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Several consequences of health effects from municipal solid waste caused by carcinogenic and noncarcinogenic metals have been
recognized. (e water quality index (WQI) in the groundwater around this landfill is 2945.58, which is unacceptable for consumption.
(e contaminated groundwater mainly appears within a 1 km radius around the landfill. (e metal pollution levels in the soil in
descending order were Cu>Cd>Zn�Cr>Pb>Ni.(e pollution degree (ER) of Cdwas 2898.88, and the potential ecological risk index
(RI) was 2945.58, indicating that the risk level was very high. Surprisingly, the hazard index (HI) of Pb (2.05) and Fe (1.59) in children
was higher than 1. (is indicated that the chronic risk and cancer risk caused by Pb and Fe for children were at a medium level.
Carcinogenic risk by oral (CR oral) consumption ofNi, Cd, andCr in childrenwas 1.4E− 04, 2.5E− 04, and 1.8E− 04, respectively, while
the lifetime carcinogenic risk (LCR) of Ni, Cd, and Cr in children was 1.5E− 04, 2.8E− 04, and 2.0E− 04, respectively. In adults, CR oral
of Ni and Cr were 1.6E− 03 and 3.0E− 04, respectively, while LCR of Ni and Cr were 1.6E− 03 and 3.4E− 04, respectively, which
exceeded the carcinogenic risks limits. Our study indicated a lifetime carcinogenic risk to humans. Environmental surveillance should
focus on reducing health risks such as continuous monitoring of the groundwater, soil, and leachate treatment process.

1. Introduction

(e municipal solid waste open dump is considered to
constitute a major problem for groundwater, surface water,
and soil contamination caused by potentially hazardous
chemicals such as heavy metals [1]. A significant portion of a
landfill’s leachate incorporates heavy metals (Mercury (Hg),
Arsenic (As), Zinc (Zn), Lead (Pb), Nickel (Ni), Cadmium
(Cd), Manganese (Mn), Iron (Fe), Cobalt (Co), Chromium
(Cr), Aluminum (Al), and Copper (Cu)), which is readily
soluble and constant in concentration during degradation

processes [2, 3]. Also, heavy metals are a critical threat to soil
quality due to their permanence in the soil [4]. Furthermore,
heavy metals in soil can be easily transferred into the human
body via the oral route (ingestion), dermal contact ab-
sorption, and inhalation [5]. Exposure to heavy metal
contamination soils through hand-to-mouth contact causes
adverse human health effects, particularly in children [6].
Since the 1970s, groundwater contaminated by landfill waste
has been a concern in many countries, especially developing
countries which are attributed to poor transportation, lack of
waste management practices, uncontrolled dumping of
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municipal solid waste, and disposal of municipal solid waste
open dump, which are unscientific and unplanned [7, 8].

Currently, the concentrations of heavy metals in soil
have been determined in several parts of the world. (e
major indices revealing the degree of heavy metal pollution
in the soil, sediments, and water were the geoaccumulation,
ecological risk factor, potential ecological risk index, and
water quality index. Conversely, the potential ecological risk
index in the soil comprehensively considers the concen-
tration of biotoxicity and migration regularity, associates
ecological toxicology, and evaluates the pollution [9]. Health
risk assessment is assigned as a process of estimating the
possibility of an occurrence of any adverse health effects in
humans throughout the hazard chemical exposure and is
usually based on an expression in parts of noncarcinogenic,
carcinogenic health risk, and measurement of the risk level
[10]. Exposure to carcinogenic or noncarcinogenic metals
can result in adverse health consequences including damage
to the nervous system, bone fractures, pulmonary adeno-
carcinomas, cardiovascular disease, kidney and liver dys-
function, and immune systems disorder [11, 12]. According
to the classification orders defined by the International
Agency for Research on Cancer (IARC), Ni (group 1), Pb
(group 2B), Cd (group 1), and Cr (group 1) are appointed as
potential carcinogenicity metals. Meanwhile, Zn, Mn, Al,
and Cu are appointed as noncarcinogenic metals [13, 14].

In 2018, the amount of waste generated in (ailand was
approximately 27.8 million tons. Compared to 2017 volume,
this was an increase of 1.64 percent, but 9.58 million tons
(34%) were recycled. Hazardous waste content was 638,000
tons, an increasing rate of 3.2% from 2017, which was due to
the urbanization of lifestyle, increasing population, and
tourism. (ailand has 3,205 community waste disposal sites
in various locations, of which 2,785 locations are opening
sites and 419 are closed sites [15].

(e open dumpsite was not well systematically designed
before being used as a dump for municipal solid waste. Fur-
thermore, an environmental impact assessment has not yet
been carried out in this study area. Unfortunately, groundwater
was mainly used for agriculture and livestock purposes without
any testing or treatment. (us, the aim of this study was to
focus on the environmental risks and human health risks posed
by this open dump.(erefore, the first aim of this study was to
determine the heavy metal contamination, including Zn, Pb,
Ni, Cd,Mn, Fe, Cr, Al, and Cu in groundwater, and soil around
themunicipal solid waste open dump of Lopburi Province.(e
secondary aim was to assess the water quality index in the
groundwater, soil pollution, and the potential ecological risks of
heavy metal contaminants in the soil, as well as estimate the
carcinogenic risks from heavy metal contaminants in the soil
via oral ingestion, dermal exposure, and inhalation.

2. Materials and Methods

2.1. Sample Collection. A more than 15-year-old municipal
solid waste open dump in Lopburi Province located in the
central region of (ailand was selected for this study. (e
population in this area was about 8,054 people, who gen-
erated an estimated 10 tons of garbage daily. (e total waste

collection per day delivered to the open dump was ap-
proximately 16 tons. (e study area was located between
14.80348°∼14.80753 north latitude and
100.86082°∼100.88307° east longitude. A one-liter ground-
water sample was taken from household tanks
(depth∼40–80m) in five different locations in the range of
households residing nearest the landfill, all of which were
located <2 km around the municipal solid waste open dump.
Groundwater samples were preserved by using 2-3ml of
Conc. HNO3 for avoiding the metal precipitation and put in
a refrigerator at below 4°C until analysis [16]. One kilogram
of pooled topsoil (0–20 cm depth) from five different po-
sitions across the landfill was collected, put in fresh poly-
ethylene bags, kept in a refrigerator at below 4°C, and then
immediately brought to the laboratory [17]. Five ground-
water samples and five soil samples were collected every
month from January to December 2017, therefore, a total of
60 samples for groundwater and soil samples were collected
for analysis. (e sampling locations are depicted in Figure 1.

2.2. Analytical Methods. (e groundwater samples were
digested by using HNO3 heated on a block at 150±20°C [18].
(e soil samples were air-dried overnight at 105°C and crushed
and sieved over a diameter sieve of 2mm [19–21]. After passing
through the sieve, the sample fractionwas taken for analysis.(e
soil was digested by usingHNO3 andHCl [18]. Subsequently, all
the samples were heavy metal measured by using an inductively
coupled plasma atomic emission spectrophotometer (ICP-AES)
ULTIMA2, Jobin Yvon Horiba, Italy. (e limits of detection
(LOD) were calculated as the standard deviation of 10 blank
solution samples divided by the slope of the calibration cur-
ve(mg/L) and were Zn (0.0024), Pb (0.0030), Ni (0.0007), Cd
(0.0003), Mn (0.0003), Fe (0.0087), Cr (0.0002), Al (0.0014), and
Cu (0.0010), respectively. (e relative standard deviation (RSD)
was ≤5%.(e concentrations of recoveredmetals were 5, 10, 20,
and 50mg/kg in all samples with 4 replications for each spike
level; the recovery rates for the metals were as follows: Zn, 98%;
Pb, 93.2%; Ni, 106.8%; Cd, 101%; Mn, 100.29%; Fe, 87.74%; Cr,
93.13%; Al, 106.57%; and Cu, 98.5%.

2.3. Determination of the Groundwater Quality Index.
Principle component analysis (PCA) was conducted to
analyze the information content of the indicators of com-
monalities of the metal parameters between the variables in
the groundwater quality by using NCSS, PASS, and GESS,
2007 (NCSS Statistical Software). (e components with
eigenvalues <1 have less variation than an individual variable
[22].

(en, the quality rating scale (Qi) for each parameter was
calculated as

Qi �
Ci

Si

 100, (1)

where Q is the quality rating, C is the concentration of each
metal in the groundwater sample (mg/L), S is the WHO
standard for each metal in drinking water [23, 24] as listed in
Table 1, and i is the quality parameter [33].
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(e subindex of the i parameter was calculated as

SIi � WiQi, (2)

where SI is the subindex of the i parameter, W is the relative
weight, Q� the quality rating, and i is the quality parameter.

Finally, the water quality index was calculated as

WQI �


n
i�1 SIi

 Wi

 , (3)

whereWQI (water quality index) was calculated by using the
Weighted Arithmetic Index method [34], and SI is the
subindex and the weight of the i parameter. (e water
quality indices are categorized into 5 categories [33].

2.4. Pollution Indices. (e geoaccumulation index (Igeo) was
introduced by Mϋller [35], and it is used to quantify and
define heavy metal pollution in soil and sediment. (e Igeo
was computed by using the following equation:

Igeo � log2
Cn

1.5Bn

 , (4)

where Cn is the concentration of metal n found in the
sampled soil (mg/kg), Bn is the geochemical background
value (average scale) of metal n (mg/kg) as listed in Table 1,
and factor 1.5 is the background matrix correlation factor
due to lithogenic variation [36]. Mϋller [35] suggested seven
classes of the geoaccumulation index.

2.5. Indices of the Ecological Risk Assessment

2.5.1. Pollution Coefficient. (e pollution coefficient of each
metal was derived by employing the model defined by

Hakanson and Rahman et al. [28, 37] using the following
equation:

C
i
f �

C
i
D

C
i
R

, (5)

where Ci
f is the pollution coefficient of each metal in the soil

or sediment, and Ci
D is the i heavy metal concentration (mg/

kg) in the soils. Ci
R is the background values (mg/kg) of i

heavy metal in the soils set as the highest background value
of metals in sediments in modern preindustrial times, as
suggested by Hakanson [28] and shown in Table 1.

2.5.2. Ecological Risk Factor. Ecological risk factor (Ei
R)

quantitatively expresses the potential ecological risk of a
given single contaminant [28, 38] which can be calculated
for each metal by using the following equation:

E
i
R � T

i
R × C

i
f, (6)

where Ci
f is the pollution coefficient for each metal and Ti

R is
the toxic response coefficients of the metals in the water,
sedimentary, and biological phases, as listed in Table 1.

2.5.3. �e Potential Ecological Risk Index (RI). (e potential
ecological risk index (RI) was defined as the sum of the risk
factors by using the following equation:

RI � 
m

i�1
E

i
R, (7)

where RI is the sum of Ei
R for all metals examined, repre-

senting the contamination degree of the environment
(Hakanson [28]).

S = Soil
W = Water

Figure 1: Location of the soil and groundwater samples collected in a municipal solid waste open dump at Lopburi Province, (ailand.
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2.6. Human Health Risk Assessment

2.6.1. Exposure Assessment. (e average daily intake (ADI)
of heavy metal in soils was expressed as units of the con-
taminated body exposed per unit of body mass and day [39],
calculated using the following equations:

ADIoral �
C × IRing × EF × ED

Bw × AT
× 10− 6

,

ADIdermal �
C × SA × SAF × ABS × EF × ED

BW × AT
×

−6
10 ,

ADIinh �
C × IRinh × EF × ED
PEF × BW × AT

,

(8)

where ADI is the average daily intake (mg/kg/day−); C is the
concentration of the heavy metals in soil (mg/kg); IRing is the
ingestion rate (mg/day), for adults (100mg/kg) and children
(200mg/kg); EF is the exposure frequency, 350 days/year;
ED is the exposure duration, for adults (30 years) and
children (6 years); SA is the exposed dermal area, for adults
(5700 cm2) and children (2800 cm2); SAF is the dermal
adherence factor for adults (0.07mg cm−2) and children
(0.2mg cm−2); ABS is the dermal absorption factor, 0.001 for
adults and children; IRinh is inhalation rate, for adults
(15m3/day) and children (5m3/day); PEF is the particle
emission factor (1.36×109m3/kg); BW is the body weight,
for adults (70 kg) and children (20 kg); and AT is the av-
eraging time (day): for noncarcinogens, ED× 365 days, and
for carcinogens (Ni and Cr) and 70 (lifetime)× 365 days
[40, 41].

2.6.2. Noncarcinogenic Risk Assessment. Noncarcinogenic
hazards are typically characterized by the hazard quotient
(HQ). (e health risk from soil contamination was assessed
concerning its chronic as well as carcinogenic effects, based
on the calculation of ADIoral, ADIdermal, and ADIinh, plus
a reference dose (RfD) that defined the toxicity values for
each heavy metal, as shown in Table 1. (e noncarcinogenic
risk was calculated by the hazard quotient (HQ) as follows:

HQ �
ADI
RfD

. (9)

(en, the individual HQ of each metal was combined for
the risk assessment of the hazard index (HI).

HI � HQ. (10)

If the HQ or HI> 1, there may be potential noncarci-
nogenic effects on health, while HQ or HI≤ 1 means there is
no experience of any health risks for exposure by noncar-
cinogenic metals [42, 43].

2.6.3. Carcinogenic Risk. Carcinogenic risk (CRi) was esti-
mated as the incremental probability of developing cancer
during a lifetime due to exposure to a potential carcinogen
(USEPA [43]) as follows:

CRi � ADIi × SFi, (11)

where SFi is the cancer slope factor (mg/kg/day) through
oral ingestion, dermal contact, and inhalation of each metal,
as illustrated in Table 1.

LCR � CRi. (12)

If the value of CR and LCR exceeds 1× 10−4, it represents
a lifetime carcinogenic risk to the human body [44, 45].

3. Results and Discussion

3.1. Concentrations of Heavy Metal. (e concentrations of
Pb, Ni, Cd, Mn, Fe, Cr, and Al in groundwater exceeded both
WHO and USEPA standard limits, as shown in Table 1.
Besides, the levels of Zn, Pb, Ni, Cd, Mn, Fe, Cr, Al, and Cu
in groundwater increased sharply from May to October, as
presented in Figure S1. (e heavy metal concentration in
groundwater is significantly affected by leachate percolation
and particularly inadequate leachate management from
nonengineered municipal solid waste dump [46, 47]. In
(ailand, there are three seasons, including summer (Feb-
ruary to May), rainy (May to October), and winter (October
to February) [48]. Han et al. reported that rainfall in the wet
season expedites the leaching pollution from polluted top-
soil. Furthermore, it can increase the outflow and perme-
ability of leachate to some extent as rainfall increases [49].
Besides leachate percolation being dependent upon the
rainfall, several factors such as the chemical constituent of
the leachate, length, and deepness of the pond from the
landfill also affect the extent of the contamination in
groundwater [50]. Consequently, all the determined heavy
metal concentrations in the groundwater are elevated in the
wet season.

In soil, the average Cd (5.2± 1.6mg/kg) and Cu
(171.2± 329.4mg/kg) concentration exceeded the standard
levels of natural soil (Cd� 0.35mg/kg and Cu� 30mg/kg) by
15 and 6 times, respectively, as presented in Table 1. (e
levels of Cd and Cu may be related to the high levels of these
metals in the waste which are disposed of at the landfill [51].
Mekonnen et al. found that Pb, Cd, Mn, Ni, Cu, and Zn were
found in the leachate water [52]. Moreover, approximately
62% of the total fresh municipal solid waste was found to be
combustible materials including plastics, paper, yard waste,
textile, cardboard, rubber, and coconut husks [51]. However,
Long et al. found that the kitchen waste, cinder, plastic, and
paper have high globally in municipal solid waste, which
accounted for 55.1–95.5% and also the main sources of Cu
(41.2–1643.7mg/kg) and Zn (109.3–1077.9mg/kg) in the
gross municipal solid waste sample [53]. (e most likely
sources of Cd in municipal solid waste are plastics and
pigments, in which solid waste at an unlined landfill in-
cluded soft plastics for 33% and hard plastics for 18.6%
[47, 54]. (erefore, this metal in municipal solid waste may
initiate the potential risk of soil and groundwater pollution.

(e concentration of the metals during each month was
a different pattern, as shown in Figure S2. However, the
binding strength of Cu, Mn, and Zn in the soil of the
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dumping site had a uniform trend [55]. Prechthai et al.
reported that Zn was found to be the highest constituent
metal when compared to Mn, Cu, Cr, Cd, Pb, and Ni in a
solid waste dumpsite in Nonthaburi Province,(ailand [56].
Mn, Zn, and Cd were usually found in an attenuated form
that is easily leached, while Cu and Cr were found promi-
nently in the oxidized form and stable under anaerobic
conditions; Pb and Ni were present in the residual inert form
[56]. (e total metal content in the soil in descending
content order was Fe, Al, Cu, Mn, Zn, Cr, Pb, Ni, and Cd;
this was similar to the topsoil layer (0–15 cm) in 15 urban
solid waste landfills (over 20 years old) in Spain [57]. (e
vertical permeation of the leachate and the hydrography
groundwater regimen has greatly affected contaminants
spreading in the soil underneath the landfill [57]. However,
the age of the waste and landfill, properties of waste, local
conditions, and dilution procedure have a critical impact on
regional leachate quality [58, 59].

3.2. Water Quality. Interestingly, the WQI in groundwater
around this open dump was 1038.7, which is unsuitable for
consumption (WQI> 100), as shown in Figure S3. (e SI of
this study was Cd> Pb>Cr>Al>Ni>Mn> Fe, and
Cu>Zn, respectively. Teta and Hikwa reported that
groundwater from nearby boreholes within a range of
0.8–2.1 km had high levels of Pb and Cd which had a
negative relationship to away from the landfill (p< 0.01)
[47], indicating contamination from the landfill. Generally,
groundwater contamination most appears within 1 km of
the landfill, and the most serious in groundwater is that
further contamination appears at the initial landfill stage and
continues to occur for 5 to 20 years, peaking some years
afterward [49]. In this study, the groundwater contamina-
tion was found within 2 km, and the landfill was >15 years
old. (erefore, the groundwater around this landfill was
unsuitable for consumption. (e natural geology, hydro-
geological conditions, the characteristics of leachate, a
natural-gradient dispersion, the localized sources of pollu-
tion such as agricultural activities, municipal origin waste
with batteries, paint products, and metal items cause natural
attenuation to occur in the soil that may then affect the
elements in aquifers, including dilution, sorption, ion ex-
change, precipitation, degradation processes, and redox
reactions that may influence groundwater quality [1, 60].

3.3. Heavy Metal Pollution Levels in the Soil. (e Igeo of Zn
(3.57) and Cr (3.09) were heavy pollutions, the Pb (2.02) and
Ni (1.95) were moderate, Cd (4.52) was heavy to extremely,
and Cu (5.63) was extremely contaminated, as shown in
Figure 2. (us, the metal pollution levels in soil in
descending order were Cu>Cd>Zn�Cr> Pb>Ni. (e
behavior of heavy metal in soil depends on the nature and
quantity of heavy metal and is also vastly diverse across
countries [61, 62]. Heavy metal can be transferred from the
soil and groundwater into plants, microbes, invertebrates,
animals, and humans [63]. Zinc exerts an adverse effect on
the physicochemical properties of soil and plant develop-
ment, including seed germination, photosynthesis, and

growth rates [64, 65]. Zn can also influence the resistance of
organotrophic bacteria, actinomyces and fungi, microbial
respiration rates, microbial metabolic activity, and genotoxic
effect [66, 67]. In vitro, Ni affects spermatozoa motility and
spermatozoa membrane integrity of bovine [68]. Pb is toxic
to invertebrates such as aphids and ladybirds. Earthworms
are particularly sensitive to Pb [69, 70].

In both soil and water, Cd is relatively more mobile than
other heavy metals (Cd>Ni>Zn>Mn>Cu> Pb�Cr) [71].
Additionally, many studies suggest that the concentration of
Cd in vegetables and plants, such as rice, is related to the
concentration of Cd contamination in the soil, which affects
the renal function in humans [72, 73]. Additionally, Cd may
be accumulated in the chloroplasts and impact the chlo-
roplast processes in barley andmaize [74]. Organisms in soil,
earthworms, isopods, and gastropods are at risk of Cd ac-
cumulation and biomagnification in the soil food web [75].

However, excess Fe, Mn, Zn, and Cu may affect resis-
tance to Legionella pneumophila and Mycobacterium tu-
berculosis [76, 77]. In plants, Cr (VI) at 2.5mg/L influences
the performance and structure of bacteria in aerobiotic
activated sludge reactors and is associated with oxidative
stress in legume plants and rhizobium symbiosis [78, 79]. In
this study, the concentration of Cr was 43.30± 4.8mg/kg,
which may be dangerous to plants and bacteria in the soil
around the landfill.

Ibrahim et al. reported that Cd and Cu exposure at
2–4mg/L of Cd and 70–140mg/L of Cu affected plant
growth [80]. Interestingly, Cd (5.2± 1.6mg/kg) and Cu
(171.2± 329.4mg/kg) levels in this landfill would be toxic to
plants. Furthermore, Cu, Ni, and Cr can be considered as
having chronic toxicity and ecotoxicity for terrestrial in-
vertebrates, particularly in springtail [81, 82]. Moreover,
Miranda et al. reported that the accumulation of Cu and Ni
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Figure 2:(e Igeo value of Zn, Pb, Ni, Cd, Mn, Fe, Cr, and Cu in the
soil collected in the open dump area.
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concentrations in the liver, kidney, and muscle of cattle was
significant from the Cu and Ni in the soil and forage [83].
Zn, Pb, Ni, Cd, Mn, Fe, Cr, Al, and Cu can become residue in
the blood and raw bovine milk due to pasturage and silage
related to water and elements in soil [84, 85]. Zhou et al.
found positive correlations for Cd and Cr between milk and
silage, as well as betweenmilk and soil [86].(erefore, plants
and organisms such as earthworms, bacterial rodents, and
particularly animal livestock such as cattle may be harmed
by ingesting groundwater while grazing on grass associated
with soil in the vicinity of this landfill.

3.4. �e Potential Ecological Risk Assessment. (e order of
the potential ecological risk factor (ER) of heavy metals in
soil was Cd>Cu>Pb>Ni>Cr>Zn, as shown in Figure 3.
Additionally, the calculated pollution degree of Cd (2,898.9)
fell in the very high range, and the calculated RI was 2,945.6,
which indicated an extremely high-risk degree, as shown in
Figure 3. Vongdala et al., 2018, reported that Cd and Cu
cause the high ecotoxicological risk level in landfill soils and
surrounding areas [87]. Moreover, Ihedioha et al. found that
Cd contributed 98–99% of the total potentially ecological
risk in a municipal solid waste open dump in Nigeria [88].
Meanwhile, the ER of Cd also showed the highest at 540 in
E-waste dumpsites in Nigeria [89]. (erefore, Cd should be
received overwhelming attention as an ecological hazard and
be regarded as a priority pollutant in this landfill.

3.5. Noncarcinogenic Risk Assessment. (eHQoral, HQdermal,
HQinha, and HI of Zn, Pb, Cd, Mn, Fe, Al, and Cu in the soil
were greater in children than in adults, whereas the HQoral,
HQdermal, HQinha, and HI of Ni and Cr in adults were greater
than in children, as shown in Figure 4. Furthermore, the HI
in children was in descending order
Pb> Fe>Mn>Cd>Cu>Al>Cr>Zn>Ni, while the HI in
adults was Pb> Fe>Cr>Mn>Cd>Cu>Al>Ni>Zn, re-
spectively. Surprisingly, the HI of Pb (2.05) and Fe (1.59) in
children was higher than 1, which may have a potential

noncarcinogenic effect on children’s health. Additionally,
the risk level from Pb and Fe was level 3 (medium risk).
(erefore, both the chronic risk and cancer risk by Pb and Fe
for children was medium, and the calculated cases of cancer
occurrence by Pb and Fe for children in this study were >1
per 100,000 inhabitants but <1 per 10,000 inhabitants, re-
spectively [42]. Incidentally, children living nearby a mu-
nicipal waste incinerator also suffer from the burdens of Pb,
Cd, and Cr associated with genotoxicity and epigenetic
modifications [90]. Both chronic toxicity and acute toxicity
by Pb exposure have the potential of deleterious systemic
effects including immune imbalances, hypertension, frank
anemia, intellectual disability, gastrointestinal effects, skel-
etal delay, development of deciduous dentistry, vitamin D
deficiency, surrogate for Ca, infertility, and hearing loss
[91, 92]. Kim and Williams reported that landfills are high-
risk areas for environmental Pb exposure for children living
in poor areas in many countries [93]. Blood Pb levels of
children living near landfills were related to the increase of
Pb levels in the soil. Also, Dórea reported that Pb also causes
increased neurological health issues from prenatal exposure
to portend and negative results were commonly in infants
(<6 months) [94]. In children, Fe overload causes β-(al-
assemia in anemic patients [95]. (us, Pb and Fe contam-
ination in the soil of this landfill has the potential effect of
being a chronic risk, especially to children’s health.

3.6. Carcinogenic RiskAssessment. (eCRoral and LCR of Pb
and Cd in children were greater than adults, whereas the
CRoral and LCR of Ni and Cr in adults were greater than
children. Further, the CRdermal and CRdInh of Ni and Cr in
adults were also higher than children, while both CRdermal
and CRdInh of Cd in children were higher than adults, as
shown in Figure 5. Surprisingly, the CRoral of Ni, Cd, and Cr
in children was 1.4E− 04, 2.5E− 04, and 1.8E− 04, respec-
tively, and the LCR of Ni, Cd, and Cr in children was
1.5E− 04, 2.8E− 04, and 2.0E− 04, respectively, in adults.
(e CRoral of Ni and Cr was 1.6E− 03 and 3.0E− 04,
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respectively, while the LCR of Ni and Cr was 1.6E− 03 and
3.4E− 04, respectively. Both exceeded the carcinogenic risk
limit at 1.0E− 04 and indicated that a lifetime carcinogenic
posed a risk to both children and adults. Nickel is a major
carcinogen to humans and up-take is through the respiratory
tract, digestive system, and skin [96]. (e primary target
organs are the kidneys and lungs [97]. Exposure to Ni is
intricately linked to an increased risk of human lung and
nasal cancer [98, 99]. Furthermore, Ni is the most common
cause of contact allergies and causes dermatitis worldwide,
commonly found in children [100, 101]. Jacob et al. con-
firmed children older than six months may have suspected
Ni allergic contact dermatitis [102]. Moreover, congenital
heart defect occurrence in offspring may be associated with
Ni exposure in mothers [103]. (is study indicates that it
may be harmful to adult workers, their children, and any
other people living with Ni in the area.

Hexavalent chromium (Cr+6) compounds are classified
as carcinogenic to humans in the respiratory tract, giving rise
to cancer of the lungs, nose, and nasal sinuses. It is muta-
genic when inhaled and also potentially when ingested orally
in large quantities [104, 105]. In particular, in certain oc-
cupational environments, workers may suffer from inhala-
tion exposure by Cr+6 dust, mists, and fumes [106].
Environmental exposure to Cr+6 negatively affects the
outcome of the pregnancy and consequently the health of
two generations, resulting in higher pregnancy loss, spon-
taneous miscarriage, and low birth rate [107]. Besides, Cr
may affect fetal growth; particularly, early and midterm
pregnancies appear to be the riskiest periods for fetal ex-
posure to Cr [108]. Children of Cr+6 exposed women ex-
perience increased respiratory problems, perinatal jaundice,
and congenital disabilities [107].

Cadmium has been defined as being carcinogenic to both
animals and humans [109, 110]. Both Cd exposure through
occupation and environment leads to tumorigenesis and
increases the risk of various cancers, particularly lung,
prostate, jugular, and pancreatic cancer [111–113].(ey also
reported that long-term Cd exposure could promote breast

cancer. Early life low levels of Cd exposure are related to
lower child IQ in 5-year-old girls and boys [114], and 10-
year-old children with Cd exposure are associated with
lower ingeniousness, especially in boys [115]. (is study
indicated that children might suffer a detrimental health
effect due to Cd and Cr exposure. However, the limitation of
this study was to find out the worker health profiles and the
difficulty of the database of air pollution reports and local
waste management policy and plans. (erefore, intensive
environmental health risk surveillance needs long-term
operations.

4. Conclusions

In this study, the average concentrations of Pb, Ni, Cd, Mn,
Fe, Cr, and Al in groundwater exceeded both WHO and
USEPA standards. Besides, the levels of Zn, Pb, Ni, Cd, Mn,
Fe, Cr, Al, and Cu in groundwater elevated sharply from
April to October, indicating these metals levels increased
mostly in the wet season. (e WQI in the groundwater
around this landfill is unsuitable for consumption and is due
to groundwater contamination, which mainly appears
within 1 km of the landfill and is especially impacted by the
landfill’s age. (e average Cd and Cu concentrations
exceeded the average in natural soil. (e Igeo of Cd was heavy
to extremely contaminated, and lastly, the Cu was extremely
contaminated. Ultimately, the metal transfer from the soil
and groundwater may pose serious health problems to
humans and livestock, especially cattle. (e degree of pol-
lution for Cd was very high and the RI indicated that the risk
degree was very high. (us, Cd should be provoking a great
deal of attention as an ecological hazard and be considered a
priority pollutant in this area.

(e HQ and HI of Zn, Pb, Cd, Mn, Fe, Al, and Cu in the
soil for children were greater than adults; the HQ and HI of
Ni and Cr in adults were greater than in children. (e HI of
Pb and Fe in children was higher than 1, which was
interpreted as a noncarcinogenic effect on children and
indicated that both metals (Pb and Fe) could cause medium
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Figure 5: Carcinogenic risks (CRs) of Pb, Ni, Cd, and Cr for oral, dermal, and inhalation of the contaminated soil samples.
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levels of chronic risk and cancer risk in children. (e CRoral
and LCR of Pb and Cd in children were greater than adults,
whereas the CRoral and LCR of Ni and Cr in adults were
greater than children. (e CRoral and LCR of Ni, Cd, and Cr
in children and the CRoral and LCR of Ni and Cr in adults
exceeded the carcinogenic risk limit.(us, the data indicated
a lifetime carcinogenic risk to both children and adults. (e
environmental surveillance of heavy metals as pollutants
must be addressed and monitored to mitigate the health
risks, such as through the application of soil amendments
and risk control measures, continuous monitoring of the
groundwater, soil and leachate treatment processes, oper-
ating blood and urine screening of workers at the landfill,
and exposure avoidance for children living near the con-
taminated landfill area.
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of trace element status of organic dairy cattle,” Animal,
vol. 12, no. 6, pp. 1296–1305, 2018.

[86] X. Zhou, N. Zheng, C. Su, J. Wang, and H. Soyeurt, “Re-
lationships between Pb, as, Cr, and Cd in individual cows’
milk and milk composition and heavy metal contents in
water, silage, and soil,” Environmental Pollution, vol. 255,
no. Pt 2, Article ID 113322, 2019.

[87] N. Vongdala, H.-D. Tran, T. Xuan, R. Teschke, and T. Khanh,
“Heavy metal accumulation in water, soil, and plants of
municipal solid waste landfill in Vientiane, Laos,” Interna-
tional Journal of Environmental Research and Public Health,
vol. 16, no. 1, p. 22, 2018.

[88] J. N. Ihedioha, P. O. Ukoha, and N. R. Ekere, “Ecological and
human health risk assessment of heavy metal contamination
in soil of a municipal solid waste dump in Uyo, Nigeria,”
Environmental Geochemistry and Health, vol. 39, no. 3,
pp. 497–515, 2017.

[89] A. A. Adeyi and P. Oyeleke, “Heavy metals and polycyclic
aromatic hydrocarbons in soil from E-waste dumpsites in
Lagos and Ibadan, Nigeria,” Journal of Health and Pollution,
vol. 7, no. 15, pp. 71–84, 2017.

[90] P. Xu, Z. Chen, Y. Chen et al., “Body burdens of heavy metals
associated with epigenetic damage in children living in the
vicinity of a municipal waste incinerator,” Chemosphere,
vol. 229, pp. 160–168, 2019.

[91] P. Mitra, S. Sharma, P. Purohit, and P. Sharma, “Clinical and
molecular aspects of lead toxicity: an update,” Critical Re-
views in Clinical Laboratory Sciences, vol. 54, no. 7-8,
pp. 506–528, 2017.

[92] Y. Liu, X. Huo, L. Xu et al., “Hearing loss in children with
E-waste lead and cadmium exposure,” �e Science of the
Total Environment, vol. 624, pp. 621–627, 2018.

[93] M. A. Kim and K. A. Williams, “Lead levels in landfill areas
and childhood exposure: an integrative review,” Public
Health Nursing, vol. 34, no. 1, pp. 87–97, 2017.
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