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Maintaining the maximum performance of solar panels poses the foremost challenge for solar photovoltaic power plants in this
era. One of the common PV faults which decreases PV power output is a hot spot which is caused by a prolonged local partial
shading from objects, such as dust piles or animal waste. To prevent it, an enormous efort for PV inspection is needed especially
for large solar power plants. Hence, automatic partial shading detection is critical in preventing PV hot spots to assist maintenance
activities which are associated with a drop in energy output. Tis research developed fast partial shading detection application on
PV modules using digital image processing to detect the hot spot and PV modules areas and afterwards calculate the PV systems
power loss ratio.Te proposedmethod demonstrated a hot spot detection rate of 94.74% and amodule detection rate of 100%.Te
power loss ratio calculation is compared and validated using IV curve measurement and has 91.26% similarity value which is
a feasible application for the real-world system.

1. Introduction

Te solar PV energy system’s constant development and
cost-reduction benefts have brought it into a popular re-
newable energy solution for large-scale implementation or
small-scale distributed generation (DG) [1]. In 2022, the
increased capacity of solar PV accounts for 220GW, which is
more than half of the total increase in renewable energy,
namely, 340GW.Tis growth is attributed by market-driven
procurement and corporate power purchase agreements [2],
thus indicating the pivotal element of solar PV technology in
the industrial sector’s efort to shift towards a sustainable
energy system by implementing the solar PV roof-top for
which its load profle matches with solar cycle and has
adequate infrastructure for installation [3].

Typically, PV modules are designed with a life span of
about 25 years and can be reduced due to external factors,
such as weather conditions’ efects [4]. Moreover,

controlling the power generated by PV systems is impossible
because it relies on the irradiance and ambient temperature
within the installed PV location [5]. Tis gives rise to what is
termed “PV mismatch,” signifying the diference between
the expected output power of a PV module and its actual
performance [6], can occur.

Bressan et al. [7] and Femia et al. [8] have highlighted
that the primary cause of PV mismatch, which signifcantly
afects power production, is partial shading. It refers to
a situation where specifc areas of a solar panel are cast in
shadows or there are objects falling on the surface of PV such
as uneven dust or soiling [9, 10]. When shading afects
a greater number of individual cells and occurs unevenly,
a higher proportion of cells will operate in a state of reverse
direction, resulting in the generation of signifcant but
dispersed heat energy in abnormally high temperature [11].
Te continued exposure to these elevated temperatures
accelerates the degradation of the material used to
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encapsulate PVmodules at a faster pace, which in turn limits
the amount of radiation that the cells can receive. Tis
phenomenon is commonly referred to as “hot spots” and
potentially leading to irreversible damage to the cells [12]. A
potential approach for addressing this issue entails the in-
corporation of bypass diodes between the modules. How-
ever, it is important to keep in mind that while this solution
is advantageous, it does not efectively resolve the underlying
issue [13].

Moreover, when photovoltaic (PV) modules reach the
end of their operational lifespan or sufer damage, they
transform into environmentally hazardous waste. Tis
phenomenon can be attributed to the presence of heavy
metals, such as lead (Pb), tin (Sn), and silicon (Si), within the
PV module materials. Tese heavy metals possess the po-
tential to leach into the soil or groundwater, leading to
pollution and posing health hazards when ingested by
humans [14].

Terefore, maintaining the condition and the maximum
performance of PV module has emerged as a signifcant
challenge for solar power plants in the present era. While
regular maintenance is essential, conducting manual in-
spections can be impractical and resource-intensive, par-
ticularly for large-scale systems [15]. Tis necessitates the
development of automated techniques for fast identifcation
of partial shading to prevent hot spot occurrence.

Tere are already several developments in PV inspection
methods to analyze the condition of PV modules. Tose are
visual image inspection [16], infrared thermography (IRT)
[17], photoluminescence [18], electroluminescence [19], and
IV characteristic measurements [20]. Among those, IRT
inspections appear to be more suitable to provide appealing
fault diagnosis of PV modules. Tis is due to the fact that
thermal imaging is a fast method which requires minimal
instrumentation and works without disrupting the operation
of the PV system in the feld [21, 22]. Accordingly, this paper
aims to detect partial shading faults using IRT methodol-
ogies to prevent performance degradation of PV modules
where surveillance is difcult or time-consuming and an-
alyze its power output reductions caused by the faults using
the pixel area of the detected hot spot and panel to simplify
maintenance work.

In recent years, some studies have reported their liter-
ature on PV plant inspection using IRT. Te detection is
carried out after images are captured by a thermal camera or
UAV and then are processed in computer software. Te
reviews, listed in Table 1, cover several insights regarding
several algorithms used such as digital image processing
(DIP) [23–30], deep learning (DL) [31], and other machine
learning (ML) techniques [26, 32], which have comparable
results to detect modules with or without faults and classify it
into a category. Despite that, those approaches were able to
detect the module’s fault but do not address its correlation to
the module itself.

In our proposed method, a fast partial shading de-
tection application was developed to accurately detect
parts of the PV module undergoing potential hot spot
situations. Te detected PV module’s pixel area allows us
to formulate a power loss ratio to predict its power output

reduction that has been evaluated by measurement ex-
periment. Our novelty and main contributions to this
paper are as follows:

(1) A fast partial shading detection on the PV module
based on an adaptive thresholding and modifed
noise fltering approach is proposed to enable fast
and accurate detection. Te method uses a combi-
nation of thermal and visual images captured by IRT
to detect the potential hot spots situations.

(2) A power loss ratio formula is developed, which
serves as a methodology for quantifying the re-
duction in power output from the pixel density of the
detected partial shaded area and PV module.

(3) Te validation and evaluation of the proposed de-
tection method and formula are conducted through
a benchmarking process against the manual in-
spection method, known as the current-voltage (IV)
characteristic curve inspection method.

Te paper is structured as follows. In Section 1, the
objective and related studies are introduced. Section 2 delves
into the confguration and algorithm used in the research,
providing a detailed explanation of the methodology used to
detect partial shading faults. Section 3 discusses the ex-
periment result obtained from the study, which is the de-
tection in thermal images and IV curve validation, followed
by concluding remarks in Section 4.

2. Experimental Setup

Te collection of thermal and visual image data was con-
ducted within the context of a laboratory-scale PV power
plant simulation. Tis simulation replicates an of-grid solar
PV system, which is frequently deployed in remote areas
depicted in Figure 1. Two modules were utilized to simulate
distinct conditions: one module operated under normal
conditions, while the other was subjected to partial shading
which shows a potential hot spot situation. Te black tape
was employed to obstruct sunlight from reaching the solar
cells, thereby inducing partial shading and simulating a hot
spot scenario. Te frst hot spot, marked as light red, has an
area of 100× 50mm, while the second hot spot, marked as
red, has an area of 152.4×152.4mm. Furthermore, the PV
module is connected to a load as a 500W lamp to form
a closed circuit so that current fows and a hot spot arises. All
data regarding the module operation such as irradiance,
temperature, current, and voltage are captured using mea-
surement tools. Te PV module used in this experiment is
Bifacial JSKY 260, and its technical specifcation is stated in
Table 2.

When the PV module is operating, visual and thermal
imagery is taken using an unmanned aerial vehicle (UAV)
simulated using a Flir E8XT camera with adjustable height
and distance, as pictured in Figure 2. Te image was cap-
tured multiple times over several days under varying con-
ditions to obtain the test data.Ten, the image is entered into
the application for hot spot detection and module
segmentation.
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Te IV curve and irradiation are measured using the
Seaward Solar Survey 200R and PV200, which can be
connected wirelessly with the help of a connection from
Seaward Solarlink to compare the output parameters be-
tween standard solar modules and hot-spotted modules. Te
measurement follows a topology such as in Figure 3. Fur-
thermore, the data retrieval process and tools that were used
are shown in Figure 4.

Tese data are processed using software from each de-
vice. SolarCert and SolarDataLogger, Seaward’s built-in
software, are used to process irradiation, IV curve, and
ambient temperature data. FLIR TOOLS, the built-in soft-
ware of FLIR E8-XT, is used to process thermal image data
and visible light imagery. Finally, temperature data from the
thermocouple thermometer sensor are processed using

Excel. So, images were obtained with the radiation data of
360W/m2 to 919W/m2, which can represent the PV in-
stallation environment.

3. Image ProcessingMethod to Detect Defective
PV Module

Image processing techniques use segmentation and extract
most objects’ feature and accurately detect object with less
computational resources [33]. Although deep learning has
been the state-of-the-art method to detect objects in an
image or video due to better accuracy and probability score
result [34], it can only be useful with a sufcient training
dataset refecting large diversity of target conditions, since
decreasing the number of data used will increase its de-
tection error [35]. On-device AI tasks using machine
learning also show prominent energy drain for drones and
mobile systems in general [36]. Tus, for faulty PV modules,
where data are still new and scarce, image processing is still
the efective technique to achieve our objective.

Our proposed method uses adaptive thresholding and
modifed noise fltering approach as a template for the image
to detect objects. Figure 5 shows the main steps of the
proposed algorithm. Partially shaded PV module images are
captured using the infrared camera and RGB camera as
shown in Figure 6. Ten, hot spot features are extracted on
the thermal images to detect occurring hot spots in the

Inverter
500 W6

- -

1

5

7

8

9

2

4

1. PV module with 2 hot spot in 
diferent size

2. Normal PV module
3. Seaward Solar Survey 200R
4. APPA 55 Termometer
5. Solar Charge Controller
6. Inverter 500 W
7. Lamp 500 W
8. MCB
9. Lead Acid Battery 48 V 17 Ah

3

Figure 1: Simulated load topology.

Table 2: Technical specifcation of bifacial JSKY 260.

No Parameter Specifcation
1 Power 260Wp
2 Module dimension 1640× 990× 40mm
3 Cell dimension 152,4×152,4mm
4 Total cell 60
5 Open circuit voltage 77.6V
6 Short circuit current 8.9 A
7 Voltage maximum power point 62.4V
8 Current maximum power point 8.33V

4 Journal of Electrical and Computer Engineering



module that difer from a typical module’s working heat.
Some processes include binary thresholding based on the
image histogram’s average value and standard deviation.

Ten, a morphological transformation is carried out to
maintain or reduce the basic shape of the solar modules from
the thresholding results. After that, a noise flter is designed
to ensure cell-level hot spots on the PV module are detected.
In contrast, tiny hot spots are fltered out due to inaccuracies
in the camera’s temperature measurement. Lastly, the defect
ratio is calculated by dividing the total hot spot area by the
total module area. Te fnal image will combine all contours
detected, the area information of the hot spot and module,
and the defect ratio.

3.1. Hot Spot Segmentation. Te thermal image is frst
converted to grayscale for hot spot segmentation to speed up
the image process time and smoothed using Gaussian blur.
Ten, the image’s average value and standard deviation are
calculated based on the histogram in Figure 7. Kim et al. [24]
use criterion for mean intensities (CMIs) and criterion for
standard deviations (CSDs) with one standard deviation
range to be classifed as a defective panel thus lacking
adaptability on new images.

Terefore, the threshold limit in the binary thresholding
function can be calculated by using (1) and (2). So, the
system will be adaptive; that is, the user does not need to
calibrate each diferent image.
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Figure 2: Infrared thermography inspection simulation.
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Figure 3: IV curve measurement circuit topology.
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Threshold � mean +(n∗ std), (1)

pixel(x, y) �
1, pixel(x, y)≥ threshold,

0, pixel(x, y)< threshold.
􏼨 (2)

3.2. Module Segmentation. For module segmentation, the
visual image is converted into an HSV colour space
rather than using the average luminance that Aghaei et al.

[37] used. Tis method enables us to separate the
background and the modules using the binary thresh-
olding much more easily, and it can be controlled using
software [28].

Te next stage is implementing module edge detection
with canny edge detection which Xie et al. used [29]. Tis
only produces little noise, unlike other methods, such as
Sobel edge detection [38] and Laplacian edge detection
[39], as shown in Figure 8. While line detection in each
module is performed using the Hough line transform by

(a) (b)

(c) (d)

(e)

Figure 4: Data retrieval process and tools. (a) Solar module temperature using a contact thermometer, (b) irradiation value and ambient
temperature using 200R solar survey, (c) IV curve data measurement, (d) simulated load installation on the system using battery and 500W
lamp, and (e) thermal image and visible light image collection FLIR camera.
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(a) (b) (c)

Figure 6: Sample images used: (a) ironbow infrared images, (b) white hot-infrared infrared images, and (c) visual RGB images.
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Figure 7: Histogram method to calculate mean and deviation.
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Gao et al. [23], it can only obtain the largest and longest
continuous line on the image and cannot obtain more
detailed lines [29]. Also, for a large-scale PV plant, it would
not be efective for the visualization itself as the line would
not be seen in higher altitude.

Ten, morphological transformations, such as dilation,
opening, and closing, are performed to maintain the basic
shape of the PV module. After obtaining the intact solar
module image, module detection uses contours to determine
the bounding box with a contour value greater than the
module flter threshold value.

3.3.NoiseFiltering. Te flter design is carried out to obtain
the threshold value of cell and module detection so that
the system can distinguish real hot spots from tiny hot
spots with similar characteristics. Using the previously
established image capture method, the distance between
the FLIR E8-XT camera and the center point of the PV
module are measured using the Pythagoras theorem. Te
Flir E8-XT camera has a vertical and horizontal feld of
view (FOV) of 45° and 34° with a resolution of 320 × 240
pixels. Taking these values into account, we can calculate
the width of the projection image obtained with the
following equation:

x | y � 2tan
FOVx|y

2
􏼠 􏼡t. (3)

Te horizontal width and vertical width values of the
image projection are divided by the resolution of the camera
to get the pixel density of the image for the x and y axis of the
module which is explained in the following equations:

ppi(x | y) �
resolutionx|y

projection imagewidth
pixel
mm

, (4)

ppi � ppi(x)∗ ppi(y)
pixel
mm2, (5)

where ppi is pixel per inch and its units are pixel/mm to
simplify the calculation.We also calculate the flter needed to
diferentiate between possible error in thermal camera and
real shade. Ten, if we multiply it by the pixel density value
of the image, we will obtain the value of the number of pixels
for each cell and each module contained in the image which
is stated in the following equation:

pixel(cell|module) � area(cell|module) ∗ ppi, (6)

Noise Filter(cell|module) � pixel(cell|module) ∗m%, (7)

wherem is flter threshold value to eliminate the noises. Tis
m value will be tested from 0 to 100% to produce the most
optimal flter noise value.

3.4. Power Loss Ratio. After hot spot and module segmen-
tation is carried out, the contour area of the detected objects
that is found is used to calculate PV defect ratio. Defect ratio
is a measurement of how large is the hot spot area with
respect to the total PV module area. Typically, this process
involves calculating the ratio between PV power output
under optimal conditions and when defects occur, which is
carried out through IV curve measurements. Te reduction
in the IV curve, when several cells are shaded, corresponds to
the activation of multiple bypass diodes, resulting in several
steps in the IV curve, as demonstrated in Dolara et al. [20].

Canny Laplacian

Sobel X Sobel Y

Figure 8: Edge detection results using diferent methods.
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To obtain similar results using digital image processing,
the power loss ratio can be computed by dividing the cu-
mulative pixel area of detected hot spots by the total pixel
area of PV modules identifed through contour-based seg-
mentation, as demonstrated in (8) by Dhimish et al. [40].
Furthermore, by using the defect ratio, we can formulate the
power loss ratio since the increase in hot-spotted solar cells
would reduce the total power. Te PV module power re-
duction with its standard condition due to partial shading
can be stated as follows:

defect ratio �
􏽐 areacell

􏽐 areamodule
, (8)

power loss ratio(%) � Defect ratio∗R∗B∗ 100%, (9)

where R is the number of bypass diode in the module and B
is the bypass diode that is activated during the defected
condition. Tis estimation method will be tested with the IV
curve test calculation to assist maintenance activities.

4. Results and Discussion

In this research, the detection algorithm is tested using 38
images collected for three days.Te captured image is shown
in Figure 9, which has two PV modules and is conditioned

with two hot spots. Te frst hot spot, pointed at Sp1, has
a temperature of 69.5°C.Te second hot spot, pointed at Sp2,
has a temperature of 64.7°C. Also, the cell’s temperature
pointed at Sp3 that operate normally is 59.3°C. Tese points
show the distinct operation temperature between cells ex-
periencing partial shading, which may become potential hot
spots if prolonged exposure continues.

Tese images are analyzed using the program designed
to test the capability and accuracy of the program’s de-
tection. After that, a comparative analysis was carried out
using the IV curve inspection method to validate the power
loss ratio calculation.

4.1. Hot Spot and PV Module Detection. Before hot spot
detection was executed, a threshold variation test was carried
out for hot spot and module segmentation. To perform hot
spot segmentation using (1), we conducted a variation test
with n values ranging from 0 to 2 during the thresholding
process.Temost optimal n value, which efectively detected
hot spots in the image while minimizing noise, was de-
termined to be n� 1.7, as illustrated in Figure 10.

For the module segmentation using HSV colour
conversion, a lower and upper HSV value variation test
was conducted and acquired for lower HSV [110, 0, 0] and
upper HSV [255, 255, 255] displayed in Figure 11. Ten,

Figure 9: Module temperature profle.

Figure 10: Hot spot segmentation.
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masking is implemented to fnd the module’s edge or
contour of the module.

Subsequently, a noise fltering process was implemented
to reduce errors in hot spot detection arising from noise
interference. Extensive testing involved varying the m%
parameter for both pixel cells and modules in accordance
with (6) and (7). Figure 12 illustrates the outcomes before
and after noise fltering, highlighting that a cell flter
threshold of 45% and a module flter threshold of 75% were
chosen due to their ability to achieve the most optimal
detection results.

Te fnal result can be seen in Figure 13, showing the
original images, hot spot segmentation, module segmenta-
tion, and the resulting image. Te fnal image also calculates
the area of the detected PV module and hot spots in pixels,
calculates its defect ratio, and measures the height and width
of the panel. Te testing is conducted by analyzing the image
one by one.

Tests are analyzed based on the program’s ability to
detect hot spots or PV modules. Figure 14(a) shows that hot
spot one was detected 38 times out of 38 images taken with
an average of 868 pixels; however, in Figure 14(b), hot spot

Figure 11: Calibrating lower and upper limits for PV module segmentation.

(a) (b)

Figure 12: Noise fltering for (a) hot spot and (b) PV module edge images.
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Figure 13: Final image of program’s detection.
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Figure 14: Hot spot detection result in pixel. (a) Detection result on larger hot spot and (b) detection result on smaller hot spot.
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two was detected 34 times out of 38 images taken with an
average of 168 pixels. Tis occurs because the second hot
spot is smaller in size compared to the frst one. Due to
various conditions, the adaptive thresholding process
identifes the second hot spot as a very small pixel area,
leading the system to categorize it as noise and subsequently
ignore it. Meanwhile, based on Figure 15, for module de-
tection, it successfully detected all 76 modules of all 38
images with an average of 15,672 pixels.

From all the detection results, a calculation of the ac-
curacy is carried out to evaluate the algorithm performance.
Te accuracy is defned as follows:

accuracy �
TP + TN

TP + TN + FP + FN
, (10)

where the true positive (TP) value is the number of detected
real objects, false positive (FN) is object detection errors,
true negative (TN) is the number of real objects that failed to
be detected, and false negative (FN) is the number of real
objects that do not exist and are not detected. Te confusion

matrix is shown in Figure 16, and we obtain the accuracy
value for hot spot detection reaching 94.74% and the module
detection ratio reaching 100%. Tis demonstrates compa-
rable outcomes to the approach by Huearta et al. [31], which
employs RCNN for detecting hot spots and modules but
ofers the advantages of feasibility with a smaller dataset and
resource efciency. Hence, this indicates that the program is
in a good accuracy range and feasible for real-world
application.

4.2. Power Loss Ratio Evaluation Using IV Curve.
Figure 17 explains how hot spots afect solar modules’
output power and compares each confguration in the IV
characteristic curve. Modules that have hot spots cause
a decrease in current twice as much as the normal one, the
same as the number of hot spots. Te frst decrease occurs
due to a shadow efect measuring 100× 50mm or 20% of the
cell size, while the second decrease occurs due to a shadow
efect measuring 152.4×152.4mm or 100% of the cell.
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Figure 15: PV module detection results in pixel.
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Figure 16: Normalized confusion matrix: (a) hot spot and (b) PV module.

Journal of Electrical and Computer Engineering 13



Tis condition is referred to as a double step IV curve,
which occurs because the PV module has hot spots on two
substrings with diferent short circuit currents.Te hot spots
on the two substrings activate bypass diodes connected in
parallel to the substrings. Te signifcant diference in drop
can occur because the current through the two bypass diodes
is diferent for each substring and depends on how large the
shading efect is which closes the cell until a hot spot occurs.

From this IV curve, we calculate the power loss ratio and
compare it with the calculation from (8) and (9). Using the
maximum power point of the normal condition and the hot-
spotted condition on the same irradiance value, the power loss
ratio is 43.5%. Compared to that, by using (8) to calculate the
defect ratio with the average pixel area in Figures 13 and 14 and
then (9) where the activated bypass diode is two based on the
hot spot in the image, the power loss ratio is 39.7%. Tus, the
similarity value is 91.26% which is accurate enough and highly
acceptable as the diference is relatively small. Te error may
arise from inaccuracies in measuring distances and rounding
during pixel per image (ppi) calculations.

5. Conclusion

In this work, thermography-based hot spot detection and
power loss ratio estimation is proposed. Te image processing
techniques are based on adaptive thresholding techniques,
morphological transformation, and noise fltering to produce
a bounding box around the detected hot spots and PVmodules
and calculate its area by the pixel density. Te detection
produces hot spot detection accuracy of 94.74% and module
detection accuracy of 100%. However, the proposed hot spot
detection algorithm encounters challenges in identifying the
second, smaller hot spot, primarily due to its dependence on
pixel density. A lower pixel density can lead the program to
misclassify it as noise rather than a fault.

Additionally, a power loss ratio calculation method is
proposed and evaluated alongside the common measurement
method of IV curves, resulting in a similarity value of 91.26%.
Tis degree of similarity underscores the adequacy of the
method, as the observed deviation falls within acceptable limits
for real-world system applications. In conclusion, the approach
demonstrates promising capabilities for hot spot detection and
power loss estimation in photovoltaic systems, with potential
avenues for further refnement and application.

In future research, it is necessary to investigate the in-
tegration of thermal image analysis with real-time power
generation data from PV plants to enhance the accuracy of
predicting the remaining useful lifetime (RUL) of PV
modules, thereby enhancing the reliability of maintenance
operations. Moreover, there is a compelling necessity to
explore the development and implementation of autono-
mous fault detection and diagnostic systems within real-
world PV plant setups. Such integration would substantially
reduce the need for manual inspections and subsequently
minimize downtime, aligning with the goal of enhancing
overall operational efciency.
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