,
2021.

[54] A. Parameswari, R. Ganeshan, V. Ragavi, and M. Shereesha,
“Hybrid rat swarm hunter prey optimization trained deep
learning for network intrusion detection using CNN fea-
tures,” Computers & Security, vol. 139, no. 6, 2024.

[55] F. S. Gharehchopogh, “Quantum-inspired metaheuristic al-
gorithms: comprehensive survey and classifcation,” Artifcial
Intelligence Review, vol. 56, no. 6, pp. 5479–5543, 2023.

[56] O. Aromolaran, T. Beder, E. Adedeji et al., “Predicting host
dependency factors of pathogens in Drosophila melanogaster
using machine learning,” Computational and Structural
Biotechnology Journal, vol. 19, pp. 4581–4592, 2021.

[57] E. Domingos, B. Ojeme, and O. Daramola, “Experimental
analysis of hyperparameters for deep learning-based churn
prediction in the banking sector,” Computation, vol. 9, no. 3,
pp. 34–19, 2021.

[58] M. R. Islam, K. Oliullah, M. M. Kabir, M. Alom, and
M. F. Mridha, “Machine learning enabled IoT system for soil
nutrients monitoring and crop recommendation,” Journal of
Agriculture and Food Research, vol. 14, pp. 100880–100912,
2023.

[59] U. Sakthi, T. Anil Kumar, K. Vimala Kumar, S. Qamar,
G. Kumar Sharma, and A. Azeem, “Power grid based re-
newable energy analysis by photovoltaic cell machine learning
architecture in wind energy hybridization,” Sustainable En-
ergy Technologies and Assessments, vol. 57, 2023.

20 Journal of Electrical and Computer Engineering

[60] G. Ibarra-Vazquez, M. S. Ramirez-Montoya,
M. Buenestado-Fernández, and G. Olague, “Predicting open
education competency level: a machine learning approach,”
Heliyon, vol. 9, no. 11, 2023.

[61] T. Zoppi, A. Ceccarelli, T. Puccetti, and A. Bondavalli, “Which
algorithm can detect unknown attacks? Comparison of su-
pervised, unsupervised and meta-learning algorithms for
intrusion detection,” Computers & Security, vol. 127,
pp. 103107–103112, 2023.

[62] N. Omer, A. H. Samak, A. I. Taloba, and R.M. Abd El-Aziz, “A
novel optimized probabilistic neural network approach for
intrusion detection and categorization,” Alexandria Engi-
neering Journal, vol. 72, pp. 351–361, 2023.

[63] S. Subbiah, K. S. M. Anbananthen, S. Tangaraj, S. Kannan,
and D. Chelliah, “Intrusion detection technique in wireless
sensor network using grid search random forest with Boruta
feature selection algorithm,” Journal of Communications and
Networks, vol. 24, no. 2, pp. 264–273, 2022.

[64] P. Radoglou-Grammatikis, K. Rompolos, P. Sarigiannidis
et al., “Modeling, detecting, and mitigating threats against
industrial healthcare systems: a combined software defned
networking and reinforcement learning approach,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 3,
pp. 2041–2052, 2022.

[65] A. Q. Adeyiola, Y. K. Saheed, and S. Misra, “Metaheuristic
frefy and C5.0 algorithms based intrusion detection for
critical infrastructures,” in Proceedings of the 3rd International
Conference on Applied Artifcial Intelligence (ICAPAI),
pp. 1–7, Halden, Norway, May 2023.

[66] S. M. Kasongo, “An advanced intrusion detection system for
IIoT Based on GA and tree based algorithms,” IEEE Access,
vol. 9, pp. 113199–113212, 2021.

[67] A. Nazir and R. A. Khan, “A novel combinatorial optimization
based feature selection method for network intrusion de-
tection,” Computers & Security, vol. 102, 2021.

[68] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion
detection systems using a feature selection method on the
UNSW-NB15 dataset,” Journal of Big Data, vol. 7, no. 1,
pp. 105–120, 2020.

[69] S. T. Mehedi, A. Anwar, Z. Rahman, K. Ahmed, and R. Islam,
“Dependable intrusion detection system for IoT: a deep
transfer learning based approach,” IEEE Transactions on In-
dustrial Informatics, vol. 19, no. 1, pp. 1006–1017, 2023.

[70] M. J. Babu and A. R. Reddy, “SH-IDS: specifcation heuristics
based intrusion detection system for IoT networks,” Wireless
Personal Communications, vol. 112, no. 3, pp. 2023–2045,
2020.

[71] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and
R. T. Goswami, “An integrated rule based intrusion detection
system: analysis on UNSW-NB15 data set and the real time
online dataset,” Cluster Computing, vol. 23, no. 2, pp. 1397–
1418, 2020.

[72] N. Tockchom, M. M. Singh, and U. Nandi, “A novel en-
semble learning-based model for network intrusion de-
tection,” Complex & Intelligent Systems, vol. 9, no. 5,
pp. 5693–5714, 2023.

[73] P. Bhat and K. Dutta, “A multi-tiered feature selection model
for android malware detection based on Feature discrimi-
nation and Information Gain,” Journal of King Saud Uni-
versity-Computer and Information Sciences, vol. 34, no. 10,
pp. 9464–9477, 2022.

[74] N. Moustafa, “UNSW-NB15 dataset,” 2024, https://research.
unsw.edu.au/projects/unsw-nb15-dataset.

[75] J. Zhu and X. Liu, “An integrated intrusion detection
framework based on subspace clustering and ensemble
learning,” Computers & Electrical Engineering, vol. 115,
pp. 109113–109122, 2024.

[76] S. M. Kasongo, “A deep learning technique for intrusion
detection system using a recurrent neural networks based
framework,” Computer Communications, vol. 199, pp. 113–
125, 2023.

[77] K. E. Hoque and H. Aljamaan, “Impact of hyperparameter
tuning on machine learning models in stock price fore-
casting,” IEEE Access, vol. 9, pp. 163815–163830, 2021.

[78] K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion
detection combined hybrid sampling with deep hierarchical
network,” IEEE Access, vol. 8, pp. 32464–32476, 2020.

[79] B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, “Network
anomaly detection using memory-augmented deep autoen-
coder,” IEEE Access, vol. 9, pp. 104695–104706, 2021.

Journal of Electrical and Computer Engineering 21

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

