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Distributed generators (DGs) offer significant advantages to electric power systems, including improved system losses, stability,
and reduced losses. However, realizing these benefits necessitates optimal DG site selection and sizing. This study proposes a
traditional multiobjective particle swarm optimization (PSO) approach to determine the optimal location and size of renewable
energy-based DGs (wind and solar) on the Namibian distribution system. The aim is to enhance voltage profiles and minimize
power losses and total DG cost. Probabilistic models are employed to account for the random nature of wind speeds and solar
irradiances. This is used in an algorithm which eventually optimizes the siting and sizing of DGs using the nearest main
substation as reference. The proposed method is tested on the Vhungu-Vhungu 11 kV distribution network in Namibia. Four
cases were considered: base case with no DG, solar power, wind power, and a hybrid of both wind and solar. Optimal values
for each case are determined and analyzed: 0.69.93 kW at 26 km for solar PV-based DG and 100 kW at 42 km for wind-based
DG. These findings will serve as a valuable blueprint for future DG connections on the Namibian distribution network,
providing guidance for optimizing system performance.

1. Introduction

Namibia faces a significant electricity demand, with 611MW
needed to meet its requirements. To fulfill this demand, the
country heavily relies on imports, obtaining 60% of its
electricity from South Africa and Zambia [1]. However,
Namibia possesses a unique advantage due to its geographic
location, as it boasts one of the highest solar irradiation
levels in the world, reaching 3000 kWh/m2 and an estimated
maximum solar potential of 344GW. Additionally, the
country’s 1600 km coastline experiences a yearly average
wind speed of 10m/s, offering a substantial wind energy
potential of 27.201GW. Furthermore, Namibia’s terrain is
covered with invader bush, which, if effectively utilized, has
the potential to generate up to approximately 100MW of
power [2]. As Namibia looks to the future, there is an
expectation of integrating numerous distributed generators
(DGs) into its distribution networks. The integration of
these renewable energy sources into medium voltage net-
works brings forth numerous benefits. However, it is crucial

to emphasize that these benefits can only be fully realized if
the size and location of these DGs are carefully determined
and optimized. The optimal sizing and siting of DGs serve
as the foundation for effective renewable energy planning
in the country. The placement of DGs holds particular
significance when considering the impact on power losses
within the system. Addressing this issue requires careful
consideration of the DGs’ size and location, taking into
account system losses, voltage stability, and overall network
performance. Namibia’s abundant solar irradiation, coastal
wind resources, and potential utilization of invader bush pres-
ent promising opportunities for renewable energy integration.
However, optimizing the size and placement of DGs is
paramount to ensure the realization of these benefits while
mitigating potential challenges associated with power losses
and voltage instability. By implementing effective planning
strategies, Namibia can harness its renewable energy potential
and pave the way for a sustainable and resilient energy future.

In residential distributed generation (DG) systems, the
presence of voltage instability poses a potential challenge.
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This is primarily due to the limitations of low voltage lines,
typically operating at around 11 kV, which are unable to
effectively accommodate the penetration of over 500 kW
of generated electricity [3]. The voltage level at each bus,
where both the DG units and loads are connected, further
influences the extent of power losses experienced within
the system [4]. The adverse impacts of DG integration on
power losses have been extensively studied and documented
[5]. To address the challenges associated with DG integra-
tion, researchers have solved the optimization problem of
determining the optimal size and location of DG units within
an existing distribution network [6]. By utilizing advanced
optimization techniques such as multiobjective particle swarm
optimization (PSO), researchers strive to identify the optimal
configuration of distributed generation (DG) units that simul-
taneously minimize power losses and consider additional
objectives such as voltage stability and cost. Extensive research
and empirical studies have consistently demonstrated that a
considerable portion of DGs, typically ranging from 10% to
50%, can be effectively integrated into distribution networks
without compromising their overall performance [7]. How-
ever, achieving optimal integration and minimizing the
impact on power losses require careful planning, taking into
account factors such as network topology, load demand pat-
terns, and available capacity.

Sizing and siting of distributed generators (DGs) in a
radial distribution network pose a complex optimization
problem. Single or a multiobjective approach is used. Single
objective functions are aimed at minimizing system power
losses, improving system voltage profiles, minimizing costs,
enhancing system reliability, and more. On the other hand,
multiobjective functions combine two or more single objective
functions to capture multiple criteria simultaneously. Many
articles in literature have worked on optimization techniques
for DG integration; their main contribution and research gaps
are individually analyzed in Table 1. Some literature focus on
technical aspects [8–14], economic impacts [15–17], and envi-
ronmental considerations [18]. Some literature considers a
combination of both [16, 19, 20]. Various methods exist in
the literature for solving the DG siting and sizing problem,
each with its own advantages and disadvantages. Among
them, particle swarm optimization (PSO) is widely utilized
due to its simplicity, ease of implementation, and ability to
explore a broad search space without being constrained by
local optima. The weighted sum approach is commonly used
in practical applications due to its simplicity and versatility
in incorporating various constraints beyond the feasible
region. This approach is indicated in [10, 11, 14, 20]. This
approach involves assigning relative importance to different
objectives based on their significance in the overall system per-
formance. For instance, minimizing power losses or improv-
ing voltage profiles may be assigned higher priority
compared to other objectives. Furthermore, it is crucial to con-
sider the uncertainty associated with solar and wind resources
[9, 10, 12, 13, 21, 22]. As solar and wind power generations
exhibit intermittent characteristics, their output is subject to
variability and uncertainty. Probabilistic or stochasticmethods
can be employed to model and analyze this uncertainty,
enabling robust decisions in DG siting and sizing.

From the existing literature, it is evident that the major-
ity of the researchers have focused on singular components
of the objective functions, such as technical, economic, or
environmental factors. However, this study takes a compre-
hensive approach by considering both technoeconomic
aspects when addressing the optimal allocation of distrib-
uted generator (OADG) problem. One common limitation
found in previous research is the assumption of dispatchable
DGs, neglecting the stochastic nature of renewable energy-
based DGs, specifically solar and wind. This assumption
can lead to undesirable outcomes, as it fails to account for
the intermittent and unpredictable nature of these energy
sources. To overcome this limitation, this study acknowl-
edges and incorporates the stochastic behavior of solar and
wind resources into the analysis. Moreover, while some
studies consider the random nature of renewable energy-
based DGs, they often model it on a monthly or yearly basis
[10, 13, 15]. This approach can potentially impact the accu-
racy of the results, as it overlooks the time-varying and
hourly probabilistic characteristics of wind and solar
resources. In contrast, this paper introduces an hourly prob-
abilistic model that effectively captures the random nature of
these energy sources, resulting in a more realistic representa-
tion of their behavior. The main contributions of this study
can be summarized as follows:

(i) Development of an hourly probabilistic model: by
incorporating an hourly probabilistic model, the
study accurately captures the random characteris-
tics of wind and solar resources, enabling a more
precise analysis of their impact on the DG allocation
problem

(ii) Consideration of technoeconomic parameters: in
addition to system losses, this study takes into
account important technoeconomic parameters
such as DG investment cost and voltage profiles.
By considering these factors, the proposed approach
ensures that the DG sizing and siting decisions are
not only technically sound but also economically
viable

(iii) Introduction of a distance function: to determine
the optimal distance of the DG from the slack, a dis-
tance function is introduced. This function helps in
identifying the most favorable location for the DGs,
considering factors such as power flow and voltage
stability

(iv) Simultaneous siting of wind and solar DGs: unlike
previous studies that often focus on either wind or
solar DGs, this study considers the simultaneous sit-
ing of both types of DGs. This comprehensive
approach allows for a more holistic and integrated
analysis of renewable energy integration in the dis-
tribution system

(v) This study employed a traditional weighted multi-
objective PSO approach. It utilizes relative weights
to optimize multiple objectives effectively
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Table 1: Literature review of use of MOPSO technique for optimizing DG sizing and placement in a distributed network.

Contribution Ref.

(i) The study is aimed at reducing feeder losses and enhancing voltage quality. A Stamford generator, with a rated power of
1350 kW, was integrated into the network

(ii) Research gaps: the analysis did not consider time-dependent loads and time-dependent generation. Additionally, renewable
energy-based distributed generators (DGs) were not considered

[8]

(i) The modified voltage index (MVI) method was utilized to determine the optimal placement and size of DG units in order to
enhance the voltage stability margin

(ii) Research gaps: the study adopted a single DG placement approach, considering one DG at a time and assessing its placement at
different buses. Economic variables such as investment and operational costs were not taken into consideration in the analysis

[9]

(i) The approach is aimed at minimizing power losses in the electrical network while improving voltage stability and network
security. To address the stochastic nature of solar irradiance and wind speed, suitable probabilistic models were employed,
allowing for realistic representation of their variability in the analysis

(ii) Research gaps: the study focused solely on the technical aspects of optimal placement and sizing of solar and wind distributed
generators (DGs) in the distribution territory; however, economic factors such as investment costs, operational costs, or financial
considerations were not taken into account in the analysis

[10]

(i) Used weighted multiobjective voltage index to minimize real power loss and enhance the voltage profile within the system
(ii) Research gaps: the study considers a general type of distributed generators (DGs) integrated into the network without specifying a

particular DG type. The focus of the analysis is solely on technical aspects
[11]

(i) It employs a multistate modeling approach to account for the uncertain nature of wind and solar resources. The proposed model
evaluates deviations in several key parameters, including annual energy losses (AEL), total DG penetration, loss of load
expectation (LOLE), and loss of energy expectation

(ii) Research gaps: the study primarily focuses on technical aspects and incorporates monthly, seasonal, and yearly models of solar
and wind resources. It does not include hourly models, which means that the analysis does not account for the fine-grained
variations and fluctuations in solar irradiance and wind speed throughout the day

[12]

(i) A methodology was proposed to optimize the allocation of different types of renewable distributed generation (DG) units within
the distribution system with the objective of minimizing annual energy loss. This methodology involves the utilization of a
multistate model for the hourly modeling of renewable energy sources

(ii) Research gaps: the proposed methodology only focused solely on the technical aspects of optimally allocating different types of
renewable distributed generation (DG) units within the distribution system

[13]

(i) Crow search algorithm (CSA) was used to determine the optimal size and allocation of distributed generators (DGs). A
multiobjective function was formulated to address the objectives of reducing active power losses and improving the voltage
profile

(ii) Research gaps: the study solely focused on technical aspect only, and the algorithm was applied to IEEE 33-bus without
incorporating real data

[14]

(i) Used time-varying and seasonal optimal placement and sizing of both intermittent renewable energy sources (such as wind
energy) and nonintermittent renewable energy sources (such as solar energy). To account for the multistate and hourly
probabilistic nature of wind speed and solar irradiance data, the study employed appropriate modelling techniques

(ii) Research gaps: does not consider the economic aspects related to cost-benefit analysis or financial feasibility

[21]

(i) Uses multiobjective management approach that combines network reconfiguration with the allocation and sizing of renewable
distributed generations (DGs) with the aim of minimizing active power loss, annual operation costs (including installation,
maintenance and active power loss costs), and pollutant gas emissions. The optimization problem is solved by considering the
time sequence variance in renewable DGs and load

(ii) Research gaps: used simulation models (IEEE 33 bus) without validating the results against real-world data

[15]

(i) Incorporated both technical and economic aspects, with aim of minimizing power losses and maximizing profit. Additionally, it
accounted for the stochastic nature of wind and solar resources

(ii) Research gaps: the DG placement study lacked the use of real data and overlooked the significance of considering voltage profiles,
which are crucial in DG placement studies

[16].

(i) An optimization model was developed to address the allocation of distributed generators (DGs) with the primary objective of
minimizing the total planning cost

(ii) Research gaps: the optimization model presented in the study focused solely on wind energy; integration challenges with other
sources such as wind and solar were not tested and validated

[17]
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(vi) The study validates the proposed algorithm using
real data of wind and solar applied to a practical dis-
tribution network as opposed to simulation models
mostly used by researchers

2. Probabilistic Modelling of Renewable
Energy Sources

2.1. Modeling of Wind Turbine Generator. Wind power
exhibits a stochastic nature as it is influenced by the random
and variable wind speeds. Modeling of such system at a par-
ticular hour t is achieved using the Weibull probability dis-
tribution function as given in [16]

f v v t =
kt

Ct

v

Ct

kt−1
e− v/Ct kt

Ct , 1

where f v v t is the Weibull PDF, Ct is the scale parameter,
and kt is the shape parameter at time period t hour.

The Weibull PDF parameters at a particular time t hour
can be estimated by using the following equations [16]:

kt =
σv

t

μv
t
,

Ct =
μv

t

Г 1 + 1/kt
,

2

where σv
t and μv

t represent the standard deviation and the
mean wind speeds at specific time t hour. Г is a gamma
function at time t hour.

Table 1: Continued.

Contribution Ref.

(i) Multiobjective algorithm was applied to reduce power loss, maximizing the voltage stability index, minimizing voltage deviation,
lowering real power loss costs, increasing real power loss savings, and reducing CO2 emissions

(ii) Research gaps: did not incorporate the potential effects of the intermittent nature of renewable distributed generations (DGs).
The intermittent nature of renewable DGs, such as wind and solar, can introduce uncertainty and variability into the power
system

[18]

(i) Three optimization techniques, PSO, variable constraint PSO (VCPSO), and GA algorithms, are applied to find the optimal size
and placement of multiple DGs integrated into electrical power network. VCPSO was offered an improved solution for the
optimal placement and size of DGs in terms of the accuracy of the global optimality

(ii) Draw back: did not address the application of the hybrid PSO algorithm in real-world distribution networks

[19]

(i) Cost-based analysis was used on distributed generators (DGs), to determine installation costs, operational costs, and maintenance
costs. The objective of the analysis was to minimize losses and maximize the loading capability of the system while ensuring that
voltage stability is not compromised

(ii) Research gaps: assumed a constant factor of 0.95 as power factor for DG operation which is not the case in real-life situations; the
power factor of DGs may vary depending on various factors such as load conditions, system requirements, and control strategies

[20]

(i) Crisscross optimization algorithm and Monte Carlo simulation method (CSO MCS), used to address the optimal distributed
generation allocation (ODGA) problem. This method considers the uncertainties associated with wind, solar, and load
consumption

(ii) Research gaps: does not consider an hourly resolution. This can lead to inaccurate results, as it fails to capture the time-varying
nature of renewable energy generation

[22]

(i) PSO is used on IEEE 33 radial distribution system with different types of voltage-dependent load models. The results reveal that
combination of active–reactive power DG is giving better results for power loss reduction and voltage profile improvement

(ii) Research gaps: the study did not investigate the integration of renewable energy sources or consider uncertainties related to
renewable generation

[23]

(i) Provided a review of optimization techniques used for DG sizing and placement in a distributed network
(ii) Research gaps: did not consider different scenarios and constraints to identify the most appropriate techniques for specific

applications
[24]

(i) MOPSO algorithm has been used to find the optimal solution of DG sizing and locating problem; this was tested on IEEE 33-bus
reliability enhancement of the grid which was confirmed

(ii) Research gaps: did not consider implementing renewable DGs with uncertain output power, such as PV panels or wind turbines
[25]

(i) Used multiobjective bat algorithm on IEEE 69-bus; from the obtained results, it is observed that the best localization and sizing of
DG unit give more flexibility to the network

(ii) Research gaps: did not cost function and the algorithm did not use real data
[26]

(i) A backtracking search optimization algorithm (BSOA) is developed to enhance voltage profile and reduce real network losses
(ii) Research gaps: the study assumed that the output of renewable energy (RE) sources is dispatchable, hence did not consider

intermittent nature of renewable energy sources
[27]
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2.2. Modeling of PV Generator. Solar irradiances vary
throughout the day. Beta probability function is used to
describe the uncertain nature of the solar resources [16].

Beta PDF at a time period t hour is defined by

f s s
t =

Г αt + βt

Г αt Г βt

0, otherwise

st αt+1 1 − st βt+1, 0 ≤ s < 1, α ≥ 0, β ≥ 0, 3

where αt and βt are the beta parameters. These parameters
can be approximated using the following equations [14]:

βt = 1 − μs
t μs

t 1 + μs
t

σ2s
− 1 ,

αt =
μs

tβt

1 − μs
t
,

4

where μs and αs are the mean and variance of the solar
irradiance.

2.3. Modeling of Electrical Loads. Modelling of loads in an
electrical network is classified as follows:

(i) Constant power loads: there is no relationship
between the voltage and the power drawn at each
bus

(ii) Constant current loads: the voltage varies propor-
tional with the active and reactive powers

(iii) Constant impedance loads: the active and reactive
powers are directly proportional to the square of
the voltage

To investigate the effect of changes in load demand over
the year, this paper proposes modelling of loads as constant
time-varying loads. This model considers the potential
increase in loads that may occur during the planning hori-
zon. The active and reactive power demands in year Ny are
represented by the following [23]:

PL,i Ny = PL,i 0 × 1 + r Ny ,

QL,i Ny =QL,i 0 × 1 + r Ny ,
5

where PL,i Ny and QL,i Ny are the active and reactive
power loads at bus i after Ny years, respectively. PL,i 0
and QL,i 0 are the active and reactive power loads at bus i
for the base year, respectively. r is the annual growth rate
in the load. This value is calculated based on the historical
data on the load profiles, and Ny is the number of years in
the planning period.

2.4. Power Generation Models

2.4.1. Power Generation by PV Array. PV module power is a
function of the temperature (T) and solar irradiance s and is
determined by the following equations [12]:

Tc = Ta +
s

800
TNOCT − 20 ,

I =
s
sref

Isc + γsc Tc − Tc,ref ,

V =Voc − γoc − Tc ,

FF =
Vmpp × Impp

Voc × Isc
,

PPV = FF × V × I,

6

where PPV is the power produced by the PV module (W), FF
is the fill factor of the module, V is the module voltage out-
put (V), I is the module current output (A), Tc is the cell
temperature (°C), Ta is the ambient temperature (°C),
TNOCT is the normal operating temperature of the module,
Tc,ref is the reference temperature (25°C), sref is the reference
insolation (1000W/m2), Isc is the short circuit current of the
module, Voc is the open circuit voltage of the module (V),
Vmpp is the voltage at maximum power point (V), Impp is
the current at maximum power point (A), γsc is the current
temperature coefficient (A/°C), and γoc is the voltage tem-
perature coefficient (V/°C).

2.4.2. Power Generation by Wind Turbine. The output power
of a WT at time t hour is given by [24]

PWT v =

0 , V <Vci,

V2 −V2
ci

V2
rated −V2

ci
Prated , Vci <V ≤ V rated,

Prated , V rated <V ≤ Vco,

0 , V >Vco,

7

where PWT v is the power produced by the WT at speed v
and Prated,V rated,Vci, andVco are the rated power, rated speed,
cut-in wind speed, and cut-out wind speed, respectively.

To determine the power produced at each state, the
probability of that specific state that gives its overall contri-
bution to the total power produced in hour t should be
known. The probabilities of solar insolation and wind speeds
at state Ns are given by the following equations [12]:

ps Ns =
s2

s1

f s s ,

pv Ns =
v2

v1

f v v ,
8

where ps Ns is the probability of solar irradiance in state Ns,
pv Ns is the probability of solar irradiance in state Ns, and s1
and s2 are the lower and upper limit insolations for state Ns.

w1 and w2 are the lower and upper limit wind speeds for
state Ns.

The power produced in an hour t by the PV module
and the WT is the summation of the power produced at
each state in that hour and is given by the following
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equations [12]:

Pt
pv = 〠

ns

n=1
ps Ns × PPV, 9

Pt
wt = 〠

ns

n=1
pv Nv × PWT, 10

where Pt
pv is the power produced by the PV module at hour t

and Pt
wt is the power produced by the WT at hour t.

3. Problem Formulation

The primary objective of this research is to strategically
determine the optimal placement and sizing of distributed
generators (DGs) to minimize total system losses and overall
DG cost and enhance voltage profiles. The problem formula-
tion incorporates a multiobjective function that considers
these objectives while adhering to specified constraints
[17]. To achieve optimal solutions, the algorithm leverages
network performance indices. The formulated multiobjec-
tive function, considering the use of network performance
indices, is expressed as follows:

min F = α1PLI + α2QLI + α3VPII + α4CFI, 11

where α1, α2, α3, and α4 are the weights between [0,1] and
α1 + α2 + α3 + α4 = 1, PLI is the real power loss index, QLI
is the reactive power loss index, VPII is the voltage profile
improvement index, and CFI is the cost factor index.

The weights assigned to each impact index represent the
relative importance of each index within the analysis. These
weights are determined based on the specific analysis
conducted. It is essential to acknowledge that these weight
values may vary depending on the unique concerns and
preferences of the engineer involved [24].

In this study, the significance of each performance index
is assessed through a detailed technical analysis of the net-
work. This analysis carefully evaluates the influence of each
objective on the overall system performance. The weights
assigned to each index, as presented in Table 2, reflect the
outcomes of this analysis.

3.1. Objective Functions

3.1.1. Power Loss. The active and reactive power losses on
any network are formulated as given by the following
equation [16]:

PL = 〠
Nbus

i=1
Ii

2 × Ri,

QL = 〠
Nbus

i=1
Ii

2 × Xi,
12

PL,T = 〠
Ny

y=1
〠
62

t=1
PL,

QL,T = 〠
Ny

y=1
〠
62

t=1
QL,

13

where PL and QL are the active and reactive power losses,
Ii and Ri represent the current and resistance of branch i,
Nbus is the total number of buses in the network, Ny gives
the number of years of the specified period, and t is time
in hours.

3.1.2. Voltage Profile. The voltage profile function is derived
from voltage magnitude at bus i given in the following equa-
tion [25]:

VP = 〠
Ny

y=1
〠
62

t=1
〠
Nbus

i=1
Vi −V rated

2, 14

where Vi is the voltage magnitude at bus i and V rated is the
desired steady-state voltage.

3.1.3. Total DG Cost. The total DG cost is the summation of
the investment, maintenance, and operation cost.

(1) Investment Cost. The investment cost includes the start-
up costs such as the amount of money spent on construction
and installation of individual DG units. This can be calcu-
lated using the following equation [16]:

Cinvestment = 〠
NDG

n=1
PRnCinv, 15

where PRn is the rated power of DG unit n, Cinv is the invest-
ment cost of DG n, and NDG is the total number of DGs.

(2) Operation and Maintenance Costs. Operation and main-
tenance costs are the costs for generation, repairing, and
renewable DG equipment. This cost is modelled using the
following equation [16]:

Coper,maint = 〠
Ny

y=1
〠
NDG

n=1
PRnCOM

1 + INFR
1 + INTR

p

, 16

Table 2: Weight factors.

PLI
α1

QLI
α1

VPII
α1

CFI
α1

Weight 0.3 0.2 0.3 0.2
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where COM is the operation and maintenance costs of DG
unit n (N$/MWh), INFR is the inflation rate, INTR is the
interest rate, and Ny is the number of years in the plan-
ning period.

So, the total cost is

CDGT = Coper,maint + Cinvestment 17

3.2. Performance Index Formulation

3.2.1. Real Power Loss Index. The real power loss index based
on network with DG placement and without DG placement
is modeled as given in the following equation [25]:

PLI =
PL,withDG
PL,without DG

, 18

where PL,withDG is the active power losses after DG place-
ment and PL,withoutDG is the real power losses of the network
without DG.

3.2.2. Reactive Power Loss Index. The real power loss index is
given by [18]

QLI =
QL,withDG
QL,without DG

, 19

Resource input
(wind speeds and
solar irradiances)

Constraints
(voltage, line
loading, etc.)

Parameter
definition

Yes

Is i < kmax?
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pBest and

gBest
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particle to 0. Evaluate the objective function if

limits not violated.

Perform loadflow and apply voltage,
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Evaluate the objective function if
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i
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set the velocity

of the ith particle
to 0.

Figure 1: Algorithm for optimal sizing and placement of DGs on distribution network.
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where QL,withDG is the reactive power losses after DG
placement and QL,withoutDG is the reactive power losses of
the network without DG.

3.2.3. Voltage Profile Improvement Index. The voltage profile
improvement index (voltage stability index) is an indication
of how stable a distribution network is. In this paper, VPII is
modeled using equation (20), which compares voltage pro-
file of a network with DG with that without DG [26].

VPII =
VPwithDG
VPwithout DG

20

3.2.4. Cost Factor Index. The index of the total DG cost is
expressed as given by the following equation [26]:

CFI =
CostDG
Costmax

DG
, 21

where CostDG is the cost of the selected DG and Costmax
DG is

the maximum cost of DG at maximum DG penetration.

3.3. Constraints. In optimization problems, constraints
define a region that is feasible within the search space. The
minimization problem is subjected to the following equality
and equality constraints.

3.3.1. Power Balance Constrain. Complex power injected at
each bus should be equal to complex power drawn at that
particular bus. This constraint is shown in the following
equations [9]:

PGi − PLi = Vi 〠
Nbus

j=1
Yij V j cos δi − δj − θij , 22

QGi −QLi = Vi 〠
Nbus

j=1
Yij V j sin δi − δj − θij , 23

where PGi is the active power output of the generator at bus i,
PLi is the active power load at bus i, QGi is the reactive power
output of the generator at bus i, QLi is the reactive power load
at bus i, Yij and θij are the magnitude and angle of the admit-
tance related to bus i and j.

3.3.2. Generation Capacity. The size of the DGs should be
within the following size limits [19]:

Pmin
DGi ≤ PDGi ≤ Pmax

DGi, 24
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where Pmin
DGi and Pmax

DGi are the minimum and maximum
power outputs injected at bus i.

(1) Bus Voltage Limits. The voltage at each bus should be
maintained within their upper and lower limits. These limits
are specified by the network operator [20].

Vi,min ≤Vi ≤Vi,max, 25

where Vi,min and Vi,max are the minimum and maximum
voltage magnitudes at bus i, respectively. For this work, these
limits are taken to be

0 95 ≤Vi ≤ 1 05 26

(2) Line Loading Limit. The current through any feeder (Ii)
should be within the maximum thermal capacity (Ii,max) of
that particular feeder. This limit is given by [20]

Ii ≤ Ii,max 27

4. Proposed PSO for DG Placement

The proposed algorithm as given in Figure 1 is designed to
optimally size and place DGs in a distribution network in
order to implement and to minimize total system losses,
improve voltage profiles, and minimize total DG cost. PSO
parameters such as maximum number of iterations, kmax,
swarm size, nPop, inertia weight, acceleration coefficients,
c1 and c2, velocity limits, vmin and vmax, and position limits,
xmin and xmax The number of DGs (N) and the distance
from the main bus d are randomly generated.

Power produced by two DGs is given by

PDG,PV =N × Pt
pv, 28

PDG,WT =N × Pt
wt 29

Optimal power and site are then evaluated by first per-
forming load flow analysis within the constraints given in

Section 3.3. Finally, the objective functions are evaluated
using the following steps:

(1) Parameter definition: kmax, nPop, c1, c2, vmin, vmax,
xmin, xmax, and w

(2) Define control variables (number of WT and num-
ber of PV, distance from the main bus)

(3) Set gbest to infinity
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Figure 5: Optimum sizing for Vhungu-Vhungu network (Cases 2 and 3).

0.94
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
1.03
1.04

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35

V
ol

ta
ge

 (p
.u

.)

Li
ne

 cu
rr

en
t (

A
)

DG penetration (%)

PV
WT

Figure 6: Optimum sizing for Vhungu-Vhungu network (Case 4).

0.92
0.94
0.96
0.98
1
1.02
1.04
1.06

0
5

10
15
20
25
30
35
40
45

0 20 40 60 80 100

A
ve

ra
ge

 v
ol

ta
ge

 p
ro

fil
e (

p.
u.

)

Li
ne

 cu
rr

en
t (

A
)

Distance (km)

Distance-thermal limit
Distance-Voltage

Figure 7: Optimum siting for Vhungu-Vhungu network (Case 2).

9Journal of Energy



(4) For i = 1: nPop
(i) Initialization: randomly initialize position x

and set velocity v = 0 for each particle

(ii) Randomly generate the number of WT and PV
and distance from the main bus

(iii) Input system data, line data, bus data, and
constraints

(iv) Input solar and wind resources

(v) Run load flow

(vi) Evaluate the objective function of each month
in every season

(vii) Update personal best (pbest) and global best
(gbest)

(5) For i = 1: kmax

(i) Update velocity and apply velocity limits v,
and apply velocity limits, vmin and vmax

(ii) Update position x, and apply position limits,
xmin and xmax

(iii) Randomly generate the number of WT and PV
and distance from the main bus

(iv) Input system data, line data, bus data, and
constraints

(v) Input solar and wind resources

(vi) Run load flow

(vii) Apply constraints

(viii) Evaluate objective function each month in
every season

(ix) Update personal and global best

(x) Print the optimum size and location

4.1. Wind, Solar Data, and Load Data Analysis. Strategic
integration of renewable energy in the network appropriate
analysis of wind, solar, and load data is important. Seasonal
model where a year is divided in winter (May to October)
and summer (November to April) is used in data collection.
The seasons are further classified in 24 hours for one day
and 182 days per season. Solar irradiance data is collected
for 2 years giving 362 days of analysis, while wind speed is
data collected for one year making 182 days of analysis.

Solar irradiance was modelled using beta PDF, and the
wind speed was fitted with the Weibull PDF.

The solar irradiances each hour t were divided into 10
states with each state adjusted to 1 kW/m2. Wind speeds
were divided into 14 states with each state adjusted by 1m/
s. For each hour, the mean and standard deviations, proba-
bilities, and power produced were evaluated. Total power
produced in an hour t was determined as the summation
of the power produced at different states. The results
obtained and the ratings of the PV module and WT are
shown in Figures 2 and 3.

4.2. Wind, Solar Data, and Load Data Analysis. The pro-
posed algorithm was tested on a Namibian distribution net-
work, Vhungu-Vhungu 11 kV, as detailed in Section 5.

5. Simulation Results

As stated during the algorithm’s development, the primary
objective behind strategically positioning and sizing the
DGs is to minimize losses and enhance voltage profiles. To
analyze the networks, simulations were conducted using
the DIgSILENT Power Factory software. The Newton-
Raphson method was employed to assess the load flows.
Moreover, the multiobjective particle swarm optimization
(PSO) algorithm was created and executed using MATLAB.

This is done by considering varying loads and renewable
sources. For placement, DGs are injected at the main bus bar
(substation), where the number of DG units and the distance
(in a range of 5-100 km) from the main substation are ran-
domly generated. The output power of the DGs and distance
are adjusted to give a minimum fitness value. This is to
balance the total losses and power consumed by loads to
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Figure 8: Optimum siting for Vhungu-Vhungu network (Case 3).
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the DG output and the power fed by the grid, thus reducing
the supply burden on the grid.

For each test network, the following scenarios are
considered:

(i) Case 1: no DG (base case)

(ii) Case 2: only PV is connected

(iii) Case 3: only wind-DG is connected

(iv) Case 4: combination of wind and PV units

5.1. Test System: Vhungu-Vhungu. The PSO algorithm pro-
posed in this study is evaluated using the Vhungu-Vhungu
11 kV distribution feeder, as depicted in Figure 4. The distri-
bution network consists of 24 buses (1 is slack bus, 11 PV
buses, and 12 load buses), peak of hourly load of 577KVA,
and maximum feeder capacity of 53A. The distribution

feeder is situated in the Uvhunghu-Vhungu area of the
Okavango East Region. It serves a peak load of 496.22 kW,
mainly composed of agricultural and residential consumers.
The maximum allowable integration of distributed genera-
tion (DG) into the network is limited to 148.87 kW, repre-
senting 30% of the peak load.

Case 2. The optimum fitness value was achieved with 189 PV
modules rated at 69.93 kW and placed at 26 km from the
main substation.

Case 3. The optimum fitness value was achieved with 1 wind
turbine rated at 100 kW and placed at 42 km from the main
substation.

Case 4. The optimum fitness value was achieved with 179 PV
modules rated at 65.12 kW and placed at 26 km from the
main substation and 1 wind turbine rated at 100 kW placed
at 26 km from the main substation.

For each case, variations in DG penetration were plotted
where the optimum size and location of the DGs were
achieved based on two constraints: thermal limit and voltage
profile limit. Simulation results for increased DG penetra-
tion and optimum sizing and siting based on the proposed
algorithm are as shown in Figures 5–8

In Figure 5, it is observed that, for each case that thermal
limit and voltage profile are within the limit of maximum ther-
mal capacity of 53A and voltage limit of 0 95 ≤ vi ≤ 1 05, for
Case 2 (69 96/496 22 = 14%) and Case 3 (100/496 22 = 20%),
the same applies to Case 4 in Figure 6. For optimum siting

Table 3: Total power losses for Vhungu-Vhungu network (MW).

Region
Before placement After placement

Case 1 Case 2 Case 3 Case 4

Summer 49.89 14.33 14.47 13.99

Winter 49.91 14.06 14.19 14.48

Total 99.8 28.39 28.66 28.47
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Figure 11: Vhungu-Vhungu network’s hourly reactive power
losses for summer.
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Figure 9: Hourly power losses for Vhungu-Vhungu network in
summer.
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given in Figures 7 and 8, the line current decreases with
increase in distance and voltage profile increases with increase
in distance. So, the optimum site becomes the intersection
between the graphs of distance-line current and distance-
voltage profile.

5.1.1. Active Power Loss Reduction. Integration of DG units
into the system results in significant reduction in power losses
with highest of 71.55% (from 99.8MW to 28.29MW) recorded
in Case2. For Cases 3 and 4, the total power losses were reduced
by 71.25% and 71.46%, respectively. The variation of these
power losses with respect to time for both summer and winter
is presented in Figures 9 and 10.

The proposed algorithm has successfully determined the
optimal sizes and locations for the integration of distributed
generation (DG) units. The resulting active power losses for
each of the four cases are presented in Table 3.

5.1.2. Reactive Power Loss Reduction. While the distributed
generators (DGs) in the system are designed to supply active
power exclusively, they also contribute to a substantial
reduction in reactive power losses. The network under
analysis is a rural distribution network primarily catering

to agricultural and residential loads. In such a network, the
presence of inductive devices, such as induction motors,
leads to reactive power consumption. Consequently, voltage
drops and fluctuations may occur, compromising the stabil-
ity and reliability of the electrical system. The reduction in
reactive power losses is visually represented in Figures 11
and 12.

5.1.3. Voltage Profile Improvement. The integration of dis-
tributed generation (DG) units has a positive impact on
the voltage profiles of the network, as demonstrated in
Figure 13. Comparing Case 1 with Cases 2, 3, and 4, it is evi-
dent that Case 1 exhibits a relatively poorer voltage profile.
With DG penetration, the voltages at each bus remain within
the permissible limits of 0.95 p.u. and 1.05 p.u. Significant
voltage changes are only observed at buses 5, 11, 14, and
21, which are considered weaker buses. The analysis of volt-
age variation at these weaker buses is presented in Table 4.
Among them, bus 5 is identified as the weakest, and its volt-
age variation is further examined in Figure 14. Notably, both
Case 1 and Case 2 exhibit a 7.9% improvement in voltage
profile at bus 5 (from 0.909 p.u to 0.9999 p.u). Although
Case 2 shows a greater voltage improvement, the disparity
in voltage enhancement across buses in each case is not
significant. The higher voltage change observed at bus 5
can be attributed to its larger number of induction motors,
resulting in a higher consumption of reactive power.

5.1.4. Total Cost Analysis. By using the proposed algorithm
on cost analysis and applying the cost factor index as given

Table 4: Average voltages at sensitive buses got Vhungu-Vhungu
(bus voltages in p.u.).

Bus Case 1 Case 2 Case 3 Case 4

5 0.909 0.9999 0.9999 0.9939

11 0.94545 0.9953 1.007 1.0071

14 0.947 0.9947 0.9880 0.9942

21 0.9276 1.0121 0.999 1.0026
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Figure 14: Variation of voltage at bus 5 for Vhungu-Vhungu
network.
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Figure 12: Hourly reactive power losses for Vhungu-Vhungu
network in winter.
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in equation (21), technical and economical indices are
shown in Table 5.

Table 5 shows the operational cost, the investment cost,
and the total energy losses after a period of 5 years for each
case; it can be shown that the cost of active power loss
decreases with DG penetration. This improves economic
efficiency eventual reduction in carbon emission.

The total cost given is optimized cost since the DG size
and placement are determined based on the optimized algo-
rithm given. This eventually reduces feeder losses, hence
reduction in total active power loss.

6. Conclusions

A weighted multiobjective PSO was presented in this work
to site and size renewable energy-based DGs on a distribu-
tion network. PSO is implemented to minimize total system
losses, improve voltage profiles, and minimize total DG cost.
Stochastic nature of solar irradiances and wind speeds was
modelled using appropriate probabilistic models. Seasonal
model was utilized. To effectively analyze the hourly data
for each season, a multistate model was employed. This
model divided the data into different states, enabling a
comprehensive assessment of the system’s performance.
The control variables for DG placement and sizing were
determined based on the number of DG units, including
both photovoltaic (PV) and wind turbine (WT) units. The
sizes of the DG units were randomly generated and injected
at the slack bus to assess their impact on the system.

The proposed optimization technique was tested on one
of Namibian’s distribution network, and results obtained
showed improved voltage profile, minimized active power
loss, and reduced cost of the total power supplied.

To realize the benefit of voltage profile improved, total
cost reduction, and minimized power loss, the optimized
placement and sizes of DG integration in the network were
found: For Case 2, the optimum size of PV was found to
be 69.93 kW and placed at a distance of 26 km from the main
substation. For Case 3, the optimum size of WT was found
to be 100 kW and placed at a distance of 42 km from the
main substation. For Case 4>, the optimum size for both
PV and wind-based DGs was found to be 65.12 kW and
100 kW, respectively. The PV farm was placed at a distance
of 37 km from the main substation and the wind farm at
20 km from the substation. By achieving these positive out-
comes, the study underscores the potential benefits of DG

integration and emphasizes the importance of carefully
determining the appropriate sizes and locations for optimal
performance.

Data Availability

The data supporting the results can be found in refer-
ences [2].
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