
Research Article
Eco-Efficiency Measurement of Green Buildings and Its
Spatial and Temporal Differences Based on a Three-Stage
Superefficient SBM-DEA Model

Wei Liu , Zhihao Ou , Cheng Lin, and Zeyi Qiu

School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China

Correspondence should be addressed to Wei Liu; liuweijx13@163.com and Zhihao Ou; ouzhihao03@163.com

Received 8 April 2022; Revised 1 June 2022; Accepted 17 June 2022; Published 11 July 2022

Academic Editor: Hanliang Fu

Copyright © 2022Wei Liu et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To explore the development of green building eco-e�ciency in China, a three-stage supere�cient SBM-DEA model was used to
measure the green building eco-e�ciency in China based on interprovincial panel data from 2013–2020, and the interprovincial
and regional development patterns and evolutionary characteristics of green building eco-e�ciency were analyzed from the time
series and spatial dimensions. It is found that the overall level of green building e�ciency in China is low, and there are signi�cant
provincial and regional di�erences, and the overall pattern of gradient development frommedium-medium-low e�ciency area to
medium-medium e�ciency area gradually transitions and shows signi�cant spatial agglomeration and path dependence; among
them, the spatial spillover and di�usion e�ect of high-e�ciency areas is signi�cant, while low-e�ciency areas generally maintain
low growth, and most areas have “Matthew e�ect,” showing the spatial club convergence characteristics that developed regions
tend to be H-H agglomerative, and less developed regions tend to be L-L agglomerative. For this reason, the local governance of
green buildings should be strengthened, and a cross-regional linkage development mechanism should be established to deepen the
technical cooperation and division of labor between regions.

1. Introduction

�e pace of China’s new urbanization and modernization
has been accelerating, and the resulting resource, environ-
mental, and social problems have been increasing. Among
them, building energy consumption and pollution seriously
endanger the ecological environment and restrict the de-
velopment of the industry [1]. �e World Energy Organi-
zation (IEA) predicts that China’s building energy
consumption will reach 15.2 tce in 2030, and its energy
consumption and related emissions will increase about 1∼3
times in 2050 [2]. Ecological protection plays a very im-
portant role in urbanization [3]. Obviously, the large-scale
construction and urban expansion in China have gradually
intensi�ed the contradiction between economic develop-
ment, energy demand, and ecological environment, and the
public demand for and willingness to accept green building
supply is increasing, and green building will become one of
the themes of sustainable urban development in the future.

With the increasing demand for urban eco-environmental
protection and resource intensi�cation, the development of
green buildings in China at this stage is indeed slightly
e�ective, and the scienti�c measurement of its eco-e�ciency
is of profound signi�cance for the sustainable development
of China’s construction industry.

�e concept of Eco-E�ciency is derived from a report
submitted by the World Business Council for Sustainable
Development (WBCSD) in 1992, and its core aims to portray
the ability of a certain �eld (industry, region, or economy) to
obtain more high-quality outputs with less resource input
and e�ectively reduce negative environmental impacts,
aiming to achieve win-win or multiwin goals [4]. In the case
of green buildings, their eco-e�ciency emphasizes the ac-
quisition of higher economic or environmental value with
smaller construction resources and environmental costs.
�erefore, most of the existing studies on eco-e�ciency in
construction have focused on the economic, environmental
bene�ts, and energy recovery aspects of green buildings, and
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few studies have been conducted on green building eco-
efficiency itself. Chel and Kaushik [5] described the eco-
nomic and environmental impacts of actual buildings before
and after construction, emphasizing the importance of zero-
energy building design before construction, low-energy
green materials during construction, and the use of low-
energy energy-efficient equipment in later stages. Chen et al.
[6] used structural decomposition analysis to compare the
differences in building energy consumption between the
United States and China and to provide systematic eco-
logical decision making for green buildings in China based
on dimensions such as energy intensity effects and ecological
effects in the building industry. Rodriguez et al. [7] assessed
the eco-efficiency of Spanish buildings from the perspective
of solid waste, with special emphasis on its role in further
recycling of green building waste. At the level of spatial
differences in eco-efficiency, domestic and international
studies have mostly focused on the perspectives of urban
development and regional environment. He and Hu [8]
measured the eco-efficiency of an urban agglomeration
(Chengdu-Chongqing) using super-Slack based on energy
and environmental issues, revealing that large cities are more
eco-efficient, and vice versa for small cities. From the per-
spective of industrial land, Deng and Tang [9] measured its
eco-efficiency using super-SBM and investigated its spatial
differentiation characteristics through spatial autocorrela-
tion. Based on the DEA-Malmquist model, Chen [10]
measured the industrial eco-efficiency of 31 provinces in
China and measured its convergence. /e empirical results
show that industrial eco-efficiency has not been effective in
China since 2008 and that changes in pure technical effi-
ciency have been the main driver of industrial efficiency./e
results show that industrial eco-efficiency has not been ef-
fective in China since 2008 and that purely technical effi-
ciency changes are the main driver of industrial efficiency.
Lu et al. [11] study the ecological value of green buildings
from a systemic perspective, integrating a systemic game
analysis framework with government, developers, and
consumers as participants. By constructing a regional eco-
efficiency evaluation model and using exploratory spatial
statistical analysis, Qu [12] empirically measured and ana-
lyzed the spatial and temporal correlation and agglomera-
tion characteristics of regional eco-efficiency in China and
studied the driving factors of eco-efficiency changes. Liu and
Yu [13] used structural equation modelling and AMOS
software to construct a structural model of green building
development based on survey questionnaires to explore the
key influencing paths and key influencing factors driving the
development of green buildings, so as to reveal the driving
mechanism of green building development and propose
corresponding driving countermeasures. J. R. Xu [14] ex-
amined the impact of government environmental audits on
eco-efficiency using multiple regression and PSM methods.
Our analysis shows that government environmental audits
can significantly improve both static and dynamic eco-ef-
ficiency. Jiang and Tan [15] calculated the eco-efficiency of
each region based on the econometric model of Window
slacks and formed a spatial network of regional eco-effi-
ciency spillovers from the causality model.

/e widespread rise of green building helps improve the
concept of urban and rural construction, reduce the
constraints of building resources, and help the energy-
saving and environmental protection strategy, which is of
great significance and is an important vehicle to prompt the
industry to move from the simple pursuit of economic
benefits to the direction of improving resource utilization
and ecological benefits. In recent years, the awareness of
and demand for the concept of green building have
gradually increased throughout society, the initial benefits
of green building marketisation have emerged, the scale of
layout has continued to grow, and a number of demon-
stration and benchmark projects have been set up, which
have become an important symbol of building energy ef-
ficiency and emission reduction. Green building eco-effi-
ciency is a judgement of the impact of green building
economic activities on the ecological environment, while
China’s green building started late, and development is still
relatively lagging behind, and there is a lack of scientific
quantitative research on this. /erefore, this paper scien-
tifically constructs an evaluation index system based on
nonexpected output and reasonably measures its eco-ef-
ficiency level, providing a new research perspective and
technical method for the research system to establish the
measurement and analysis of green building eco-efficiency;
at the same time, based on the theoretical logical per-
spective of national, regional, and interprovincial differ-
ences, it analyzes the spatial and temporal differences and
evolutionary characteristics of green building eco-effi-
ciency and identifies the key influencing factors driving
green building eco-efficiency. It also identifies the key
influencing factors that drive green building eco-efficiency,
reveals the relationships among them, and explores more
accurate and effective paths to improve green building eco-
efficiency, with a view to providing theoretical support and
practical reference for improving the decision-making
mechanism of local governments, as well as providing a
forward-looking strategic vision for the market’s sponta-
neous focus on green building development, and broad-
ening the road to sustainable and healthy development of
green buildings.

2. Literature Review

2.1. Current Status of Eco-Efficiency Research. For decades,
As the Chinese government attaches increasing importance
to environmental protection, it has become increasingly
urgent to conduct a comprehensive, quantitative, and ob-
jective assessment of eco-efficiency for sustainable devel-
opment. As a result, the concept of eco-efficiency has been
the subject of intense research in academic circles, and the
idea of eco-efficiency has rapidly spread to many areas of
society. At present, the main methods of measuring eco-
efficiency at home and abroad are the single ratio method,
the indicator system method, and the model method.

Although the single ratio method fits well with the eco-
efficiency theory, it requires a single indicator factor, is
highly subjective when converting indicators, and has poor
environmental applicability, cannot correctly distinguish
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efficiency differences, and does not guarantee the accuracy
and precision of the measurement.

/e indicator system evaluation method measures the
magnitude of eco-efficiency by screening the various input
factors that affect eco-efficiency and establishing a system of
evaluation indicators. In 2017, Özokcu and Özdemir [16]
explored the relationship between environmental degrada-
tion and economic development using two empirical models
through the context of the environmental Kuznets curve
(EKC), and based on this, they established a system of eco-
efficiency evaluation indicators. Zhang and Ye [17] focused
on the concept of eco-development and innovation effi-
ciency and integrated the PPC model in RAGA to evaluate
the eco-innovation efficiency of different industrial sectors.
/eir findings demonstrate that the level of efficiency is
limited by the intensive type of industry and clarify the
important factors affecting the efficiency improvement, so as
to provide a reference for the innovation development of
various industries. Fu et al. [18] applied eye-tracking
techniques and questionnaires within the framework of the
stimulus-organism response model (SOR) and technology
acceptance model (TAM) to investigate the factors influ-
encing public acceptance of 5G base stations. Jiang et al. [19]
reassessed the sustainability efficiency of Chinese listed
companies based on a green perspective indicator system;
concluding that there is still much room for improving the
green sustainability efficiency of listed companies. Wang
et al. [20] constructed a comprehensive eco-efficiency index
for Jiangsu and evaluated the eco-efficiency of 13 cities
through the entropy-weighted TOPSIS method. /e study
showed that the ecological efficiency of Jiangsu varied
widely, with the highest ecological efficiency in central
Jiangsu and relatively low in the north and south of the
country.

/e main advantage of the DEA method and its ex-
tensions is that it is scale-independent and objective; it
evaluates the relative effectiveness of decision-making units
(DMUs) by means of linear programming models, and it is
particularly advantageous for evaluating the efficiency of
participating projects with multiple inputs and outputs. /e
method is popular among domestic and international
scholars, especially the application of DEA extension models
to eco-efficiency. Yasmeen et al. [21] assessed the eco-effi-
ciency of 30 regions in China using a superefficient DEA
model and a systematic GMM approach and explored the
effects of urbanization, technological innovation, and en-
vironmental regulations on eco-efficiency, showing that the
eastern region ranked highest in terms of eco-efficiency.
Mardani et al. [22] showed the superiority of DEAmodels in
the field of energy efficiency when the production function
between inputs and outputs is almost nonexistent or ex-
tremely difficult to obtain. Liu and Zhang [23] used an EBM-
ML model with nondesired outputs to measure eco-effi-
ciency and decomposition efficiency in 30 provinces in
China from 2009 to 2018, using in-depth analysis in time and
space. Zhu and Liu [24] used the superefficiency SBM-DEA
model to measure eco-efficiency in Zhejiang Province and

constructed a multiple linear regression model based on this
model to evaluate the factors affecting eco-efficiency. /e
results of the multiple regression analysis showed that the
positive impact of income, structural, and institutional
factors on eco-efficiency was gradually weakening. Mao et al.
[25] used descriptive analysis and one-way ANOVA to
understand the sensitivity levels of metro passengers and to
analyze their adaptive behavior based on their sensitivity to
subenvironmental health risks. Chen [26] integrated the
SBM-Undesirable model with the ML index to measure and
analyze the level of green energy efficiency, to clarify the
different relationships between the role of technological
advances on regional energy efficiency, and to reveal the
spatial spillover effects of different external environmental
variables. Zou et al. [27] considered the division of non-
energy and energy inputs based on the use of nonuniform
proportional reduction in order to construct and assess the
production possibility set of energy efficiency environmental
efficiency of Chinese provinces and cities, and they used an
improved DEA model to calculate the efficiency level of
Chinese provinces and cities in 2016. Zhan et al. [28] used
the Malmquist-DEA index to evaluate and explore the
differences in eco-efficiency of marine rangelands in dif-
ferent regions. Chen [29] integrated meta-frontier data
envelopment analysis (DEA) and inclusive eco-efficiency
and proposed a modified meta-frontier relaxation-based
metric model (SBM) model and a meta-frontier nonradial
directional distance function (NRDDF) model.

2.2. Current Status of Research on Spatial and Temporal
Differences. At present, foreign studies on spatial and
temporal differences in eco-efficiency are mainly focused on
two levels: the analysis of the characteristics of differences
and the causes of differences. Based on the perspective of
urban agglomeration development, Chang et al. and Ren
et al. [30, 31] measured urban eco-efficiency in the process of
urbanization development and studied the spatial and
temporal differences in urbanization eco-efficiency between
regions and its influencing factors. Zhang et al. andHan et al.
[32, 33] explored the spatial and temporal differences and
evolutionary characteristics of industrial eco-efficiency in
regional urban agglomerations, emphasized the spatial
spillover effects of neighboring cities, and put forward
reasonable suggestions for ecological green development
based on the research results. Ho et al. [34] analyzed the
spatial distribution and convergence characteristics of the
eco-efficiency of Chinese provinces and cities. Yu et al. [35]
conducted an empirical examination of the eco-efficiency of
key environmental protection prefecture-level cities in
China from 2003 to 2015 to analyze the spatial and temporal
differences in eco-efficiency of cities in different regions and
provide insights for decision makers to quantitatively assess
the sustainable development of cities. To explore the growth
paths of green cities in China, Huang and Hua [36] used two
improved DEA methods and spatial modelling to examine
the convergence patterns of ecological efficiency in different
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heterogeneous cities, aiming to achieve an effective balance
between economic growth and environmental protection in
green cities. /e causes of differences mainly refer to the
influencing factors that cause spatial and temporal differ-
ences. Overseas studies on the influencing factors of spatial
and temporal differences in eco-efficiency have mostly fo-
cused on policy, materials, and technology. At the policy
level, Ragheb et al. [37] analyze the impact of the intro-
duction and practice of “green building systems” on local
eco-efficiency differences based on local policy differences.
In terms of green building materials and technologies,
Sposito and Scalisi [38] highlight the important contribution
of sustainable building materials and green technologies to
the difference in eco-efficiency set in the construction in-
dustry. /omassen et al. [39] introduce a green technology
indicator evaluation system to assess the technical, eco-
nomic, and environmental potential of emerging green
technologies in different geographical areas at different
stages of technological development in order to achieve
minimum environmental impact and maximum economic
impact.

Domestic studies on the factors influencing spatial and
temporal variation in eco-efficiency have mainly focused on
the macro level and the perspectives of urban construction,
technological progress, and multiparty games. In terms of
macro-level changes in eco-efficiency, Wu et al. [40] mea-
sured and analyzed industrial eco-efficiency in 31 provinces
in China using provincial-level panel data and then explored
the factors affecting efficiency; the results showed that in-
dustrial eco-efficiency in three provinces and cities showed a
steady upward trend in the time series, but there were
significant differences in regional cross-sections. Li et al. [41]
used the SBM model to measure the eco-efficiency of four
special economic zones, 78 general cities, and 13 metro-
politan cities, which were analyzed using the SBM model to
analyze the spatiotemporal evolutionary characteristics, as
well as the differences across regions; the study showed that
the eco-efficiency of most cities was highly variable, and the
degree of urban coordination was low. Tang and Meng [42]
used panel data to measure eco-efficiency in 26 provinces
and cities and analyzed its evolution and heterogeneity
pattern based on regionalization; the results showed that
eco-efficiency in China has significant spatial correlation and
interprovincial clustering characteristics. Based on the
spatial and temporal differences and variability of regional
and interprovincial eco-efficiency, Ren et al. [43] con-
structed a spatial econometric model to examine the key
drivers of eco-efficiency and its evolution and clarified the
mode of action and degree of influence of internal and
external drivers. At the urban construction level, Song et al.
[44] used the double difference method (DID) to evaluate
the impact of low-carbon city construction on urban eco-
efficiency and explored the differential impact based on
heterogeneous resource dependence and city size. Lu and
Fang [45] measured the eco-efficiency of urban construction
land and quantitatively analyzed the spatial pattern and the
impact characteristics of its elements. Man et al. [46]
quantified environmental regulation policies and explored
the impact of environmental regulation on regional eco-

efficiency using four urban agglomerations in eastern China
as research objects. Li and Wang [47] argue that techno-
logical progress can be achieved by increasing the level of
technology and acting on total factor productivity and
demonstrate that regional differences in eco-efficiency in
China’s construction industry are caused by the degree of
technological progress. At the level of multiplayer games,
Wang [48] analyzes the tendency of two influential players to
choose green buildings to enter the market under the
premise of government subsidies, based on evolutionary
game theory.

/rough careful combing of research results at home and
abroad, it can be seen that, as an important carrier of
sustainable urban development, the eco-efficiency of green
buildings is the best balance between the pursuit of resource
demand, economic benefits, and ecological values in the
construction industry, but in the existing research on eco-
efficiency, it is more applied to industry, agriculture, etc. /e
research and application results on the eco-efficiency of
green buildings are also relatively weak, and there is even a
lack of research and application results based on green
buildings themselves. /ere is a lack of systematic analysis
based on green buildings themselves and the regional
economic context they are based on. /erefore, this study
focuses on the input-output situation of building value
output and environmental load, combines the three-stage
DEA model and superefficient SBMmodel to measure green
building eco-efficiency, and uses kernel density estimation,
Moran’s I index, and its scatter plot to analyze the regional
differences, agglomeration characteristics, and spatial and
temporal evolution patterns of green building eco-efficiency.

3. Research Methodology and
Theoretical Model

3.1. 'ree-Stage Superefficient SBM Model. Considering the
special characteristics of green building eco-efficiency
measurement such as variable market environment, inac-
curate value information, and large random errors, the
traditional DEA method has been difficult to meet the
measurement requirements. In this paper, the superefficient
SBM model is used to improve the three-stage DEA model
for efficiency measurement, which solves the defect of not
being able to further evaluate the efficiency level of an ef-
fective decision-making unit (DMU) and can effectively
eliminate the influence of environmental variables and
random factors, so as to obtain more realistic and accurate
measurement results. /e model is constructed in the fol-
lowing three steps.

3.1.1. Stage 1. Construct the superefficient SBM model.
Draw on the superefficient SBM model improved by Tone
[49] on the basis of the nonexpected output SBMmodel, the
DMUs on the production frontier of the same data envelope
can be effectively distinguished, and the initial efficiency
value and input slack value of each DMU are measured
based on the input-output data. /e model is as follows:
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(1)

where n, x, m are the number of decision units, input items,
and input indicators, respectively; ya, yb are the expected
output items and nonexpected output items, respectively; s1,
s2 are the number of indicators of the first two, respectively;
s− , sa and sb are the slack variables for inputs, expected
outputs and, nonexpected outputs, respectively; λ is the
weight vectors, and ρ are the objective function values, that
is, the eco-efficiency values of green buildings, with ρ≥ 1
indicating that the DMU is valid and ρ< 1 indicating that the
DMU is invalid, and improvements need to be made to the
inputs and outputs.

3.1.2. Stage 2. Construct the stochastic frontier model
(SFA). Draw on the SFA regressionmodel proposed by Fried
et al. [50], and the cost function model for decomposing the
input slack values obtained in stage one, so as to remove the
disturbances caused by the external environment, random
errors, and other factors as follows.

Sni � f Zi; β
n

(  + ]ni + μni; i � 1, 2, . . . , I; n � 1, 2, . . . , N,

(2)

where sni is the input slack value of the first n term of the first
DMU; Zi � (Z1i, Z2i, . . . Zpi) is the P environmental vari-
ables, βn is the parameter to be estimated for Zi, and
f(Zi; β

n) is the effect of the external environment on the
input slack value; ]ni + μni is the mixed error term, ]ni is the
random error term, and ] ∼ N(0, σ2v) is assumed; μni is the
management inefficiency term, and μ ∼ N+(0, σ2μ) is as-
sumed, and ]ni and μni are independently uncorrelated. To
achieve the removal of the effects of the external environ-
ment and random errors, the inputs are adjusted as follows:

X
A
ni � Xni + max f Zi;

β
n

   − f Zi;
β

n
   + max ]ni(  − ]ni ,

(3)

XA
ni is the adjusted input value, and Xni is the input value

before adjustment, [max(f(Zi;
βn)) − f(Zi;

βn)] is the ex-
ternal environment adjusted to the same state, and
[max(]ni) − ]ni] is the random error adjusted to the same
state.

3.1.3. Stage 3. Based on the adjusted input and original
output data, the superefficiency SBM model is then used to
measure the efficiency value, which is relatively true to reflect
the actual management level of the DMU.

3.2. Kernel Density Estimation Method. Kernel-Density es-
timation is a nonparametric evaluation method used to
estimate the probability density of a random variable by
calculating a continuous kernel density curve to depict the
distribution extension of the random variable [51]. /e
expression of its density function is given by the following
equation:

①f(x) �
1

Nh


N

i�1
K

Xi − x

h
 ,

②K(x) �
1
���
2π

√ e
− x2/2( ),

(4)

whereN is the number of samples, h is the bandwidth, which
is used to control the smoothness of the density curve; Xi is
the sample value of independent identical distribution, and
the kernel function K is a weighting function. In this paper,
the distribution pattern of eco-efficiency values of green
buildings is estimated by the Gaussian kernel density
function, and its function expression is shown in the above
② equation. To ensure the accuracy of kernel density es-
timation, a smaller h value is generally chosen, and the
dynamic evolution information such as distribution and
development trend of the observed object (eco-efficiency
value) in time is examined by graphical comparison.

3.3. Moran’s I Index Analysis. To study the spatial auto-
correlation of green building eco-efficiency and explore the
spatial correlation and clustering characteristics between the
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level of green building eco-efficiency in a certain region and
its neighboring regions, this paper uses the global Moran’s I
index and local Moran’s I index to test the green building
eco-efficiency based on the spatial weight matrix of geo-
graphical distance./e globalMoran’s I index is usually used
to measure the global spatial distribution characteristics of
the object under examination, which can better reflect
whether there is spatial clustering and other characteristics
of the object under observation. /e local Moran’s I index,
on the other hand, reflects whether there is spatial ag-
glomeration characteristics and spatial correlation behavior
of the object under examination with high or low observed
values in different regions, and the calculation formula is as
follows:

global : I �


n
i�1 

n
j�1 Wij xi − x(  xj − x 

S
2


n
i�1 

n
j�1 Wij

,

local : Ii �
xi − x( 

S
2 

n

j�1
Wij xj − x ,

(5)

where n is the number of samples; xi and xj are the green
building eco-efficiency values of province and city i and
province and city j; wij is the spatial weight matrix, and this
paper uses the geographic distance spatial weight matrix; x,
s2 are the mean and variance of green building eco-efficiency
of each province and city, respectively; global situation I> 0
indicates a positive spatial correlation, I< 0 indicates a
negative spatial correlation, and I� 0 indicates no spatial
correlation.

4. Indicator Selection and Data Sources

4.1. Input-Output Index Selection. Drawing on the idea of
sustainable development strategy elaborated by Damato
et al. [52], green building eco-efficiency can be interpreted as
the ratio of the output of building value (economic value,
ecological value) to the input of resources. /erefore, based
on the current situation of green building development in
China, the index requirements of the data envelope model,
and the availability of data, this paper selects capital, labor,
energy, land, technology, and other factors as input indi-
cators, and economic and environmental factors as output
indicators, so as to construct the green building eco-effi-
ciency evaluation index system (see Table 1). Among them,
all the data can be obtained directly or indirectly from the
statistical yearbook, except for the carbon emission data,
which cannot be obtained directly, while the carbon emis-
sion calculation is mainly referred to the IPCC carbon
emission accounting method and related research results
[53, 54].

4.2. Selection of External Environmental Variables.
Environmental variables are used in the SFA regressionmodel
of stage 2, and factors that have an impact on the eco-effi-
ciency of green buildings but are not subjectively controlled
by the construction industry are mainly selected [55].
Combining the current situation of China’s construction

industry development, the sustainable development driving
characteristics of green buildings, and relevant research data,
and after considering the limitations of the research model
and objective factors, this paper focuses on the environmental
variables that affect the eco-efficiency of green buildings from
four levels: economic level, urban proportion, scientific and
technological support, and energy structure (Table 2).

Level of economic development: the level of eco-effi-
ciency of green buildings is limited by the level of regional
economic development. Macroeconomic differences are a
key factor causing regional differences in the development of
the construction industry, which has an important impact
on the management of construction production and tech-
nology supply. In this paper, regional GDP per capita is
chosen to characterize the level of regional economic
development.

Level of urbanization: the urbanization process drives
the population to move to cities and towns, which to a
certain extent affects the supply and demand of the con-
struction industry and also has a certain environmental
impact on urban construction./erefore, this paper uses the
proportion of urban population in the total population of a
region to characterize the impact of the level of urbanization.

Science and technology support: the level of regional
investment in science and technology is crucial to the de-
velopment and application of green technologies. /e
adoption of advanced green technologies and management
experience can optimize and improve the building pro-
duction process, which is an important means to achieve
energy saving and emission reduction in buildings and
promote the development of green buildings. In this paper,
the proportion of regional investment in science and
technology to fiscal expenditure is used to characterize the
level of regional support for science and technology.

Energy structure: the energy consumption structure
directly affects the carbon emission efficiency of the con-
struction industry, and a reasonable optimization of the
energy structure can effectively improve the low-carbon and
green development of the construction industry. China’s
energy structure is dominated by coal, and the proportion of
coal consumption to total energy consumption is chosen in
this paper to characterize the preference of building energy
consumption.

4.3. Data Sources. In this paper, 30 Chinese provinces
(regions and cities, excluding Tibet, Hong Kong, Macao, and
Taiwan) are selected as the research objects, and the panel
data of input-output and environmental variables from 2013
to 2020 are used to measure the eco-efficiency of green
buildings in each province and city, and the studied regions
are divided into eastern, central, and western based on
geographical location and other factors to facilitate the
analysis of their regional differences. /e data were obtained
from the China Statistical Yearbook, China Construction
Statistical Yearbook, China Energy Statistical Yearbook, and
the statistical yearbooks of each province and city in the
relevant years. /e descriptive statistical characteristics of
the input-output sample data are shown in Table 3, which
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shows that the standard deviation and extreme deviation of
individual indicators are large, indicating the existence of
large differences, and the input and output situations also
reflect large differences.

5. Empirical Research

5.1. Analysis of Green Building Eco-Efficiency Measurement
Results. /ere are significant differences in green building
eco-efficiency across Chinese provinces and municipalities,
and the specific efficiency results only consider the influence
of the green building industry’s own development in dif-
ferent regions, while ignoring the actual external environ-
mental variables and random errors that interfere with it.
/erefore, it does not reflect the actual level of green building
eco-efficiency in each province and city, so it is necessary to
measure the efficiency by placing different provinces and

cities under the same environmental conditions. /erefore,
using the level of economic development, urbanization level,
technological support, and energy structure as independent
variables and the slack value of input variables as dependent
variables, the SFA regression was measured using Frontier
4.1 software based on equation (2), and the data required
were the arithmetic mean of the variables from 2013 to 2020,
and the measured results are shown in Table 4.

As can be seen from Table 4, the likelihood ratio LR for
each variable passed a mixed chi-square test with a signif-
icance level of 5% or 1% over the period 2013–2020, indi-
cating that the external environmental variables selected for
this paper would have a significant impact on the green
building eco-efficiency measure and that it is reasonable to
conduct an SFA regression analysis. And the values of each
variable were close to 1 and passed the significance test,
indicating that the management inefficiency factor accounts

Table 2: External environmental variables for eco-efficiency in green buildings.

Variable name Variable values Variable description

Environment
variables

Economic level GDP per capita (billion yuan) Measuring the impact of the level of regional
economic development

Urban share Urban population share of total population
(%)

Measuring the impact of regional urbanization
level

Technology
support

Regional investment in science share of fiscal
expenditure (%)

Measuring the impact of green technology support
and R&D

Energy structure Coal consumption share of total energy
consumption (%)

Measuring building energy consumption
preferences

Table 3: Results of descriptive statistics of input-output variables of the sample (2013–2020).

Variable Sample Max. Min. Average Standard deviation
Fixed asset investment in construction industry (billion) 240 1136.86 0.09 131.45 201.44
Number of employees in construction industry enterprises (person) 240 8110275 54847 1604115.18 1785021
Total energy consumption (million/t standard coal) 240 354.33 14.91 126.23 75.88
Building area of houses (million m2) 240 249176.80 738.96 39362.64 47499.82
Technical equipment rate (yuan/person) 240 91231.43 728 14354.99 9978.62
Total construction industry output value (billion yuan) 240 6717.06 52.22 1211.13 1302.94
Total profit of construction industry enterprises (million yuan) 240 11617738 64449 2093927.95 2070219
Carbon emissions (million tons) 240 52901.55 562 13178.71 11055.73

Table 1: Green building eco-efficiency evaluation indexes.

Indicator categories Indicator name Indicator meaning

Input
indicators

Capital input Fixed asset investment in construction industry (billion) Reflecting the capital investment in the
construction industry

Labor input Number of employees in construction industry enterprises
(person)

Reflecting the manpower qualified to
participate in green building projects

Energy input Total energy consumption (million/ t standard coal) Reflecting the green production capacity of
the construction industry

Land input Building area of houses (million m2) Reflecting the construction of land for green
building projects

Technical input Technical equipment rate (yuan/person) Reflecting the level of green technology and
equipment application of green building

Output
indicators

Expected
output

Total construction industry output value (billion yuan)
Total profit of construction industry enterprises (million

yuan)

Reflecting the economic output of green
building

Unexpected
output Carbon emissions (million tons) Reflecting the environmental output of green

building
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for a large proportion of the total variance, while the effect of
random error is limited, indicating that the use of the SFA
regression model is necessary. /e regression coefficients of
the four external environmental variables on the five input
slack variables were able to pass the significance level tests of
10%, 5%, and 1%, indicating that the external environmental
variables had different degrees of influence on the input
slack variables.

/e input slack variable is the difference between the
actual input of each decision unit and the target (optimal
efficiency state) input, that is, the amount of waste of the
input of each decision unit. When the coefficient of the
environmental variable is negative, it means that an increase
in the external environmental variable will reduce the input
slack variable; that is, it will help reduce the waste of the
input slack variable and achieve an increase in relative ef-
ficiency; when the coefficient of the environmental variable
is positive, it means that an increase in the external envi-
ronmental variable will increase the input slack variable; that
is, it will increase the waste of the input slack variable and
cause a decrease in relative efficiency.

(1) Level of economic development: the level of eco-
nomic development is positively correlated with the
slack variables of each input and reaches a signifi-
cance level of 5%, 1%, 1%, 5%, and 10%, respectively.
/is indicates that an increase in the level of
economy can reduce the redundancy of inputs of
capital, labor, energy, land, and technology, which is
conducive to the improvement of eco-efficiency of
green buildings and is a dominant external envi-
ronmental factor.

(2) Level of urbanization: the level of urbanization is
positively correlated with the rate of technological
equipment and fixed asset investment and negatively
correlated with the other three, with high signifi-
cance. /is indicates that the increase in the level of

urbanization causes an increase in input redundancy
in technology and capital, while at the same time
suppressing input redundancy in labor, energy, and
land. Clearly, urbanization is bound to cause certain
economic, social, and environmental pressures, and
the development of green buildings and their scaling
up will effectively improve the eco-efficiency of the
industry.

(3) Science and technology support: the effect of sci-
entific and technological support on labor force and
housing construction land area is positive, while the
effect on the remaining three items is negative, all
reaching a significance level of 1%. /is generally
indicates that expenditure on science and technology
can create a good green technological environment
and has a positive effect on improving the eco-ef-
ficiency of green buildings, but attention needs to be
paid to the effective allocation of resources while
strengthening technological research and
development.

(4) Energy structure: the energy structure has efficiency
advantages for energy consumption and fixed asset
investment, which can suppress the input redun-
dancy of energy and capital but is positively corre-
lated with technology and equipment rate and labor,
which can increase the input redundancy of tech-
nology and labor, while the redundancy of housing
construction land area is not significant.

/e above analysis shows that different external envi-
ronment variables and random errors have different effects
on the slack values of each input, which may cause different
development environments and opportunities for the green
building industry in each region and thus lead to the eco-
efficiency of green building in each province and city being
contrary to the actual situation. /erefore, based on the SFA
regression results to adjust each original input, all decision

Table 4: SFA regression results.

Independent
variable

Technical equipment
rate slack variables Workforce slack variables Fixed asset investment

slack variables
Building site area
slack variables

Energy consumption
slack variables

Constant term −1.34E+ 04∗∗∗ 2.14E+ 06∗∗∗ −1.27E+ 02∗∗∗ 4.28E+ 04∗∗∗ 4.89E+ 01∗∗∗
(−2.30E+ 03) (3.13E+ 04) (−1.27E+ 02) (9.65E+ 03) (4.89E+ 01)

Economic level −5.02E− 02∗∗ −2.52E+ 01∗∗∗ −4.72E+ 01∗∗∗ −5.97E+ 01∗∗ −1.81E− 03∗
(−2.86E+ 00) (4.72E+ 00) (−7.04E+ 00) (2.46E+ 00) (1.88E+ 00)

Urban share 2.39E+ 02∗∗ −7.74E+ 04∗∗∗ 6.86E+ 00∗∗∗ −2.01E+ 03∗∗∗ −2.74E+ 00∗∗∗
(2.02E+ 00) (−3.24E+ 01) (1.23E+ 01) (−1.29E+ 01) (−2.74E+ 00)

Technology support −1.18E+ 03∗∗∗ 4.43E+ 05∗∗∗ −1.42E+ 01∗∗∗ 1.39E+ 04∗∗∗ −4.16E+ 00∗∗∗
(−1.05E+ 02) (3.59E+ 03) (−1.42E+ 01) (1.84E+ 03) (−4.16E+ 00)

Energy structure 9.49E+ 01∗∗ 6.62E+ 03∗ −2.35E+ 00∗∗∗ −2.81E+ 01 −2.86E+ 01∗∗
(2.10E+ 00) (−1.75E+ 00) (−2.86E+ 00) (−1.42E− 01) (2.21E+ 00)

σ2 7.58E+ 07∗∗∗ 1.00E+ 12∗∗∗ 2.83E+ 04∗∗∗ 9.51E+ 08∗∗∗ 2.99E+ 03∗∗∗
(7.58E+ 07) (1.00E+ 12) (2.83E+ 04) (9.51E+ 08) (2.99E+ 03)

c
1.00E+ 00∗∗∗ 9.60E− 01∗∗∗ 1.00E+ 00∗∗∗ 1.00E+ 00∗∗∗ 1.00E+ 00∗∗∗
(1.08E+ 04) (2.52E+ 01) (1.06E+ 05) (1.50E+ 05) (2.05E+ 01)

Log −2.96E+ 02 −4.39E+ 02 −1.72E+ 02 −3.33E+ 02 −1.44E+ 02
LR 1.11E+ 01∗∗ 8.90E+ 00∗∗ 2.14E+ 01∗∗∗ 1.22E+ 01∗∗ 1.14E+ 01∗∗

Note. ∗∗∗, ∗∗, ∗ represent tests passing significance levels of 1%, 5%, and 10% respectively; the test values for T are in brackets.
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units were placed under the same external environment and
random error state to examine a more realistic level of
efficiency.

/erefore, the provinces and cities were adjusted to the
same external environment and random error, and the input
variables were adjusted according to equation (3), and based
on the superefficient SBM model, the MAXDEA software
was used to analyze the efficiency of the adjusted input data
and the original output data to measure the final green
building eco-efficiency of each province and city in China.
/e results of the mean green building eco-efficiency
measures for Stages 1 and 3 were obtained (Table 5). It can be
seen that there are significant regional differences in the eco-
efficiency of green buildings in the eastern, central, and
western regions of China, with the eastern efficiency value in
stage one (0.884) being greater than the national average
(0.724), and 20.3% and 34.6% higher than those in the
central (0.704) and western (0.578) regions, respectively, and
expanding to 27.1% and 39.7% in stage three, which clearly
shows that the central and western construction companies
have a far more inefficient management of green buildings
than in the east, but the positive effect of their external
environment makes up for some of the regional disparity.

Although the change in the average value of efficiency for
each region before and after the adjustment is relatively
small, there is a large gap in green building eco-efficiency
between provinces and municipalities at the interprovincial
level. /e number of regions on the frontier of green
building eco-efficiency increased from six to seven, with
Shandong, Guangdong, Henan, and Shaanxi changing from
non-DEA effective to DEA effective, and Beijing, Hubei, and
Chongqing changing from DEA effective to non-DEA ef-
fective, and the efficiency ranking of each province and city
changed significantly before and after adjustment, possibly
due to measurement errors in the data or the external en-
vironment such as the scale of regional green building
construction and the high or low level of development.
/erefore, SFA regression analysis was used in Stage 2 to
remove the external environment and random errors in
order to obtain relatively true efficiency values.

5.2.Analysis of TemporalDifferences inEco-Efficiency ofGreen
Buildings

5.2.1. Analysis of Temporal Differences in Green Building Eco-
Efficiency. Based on the analysis of the three-stage super-
efficiency SBM model above, the final measurement results
of green building eco-efficiency in each province and city
from 2013 to 2020 were obtained (Table 6), and the changing
trend and coefficient of variation of green building eco-
efficiency in each region were plotted (Figure 1), according
to which the temporal variation analysis of green building
eco-efficiency in China was conducted.

(1) From the overall change, China’s green building eco-
efficiency showed steady growth during 2013–2020,
and after a brief increase and then decrease fluctu-
ation during 2013–2016, its efficiency value contin-
ued to rise, with an overall average annual increase of

5.64%, but the national average value was only 0.701,
indicating that the national green building industry
and its eco-function were on the middle level, still
30% away from the efficiency frontier surface. /ere
is still 30% room for improvement. And the coef-
ficient of variation is characterized by a U-shaped
evolution until 2015, falling from 0.587 in 2013 to
0.402 in 2016, and rising to 0.461 in the following
year before sliding to 0.405 in 2020, with an average
annual decrease of 5.17%./is is accompanied by the
national strategy of green building and new ur-
banization background, and the regions pay atten-
tion to green building development and urban
ecological construction, strengthen the ecological
environment management in the construction field,
and play a certain positive role in green building eco-
efficiency, but due to the ecological drawbacks of
large-scale construction and urban expansion
emerge, the gap between the production input and
eco-efficiency frontier surface of green building in
China still needs to be improved urgently.

(2) From the interprovincial level, only seven provinces,
namely, Shanghai, Jiangsu, Zhejiang, Shandong,
Guangdong, Henan, and Shaanxi, have reached the
DEA effective mean value of green building eco-
efficiency from 2013 to 2020, and the rest of the
provinces and cities have not reached the frontier
surface. /e green building eco-efficiency values for
both Jiangsu and Guangdong are greater than 1 for
each year of the study period, indicating that their
resource input and sustainable development of green
buildings maintain good coordination and are na-
tional benchmark regions. Among the many non-
DEA effective provinces and cities, Hubei (0.954)
and Beijing (0.963) are in a dominant position and
have a high level of green building development;
Hebei, Sichuan, and Guizhou have annual average
growth rates of more than 10%, which are higher
than the highly efficient regions such as Beijing and
Shanghai, showing a significant ecological catch-up
effect; Heilongjiang, Inner Mongolia, Qinghai,
Ningxia, and Xinjiang have long-term input. /e
effect is not obvious, and its efficiency change tends
to be stable but ranked at the bottom, while the
ecological efficiency of green buildings in Chongqing
and Shaanxi continues to rise. Obviously, there are
significant interprovincial differences in green
building eco-efficiency.

(3) In terms of regions, the efficiency of the east (0.895)
is greater than the national average and far exceeds
that of the central (0.653) and western (0.540) re-
gions, showing a development pattern of
“east> central>west,” and the overall trend of green
building eco-efficiency in the three regions is similar,
all showing growth. /e overall trend of green
building eco-efficiency in the east shows an
M-shaped fluctuation, and the efficiency value in-
creases from 0.787 in 2013 to 1.021 in 2020, with an
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average annual increase of 3.79%; the central green
building eco-efficiency continues to rise from 2013 to
2016 to the first wave (0.672) and then shows a
V-shaped fluctuation, with an average annual in-
crease of 6.30%; the western green building eco-ef-
ficiency increases from 2013 to 2017 and then leveled
off with an average annual increase of 8.59%. /e
coefficients of variation of green building eco-effi-
ciency in the east, central, and west decreased by
39.47%, increased by 2.56%, and increased by 59.01%
overall, respectively. Obviously, although the level of
eco-efficiency of developing green buildings varies
significantly among individual provinces and cities,
the regional gap has slightly narrowed.

5.2.2. Time Evolution Trend Analysis of Green Building Eco-
Efficiency. To explore the temporal development of green
building eco-efficiency in China and its dynamic charac-
teristics, this paper uses stata15.0 to estimate the kernel
density of green building eco-efficiency in China from 2013
to 2020 and selects 2013, 2015, 2017, and 2020 to draw kernel

density curves (Figure 2) to compare and study its temporal
evolution pattern.

(1) In terms of distribution position, the center of the
density function for four years shows a trend of
moving to the right, indicating that the eco-effi-
ciency of green buildings in China is gradually
increasing, among which the rightward shift in
2013, 2015, and 2017 is not obvious enough, which
indicates that the improvement of eco-efficiency of
green buildings in China is limited during this
period, while the rightward shift in 2020 is larger
compared with the previous years, reflecting the fact
that since then, China’s green building eco-effi-
ciency has increased rapidly after a slow growth.
/e reason for this is the promotion of national
policies such as new urbanization, energy saving,
and emission reduction in buildings and the 13th
Five-Year Plan for Green Buildings in the past few
years, which has led to an explosion in the scale of
green buildings and the promotion of urban eco-
logical civilization.

Table 5: Mean measurement results of eco-efficiency of green buildings in stages 1 and 3.

Region Phase 1 Phase 3
Efficiency value Sort Efficiency value Sort

East

Beijing 1.267 4 0.963 8
Tianjin 0.636 17 0.643 12
Heibei 0.436 24 0.797 11
Liaoning 0.882 8 0.539 20
Shanghai 1.330 3 1.062 4
Jiangsu 1.543 1 1.371 1
Zhejiang 1.409 2 1.137 3
Fujian 0.468 22 0.620 14

Shandong 0.550 19 1.027 6
Guangdong 0.667 12 1.196 2
Hainan 0.534 20 0.492 24
Average 0.884 — 0.895 —

Middle

Shanxi 0.650 14 0.559 18
Jilin 0.572 18 0.564 17

Heilongjiang 0.654 13 0.372 27
Anhui 0.413 26 0.545 19
Jiangxi 0.873 9 0.594 15
Henan 0.923 7 1.046 5
Hubei 1.045 6 0.954 9
Hunan 0.504 21 0.589 16
Average 0.704 — 0.653 —

West

Neimenggu 0.772 11 0.365 28
Guangxi 0.421 25 0.525 21

Chongqing 1.206 5 0.841 10
Sichuan 0.814 10 0.639 13
Guizhou 0.641 15 0.523 22
Yunnan 0.445 23 0.513 23
Shanxi 0.637 16 1.002 7
Gansu 0.288 30 0.461 25
Qinghai 0.347 29 0.327 30
Ningxia 0.411 27 0.352 29
Xinjiang 0.379 28 0.392 26
Average 0.578 — 0.540 —

National average 0.724 — 0.701 —
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(2) In terms of distribution patterns, China’s green
building eco-efficiency experienced an evolutionary
process from bimodal distribution to single peak and
from sharp peak to broad peak during 2013–2020,
with a steeper wave in 2013 and a bimodal structure,
and a more concentrated and significant polarization

of green building eco-efficiency during this period,
mainly manifesting as a decrease in the degree of
concentration while the national green building eco-
efficiency increased the “catch-up effect” of low-ef-
ficiency provinces and cities (Yunnan, Gansu, etc.)
on high-efficiency provinces and cities (Hebei,

Table 6: Final measurement results of eco-efficiency of green buildings in each city and province.

Region 2013 2014 2015 2016 2017 2018 2019 2020 Average
Beijing 0.973 1.021 0.839 0.923 0.856 1.076 0.944 1.068 0.963
Tianjin 0.379 0.522 0.532 0.576 0.584 0.757 0.874 0.919 0.643
Heibei 0.384 0.591 0.678 0.691 0.928 1.014 1.086 1.006 0.797
Liaoning 0.450 1.037 0.461 0.580 0.521 0.510 0.316 0.436 0.539
Shanghai 0.927 1.113 0.946 1.028 1.066 1.125 1.111 1.183 1.062
Jiangsu 1.572 1.131 1.336 1.000 1.601 1.419 1.341 1.566 1.371
Zhejiang 1.227 1.117 0.999 1.148 1.311 1.101 1.030 1.163 1.137
Fujian 0.420 0.572 0.660 0.484 0.614 0.662 0.734 0.812 0.620
Shandong 0.882 0.840 0.969 1.097 1.077 1.002 1.142 1.207 1.027
Guangdong 1.078 1.284 1.138 0.980 1.222 1.346 1.221 1.299 1.196
Hainan 0.362 0.381 0.453 0.488 0.558 0.537 0.585 0.569 0.492
East 0.787 0.874 0.819 0.818 0.940 0.959 0.944 1.021 0.895
Shanxi 0.338 0.358 0.574 0.601 0.427 0.638 0.701 0.835 0.559
Jilin 0.461 0.588 0.554 0.449 0.585 0.642 0.675 0.558 0.564
Heilong jiang 0.358 0.240 0.388 0.383 0.366 0.434 0.422 0.381 0.372
Anhui 0.428 0.535 0.471 0.457 0.613 0.576 0.581 0.699 0.545
Jiangxi 0.469 0.514 0.586 0.706 0.441 0.573 0.711 0.750 0.594
Henan 0.855 1.008 1.032 1.155 0.970 1.080 1.036 1.234 1.046
Hubei 0.525 0.902 0.878 1.043 0.929 1.140 1.270 0.948 0.954
Hunan 0.558 0.578 0.519 0.580 0.582 0.492 0.684 0.716 0.589
Middle 0.499 0.590 0.625 0.672 0.614 0.697 0.760 0.765 0.653
Neimenggu 0.352 0.318 0.362 0.409 0.360 0.377 0.354 0.390 0.365
Guangxi 0.363 0.416 0.543 0.635 0.522 0.565 0.567 0.588 0.525
Chongqing 0.470 0.557 0.689 0.883 1.010 1.081 1.077 0.961 0.841
Sichuan 0.342 0.654 0.540 0.635 0.724 0.655 0.772 0.792 0.639
Guizhou 0.231 0.400 0.478 0.588 0.573 0.575 0.554 0.783 0.523
Yunnan 0.352 0.482 0.521 0.496 0.599 0.544 0.568 0.543 0.513
Shanxi 0.572 0.769 0.791 0.962 1.284 1.186 1.237 1.214 1.002
Gansu 0.399 0.403 0.328 0.405 0.581 0.473 0.534 0.566 0.461
Qinghai 0.281 0.357 0.242 0.230 0.305 0.491 0.374 0.338 0.327
Ningxia 0.288 0.380 0.353 0.373 0.322 0.341 0.388 0.375 0.352
Xinjiang 0.270 0.382 0.336 0.414 0.391 0.481 0.438 0.427 0.392
West 0.356 0.465 0.471 0.548 0.606 0.615 0.624 0.634 0.540
National 0.552 0.648 0.640 0.680 0.731 0.763 0.778 0.811 0.701
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Figure 1: Trends and coefficient of variation of eco-efficiency of green buildings by region, 2013–2020. (a) Efficiencymean. (b) Coefficient of
variation.
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Tianjin, etc.), which is insufficient; the years
2015–2020 all show a single-peak distribution and a
continuous decline in the peak, and the span of the
interval gradually increases, indicating that the
overall regional gap expands and shows obvious
dynamic dispersion characteristics.

(3) In terms of peak changes, the peak of the density
function from 2013 to 2020 shows a significant
decline, and the corresponding nuclear density value
of the left peak in 2013 is significantly larger than that
of the right peak, which indicates that the peak areas
in that year are mostly concentrated in low-efficiency
areas; that is, the number of low-efficiency areas is
much higher than that of high-efficiency areas; the
peak from 2015 to 2020 gradually decreases, and the
center of the density function shifts significantly to
the right, and its corresponding efficiency value
increases significantly. /is indicates that the overall
eco-efficiency of green buildings in China has in-
creased significantly, but the number of provinces
and cities with increased efficiency has decreased.

5.3. Analysis of Spatial Differences in Eco-Efficiency of Green
Buildings

5.3.1. Spatial Distribution Pattern of Green Building Eco-
Efficiency. To fully characterize the evolution of the spatial
pattern of green building eco-efficiency in China, Arc-
GIS10.6 was used to visualize the green building eco-effi-
ciency of each province and city from 2013 to 2020, and the
efficiency was divided into low-efficiency zones (0, 0.4),
medium-low efficiency zones [0.4, 0.6], medium-efficiency
zones [0.6, 0.8], medium-high efficiency zones [0.8, 1.0], and
high-efficiency zones (1.0 and above) in five gradations, and
intercepted 2013, 2015, 2017, and 2020 as time sections to
obtain the spatial distribution map of eco-efficiency of green
buildings in China (Figure 3).

In general, the spatial pattern of green building eco-
efficiency in China from 2013 to 2020 shows an obvious
“transitional” distribution pattern, showing a gradient dif-
fusion from the eastern region to the western region. /e
eco-efficiency of green buildings in most provinces and cities
has increased to different degrees during the study period,
and the polarization difference is significant, and the overall
pattern shows a gradual transition from the medium-low
efficiency zone to the medium-medium efficiency zone.
Among them, in 2013, the ecological efficiency of green
buildings in China was generally below the medium-low
development level and showed a polarization pattern
dominated by the medium-low scale, with low-efficiency
zones (all western regions except Shaanxi and Chongqing
and some central and eastern regions) account for about
46.7% of the country; medium-low and lower efficiency
zones account for a total of 76.7%, concentrated in the west
and most of the central region, while the medium-high
efficiency zone was only scattered in seven provinces and
cities in the middle and east; in 2015, most of the central and
southwest regions Green building eco-efficiency showed a
small increase, and the east and central regions gradually
showed a multitype mixture, with more than medium-ef-
ficiency areas concentrated in the east and Henan and Hubei
provinces, and medium-low and below-efficiency areas
distributed in northern and southwestern provinces and
cities; in 2017, the number of green building eco-efficiency
low-efficiency areas decreased significantly, and medium-
high and above-efficiency areas increased significantly,
which obviously promoted the regional green building
greatly in that year as a national strategy the growth of eco-
efficiency, among which Shaanxi, Chongqing, Shandong,
and Shanghai were transformed from medium, medium,
medium-high, and medium-efficient zones to high-effi-
ciency zones, and medium-efficient zones were gradually
concentrated in the central region. In 2020, the ecological
efficiency of green buildings showed a nonequilibrium
characteristic of transition with the high-efficiency zone in
Shandong, Jiangsu, Zhejiang, and other eastern coastal areas
as the core, gradually decreasing to the central (medium-
middle-high mixed efficiency zone) and western zones
(northwest, northeast, and due north low-efficiency zone).

5.3.2. Spatial Clustering Characteristics of Green Building
Eco-Efficiency. From the previous analysis, it can be seen
that there may be some dependency on the characteristics of
green building eco-efficiency differences among regions. To
further explore the spatial aggregation effect and diffusion
characteristics of regional green building eco-efficiency, this
paper measures Moran’s I index of green building eco-ef-
ficiency and its correlation test values from 2013–2020 with
the help of GeoDa software (Table 7), and the results show
that Moran’s I index of green building eco-efficiency in
China during the study period is positive, shows small
growth fluctuations, and passes the 5% (P< 0.05, Z> 1.96).
/is indicates that the spatial pattern of interprovincial
green building eco-efficiency is not randomly distributed,
but there is a continuous positive spatial correlation and
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Figure 2: Kernel density distribution of eco-efficiency of green
buildings.
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agglomeration feature, and this feature is steadily increasing
over time, which is similar to the pattern of regional eco-
nomic development in China in recent years.

Based on the local Moran scatter plots of green building
eco-efficiency in Chinese provinces and cities drawn in 2013
and 2020 (Figure 4), the spatial agglomeration state of green
building eco-efficiency in each province and city and its
evolution characteristics are further revealed.

Among the agglomeration types, the provincial and
municipal ratios of high-high type (H-H), low-high type (L-
H), low-low type (L-L), and high-low type (H-L) are 8 : 9:10 :
3 and 10 : 7:11 : 2 in 2013 and 2020, respectively, and it is
obvious that the areas in H-H and L-L types are the most,
accounting for 60% and 70%, an increase of 16.7%,

indicating that the spatial homogeneity of green building
eco-efficiency is gradually increasing, while the spatial
heterogeneity is gradually decreasing; that is, high-efficiency
regions tend to be adjacent to high-efficiency regions and
low-efficiency regions tend to be adjacent to low-efficiency
regions, and the difference in polarized distribution
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Figure 3: Spatial distribution of eco-efficiency of green buildings in China.

Table 7: Green building eco-efficiency global Moran’s I index,
2013–2020.

Year 2013 2014 2015 2016 2017 2018 2019 2020
Moran’s I 0.213 0.226 0.219 0.236 0.227 0.244 0.253 0.271
P-value 0.001 0.023 0.008 0.017 0.011 0.024 0.036 0.021
Z-value 2.471 2.235 3.211 3.640 2.095 2.706 2.537 3.314

Journal of Environmental and Public Health 13



continues to expand. Types of local agglomeration distri-
bution by region corresponding to scatter diagram can be
seen in Table 8.

(1) H-H type agglomeration area (the first quadrant)
mainly includes Shanghai, Shandong, Jiangsu,
Zhejiang, and other eastern coastal areas and some
central China (Henan, Hubei) and northwest China
(Shaanxi), indicating that these areas pay attention to
the coordinated development of urban construction
and new urbanization, have a high level of green
building development and advanced urban ecolog-
ical concepts, and drive each other, so that the im-
provement of their own efficiency has a positive
radiation and diffusion effect on the neighboring
areas. Tianjin leaps from L-H type to H-H type, and
it is obvious that it has a significant advantage of
“being diffused” and is influenced and driven by the
neighboring provinces and cities with high ecological
efficiency of green building during the study period.
/e spatial difference with neighboring high-effi-
ciency regions has been reduced, and the region has
been ranked among the high-efficiency regions.

(2) /e L-H agglomeration area (the second quadrant)
mainly covers some provinces and cities in the
southwest, northwest, and central regions, where the

development level of green buildings and new ur-
banization is low; the L-L agglomeration area (the third
quadrant) mainly includes the less developed regions
in the central and western regions and the northeast
region, which have more room for improvement, but
the growth rate is slow. Among them, although Jiangxi
and Anhui are adjacent to the high-efficiency region,
they cannot be driven to the H–H agglomeration. On
the contrary, Hainan, Anhui, andHunan are negatively
radiated by their near neighbors and show a relative
displacement from L-H to L-L type. Sichuan and
Heilongjiang leap from L-L to L-H, playing the ad-
vantage of “driven” location and steadily improving
their green building eco-efficiency. In contrast, Inner
Mongolia, Liaoning, Jilin, Guangxi, and other regions
maintain the same L-L agglomeration state in 2013 and
2020, because these regions are relatively lagging in
their own green building technology and its devel-
opment, and the scale of the industry is insufficient and
lacks regional competitiveness, which leads to an
imbalance in their green building eco-efficiency inputs
and outputs and makes it difficult to break away from
the inefficient agglomeration development mode, and
these regions should pay attention to improving the
green building management level and input resource
allocation ability.
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Figure 4: Green building eco-efficiency local Moran scatter plot (2013, 2020).

Table 8: Types of local agglomeration distribution by region (2013, 2020).

Year 2013 2020
H-H
type

Shanghai, Shandong, Jiangsu, Zhejiang, Henan, Hubei,
Shaanxi, Beijing

Shanghai, Shandong, Jiangsu, Zhejiang, Henan, Hubei, Shaanxi,
Beijing, Guangdong, Tianjin

L-H
type

Guizhou, Yunnan, Gansu, Jiangxi, Xinjiang, Tianjin, Hainan,
Anhui, Hunan

Guizhou, Yunnan, Gansu, Jiangxi, Xinjiang, Sichuan,
Heilongjiang

L-L
type

Neimenggu, Liaoning, Jilin, Guangxi, Shanxi, Fujian, Ningxia,
Qinghai, Sichuan, Heilongjiang

Neimenggu, Liaoning, Jilin, Guangxi, Shanxi, Fujian, Ningxia,
Qinghai, Sichuan, Heilongjiang

H-L
type Hebei, Chongqing, Guangdong Hebei, Chongqing, Guangdong
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(3) H-L type agglomeration area (fourth quadrant) in-
cludes Hebei, Chongqing, and Guangdong in 2013
and Hebei and Chongqing in 2020. Guangdong, as a
developed region along the southeast coast, ranks
among the top in the country in terms of green
building eco-efficiency, but its regional cogo-
vernance mechanism of the construction industry
chain is poor and did not produce effective positive
radiation to neighboring regions in 2013, while the
polarization phenomenon of high local green
building eco-efficiency and low neighboring regions
emerged. However, Guangdong itself has strong
green science and technology innovation capital and
achieved a leap from H-L to H–H in 2020 after
actively promoting the concept of green building and
low-carbon development of the construction in-
dustry. /e green building eco-efficiency of
Chongqing and Hebei has grown steadily, but the
economic status of their provincial construction
industry and its special green building capacity is
lagging behind the national average and is vulnerable
to the influence of the surrounding environment,
leaping to the junction of H-L and L-L and the
junction of H-L and H-H, respectively.

6. Conclusion

/is paper measures the green building eco-efficiency of
Chinese provinces and cities from 2013–2020 based on the
three-stage superefficiency SBM-DEA model, reveals the
differences and evolutionary characteristics of green
building eco-efficiency in the temporal and spatial dimen-
sions, and obtains the following conclusions.

(1) China’s green building eco-efficiency showed a stable
growth during 2013–2020, with an average annual
increase of 5.64% and an average annual decrease of
5.17% in the coefficient of variation, but the national
average value was only 0.701, indicating that the
national green building industry and its eco-function
were on the middle level, and the overall efficiency
differences over the years narrowed over time; the
overall pattern showed “East>Central>West” de-
velopment pattern, and although the difference in
efficiency level between individual provinces and
cities is significant, the regional gap is slightly re-
duced, which is accompanied by the national strategy
of green building and new urbanization background,
and each region attaches importance to green
building development and urban ecological con-
struction and strengthens ecological environment
management in the construction field, which plays a
certain positive role in green building ecological
efficiency, but because the ecological drawbacks of
large-scale construction and urban expansion have
emerged, the gap between China’s green building
production input and the ecological efficiency
frontier still needs to be improved urgently.

(2) /e kernel density function curve of green building
eco-efficiency reflects the process of slow growth and
then rapid improvement of green building eco-ef-
ficiency in China during the study period and un-
dergoes the evolution process from double-peak
distribution to single-peak and from sharp peak to
broad peak, showing that the concentration of high-
efficiency regions decreases, while green building
eco-efficiency increases, the number of provinces
and cities with efficiency growth decreases, and the
overall absolute difference of regional efficiency is
narrowed and shows obvious dynamic dispersion
characteristics; the “transitional” spatial distribution
pattern of green building eco-efficiency is remark-
able, and the overall gradient development trend is
gradually transitioned from medium-middle low-
efficiency area to medium-middle high-efficiency
area. For this reason, China should implement the
local governance of green building, give full play to
the local comparative advantages, coordinate and
improve the supporting policies of green building
and its related industries, and promote the common
development of regional green building eco-effi-
ciency by increasing the degree of internal and ex-
ternal development between provinces, enhancing
the technical exchanges between provinces and cit-
ies, and clarifying the regional development
direction.

(3) /e results of spatial autocorrelation show that there
is a continuous positive spatial correlation and ag-
glomeration characteristic of green building eco-
efficiency, and this characteristic is steadily enhanced
over time; the spatial spillover and diffusion effect of
high-efficiency regions is significant, and the low-
efficiency regions generally maintain a low growth
trend, showing an improvement in the bipolar dis-
tribution characteristics, but the interprovincial gap
is still huge; the green building eco-efficiency of most
regions has “Matthew effect,” showing significant
spatial agglomeration and path dependence and
generally presenting the spatial club convergence
characteristics that developed regions tend to be
H-H agglomeration type and less developed regions
tend to be L-L aggregation type. For this reason,
China should devote itself to breaking the geo-
graphical limitation of ecological efficiency devel-
opment of green buildings, forming a situation
where the upstream high-efficiency level areas are
driven by radiation and the middle and downstream
low-efficiency level areas are developed in a linkage;
local governments should deepen interregional
technical cooperation and division of labor, enhance
the ability of the central and western low-efficiency
provinces and cities to absorb the spillover effects of
the eastern high-efficiency provinces and cities, and
form a green sharing situation of open competition
and win-win cooperation, so as to narrow the
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geographical gap and improve the ecological effi-
ciency level of green buildings in China.
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