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Background of the Study. Statistical models have been extensively used in modeling and forecasting the diferent felds of ag-
riculture, economics, social sciences, and medical sciences. Te transmission of some diseases is a serious life threat around the
globe; therefore, proper assessment and modeling need time. Malaria is one of the major life-threatening diseases in Pakistan, and
some death cases due to this disease have been reported during the last decade.Methodology.Te data have been collected from the
Ministry of Health, Rahim Yar Khan, Pakistan, from January 2011 to March 2022. Data were analyzed by applying time series
models for prediction purposes. Diagnostic measures such as RMSE, MAE, and MAPE were used to choose the best forecasting
model. Results and Discussion. Tis study aims to forecast malaria cases by choosing the best forecast model. After comparison, it
was concluded that the Holt–Winter multiplicative model outperformed the ARIMA and SARIMA models, with the lowest
RMSE, MAPE, and MAE compared to other models. Malaria cases in the district Rahim Yar Khan were forecasted by the
Holt–Winter multiplicative model, for the month of April 2022 to January 2023. From the forecasting results, the minimum
number of cases was found to be 586.75 in June 2022 and the maximum number of cases was found to be 1281.93 in October 2022
among the next ten months. Based on the results, it is paramount for the GOP (Govt. of Pakistan) to enhance the vaccination
policy to erase the impacts of malaria cases to fatten the curve.

1. Introduction

Malaria is a common and life-threatening infectious disease
in many tropical and subtropical areas. Te WHO reported
that there were 214 million malaria cases in 2020 as com-
pared to 227 million cases in 2019 which resulted in 627
thousand deaths in 2020. It is evident geographically that the
district Rahim Yar Khan is an agriculture-based area located
in south Punjab, Pakistan, where the growth of mosquitos
and number of malaria patients are increased in rainy
season; the number of malaria patients is also increased in
the months of both cropping seasons when crops reach
maturity level. An analytical understanding of malaria for
rational planning of intervention programs needs to be
supported by statistical and mathematical models. Time

series techniques have great signifcance to forecast and
predict the data set techniques; signifcant improvements
have been occurring in various felds such as statistics,
econometrics, earthquake forecasting, business, weather
forecasting, and practical felds using the latest time series
models. Researchers are developing new time series tech-
niques that can improve better forecasting and accuracy
measures, whichmay also be helpful for government ofcials
and others. Tere are a lot of advantages of time series
models that are used to search for the efcient potential for
classifcation inference and study analysis. Tese methods
might check the precision of the time series data more
appropriately and accurately to provide signifcant fore-
casting. Te well-known time series models are the autor-
egressive model (AR), model of moving average (MA),
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autoregressive of moving average model (ARMA), and
ARIMAmodel (ARIMA). However, all these are useful when
only efectually linear serial correlation exists between the
data sets in the present. One of the most signifcant statistical
techniques in the analysis of time series studies for fore-
casting is the ARIMA technique which has been broadly
applied due to its importance and capacity in handling both
the stationary and nonstationary time series data. Tis
technique is useful for data with linear conditions as its
assumption of linearity is associated with time series. Te
necessities for modeling which consider the efects of those
specially related to malaria disease were frstly taken into
consideration by [1] who recognized malaria as one of the
frst infectious diseases to be analyzed mathematically. Te
concept of R0 in its simplifed form when seasonality is
considered was analyzed in [2]. Tere are a short number of
nationally prevalence surveys in low budget countries. Much
work has focused on methods for estimating high-resolution
malaria risk from these data [3, 4]. Routine surveillance data
of malaria case counts, often aggregated over administrative
regions defned by geographic polygons, are becoming more
reliable and widely available [4]. However, the collection of
cases over space means that the data may be uninformative,
especially if the case counts are aggregated over large areas
since it is not clear where within and in which environments
the malaria cases occurred. Tese data are therefore often
underpowered for ftting fexible, nonlinear, mathematical,
and statistical models as is required for accurate malaria
mapping [5, 6]. However, mapping malaria in lower-budget
countries has new risks as traditional mapping of prevalence
from cluster-level surveys is often not efective [7–9]. High-
dimensional maps of malaria risk are important for control
and eradication [10–12]. ARIMA is one of the renowned
techniques used for modeling the time series data, and it has
been extensively studied throughout the literature for
modeling and forecasting. Time series modeling of in-
fectious diseases such as COVID-19 has been used and
applied by several researchers [6, 13–18]. Rural Health
Centers (RHCs) in Mozambique collect a large volume of
time series case data from symptomatic malaria patients.
Analyses of these data are retrospective, which generally only
detect patterns after they have occurred. Tese data for
mathematical modeling can be used to explain, describe, and
predict malaria cases. Modeling not only can produce valid
results but is also inexpensive. Tis can help plan malaria
control and eradication eforts [19]. Malaria time series
studies using weekly data are not common globally. In Asia,
studies in Afghanistan and India were carried out to forecast
malaria cases using the ARIMA model with monthly data
[20, 21]. In Africa, the Box–Jenkins modeling was used in
Zambia and Ghana to forecast malaria using monthly data
[22, 23]. In Mozambique, malaria morbidity forecasting
using the ARIMA model was performed weekly and in-
tervention analysis for mortality monthly data was taken
from Chimoio Municipality [24, 25]. Due to the trans-
missibility and seasonality of malaria, models with an
ARIMA structure have more predictive power compared to
other methods [26]; such models have been applied to

predict numerous infectious diseases with similar periodic
patterns over the past decades [27, 28].

Te focus of this study was to fnd a new best suitable
model for seasonal time series data for both linear and
nonlinear conditions. Tis is a new study for modeling and
forecasting malaria cases using seasonal and nonseasonal
ARIMA. Te proposed models would be conventional
models, ARIMA model, SARIMA model, Exponential
Smoothing model, and Holt–Winter model that can be
helpful to increase the accuracy of the model by comparing
all these models for better forecasting, reducing error, and
following the tradeof between bias in error and in variance
reduction.

2. Materials and Methods

Monthly confrmed malaria cases in the district Rahim Yar
Khan, Pakistan, from January 2011 to March 2022, were
collected as secondary data provided through the source
Ministry of Health, RYK District, Pakistan. Te mean cases
of malaria from January 2011 to March 2022 were 2817.11
with a standard deviation of 1203.111, which indicates that
the malaria cases follow the nonnormal pattern and the
number of malaria cases increased in rainy season and in the
months of both cropping seasons when crops reach maturity
level. Te median cases of malaria from January 2011 to
March 2022 were 2808. Te maximum number of malaria
cases was 6777 in September 2011 and theminimumnumber
of cases was recorded as 533 in the month of March 2020.

2.1. Modeling of Malaria Cases Using Conventional Modeling
Techniques. For initial analysis, without considering the
time series data, conventional methods of modeling have
been applied in this study to model our malaria data. Tere
are several regression models which are present in the lit-
erature to model the data. Te three most frequently used
models have been selected.

Te following are the three regression models that were
compared for modeling and prediction purposes.

Te functional form of the simple linear regression
model (SLRM) is as follows:

y � a + bt + e. (1)

Te functional form of the LRM is as follows:

y � a + b ln(t) + e. (2)

Te functional form of the QRM is as follows:

Yt � a + bt + ct2 + e. (3)

2.2. Modeling of Malaria Cases Using Nonseasonal ARIMA.
Te Box–Jenkins ARIMA (p, d, q) is given by

􏽢Yt � μ + α1􏽢yt−1 + · · · + αpyt−p + · · · + θ1et−1

+ · · · + θqet−q + et,
(4)
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where α1􏽢yt−1, . . . , αp 􏽢yt−p are the lagged values and
θ1et−1, . . . , θqet−q are the lagged errors of the series 􏽢yt. Te
constants p, d, and q represent the order of the AR term, the
degree of diferencing series, and the order of the MA term,
respectively. et is the white noise with mean 0 and variance
σ2. 􏽢yt can be diferenced once or more. Te model with the
least root mean square error (RMSE) and mean absolute
error (MAE) is chosen as the most suitable model for our
data. Te expressions RMSE and MAE are as follows:
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(5)

where y1, . . . , yN and yN+1, . . . , yT are a partition of
the data.

2.3. ARIMA with SARIMA and Exponential Smoothing.
ARIMA models can also be used for modeling a wide range
of seasonal data. A seasonal ARIMA model is formed by
including additional seasonal terms in the ARIMA models
we have seen so far. Te autoregressive moving average
(ARIMA) model contains three combination models which
are

(i) Autoregressive (AR) model
(ii) Moving average (MA) model
(iii) et white noise (WN) process.

A time series {Yt} is said to follow the ARMA (p, q)
model if

Yt � µ + ϕ1Yt−1 + ϕ2Yt−2 . . . . . . . + ϕpYt−p

+ et − ө1et−1 − ө2et−2 . . . . . . − өqet−q,
(6)

where p and q are greater than zero, p refers to the
autoregressive part AR, q refers to the moving part MA, and
et is the white noise term of the model.

By using the back shift operator, the ARMA (p, q) model
can be defned as

ϕ1(B)Yt � ө1(B)et, (7)

where ϕ1(B)� 1− ϕ1B− ϕ2B2−, . . ., ϕpBp and ө(B)�

1 + ө1B+ө2B2 +, . . ., + өqBq.
For the nonstationary time series, frst, we convert it by

taking the diference in the series where the diference in the
series is denoted by d, and then the ARIMA (p, d, q) model is
as follows:

ϕ1(B)∆d
Yt � ө1(B)et. (8)

Seasonal ARIMA can be expressed as follows:

SARIMA (p, d, q)(P, D, Q)m. (9)

Te additional seasonal terms are simply multiplied by
the nonseasonal terms. For the seasonal ARIMA model,
p= 1 and 2 and q= 1 and 2. For nonseasonal portion, P= 1
and 2 and Q= 1 and 2. Table 1 presents the list of diferent
seasonal ARIMA models. Te seasonal length has been
considered 12 since it is the monthly data.

2.4. Holt–Winter Nonseasonal Model (Two Parameters).
Exponential smoothing is a time series forecasting method
for univariate data that can be extended to support data with
a systematic trend or seasonal component. We will be using
mainly two types of linear exponential smoothing methods
which consider both linear and seasonal trends in the data.
Tis method is appropriate for series with a linear time trend
and no seasonal variation. Being an adaptive method, this
methodology allows the level, trend, and seasonality patterns
to change over time.

Te smoothed series can be expressed in the following
functional form:

􏽢yt � a + bk, (10)

where a and b are the permanent component and trends as
defned above. Te value of a � 1.000 and b � 0.000. Te
RMSE is 562.70; the coefcient value of b is zero which
means that the trend component is estimated as fxed and
not changing.

2.5. Holt–Winter Multiplicative Model (Tree Parameters).
Tismethod is appropriate for series with a linear time trend
and multiplicative seasonal variation. Te smoothed series is
given by

􏽢yt � (a + bk) ct+k( 􏼁, (11)

where a� permanent component (intercept), b� trend, and
ct �multiplicative seasonal factor.

2.5.1. Packages Used for Analysis. Te SARIMA model was
selected using the ARIMA package of R which resulted in the
fnal model of SARIMA (2,1,2)(1,1,0)12. Te Holt–Winter
methodology has been applied using the R package of
Holt–Winter and forecasting has been performed using the
“forecast” package.

3. Results

Results of diferent models are presented in this section.
Table 2 shows the coefcients with their AIC and BIC from
the three regression models. R2 for the LRM is 0.645, and the
adjusted R2 is 0.642. Te R2 for the QRM is 0.646, which is
higher than the LRM (0.535) and SLRM (0.645); therefore,
for comparison purposes, the AIC and BIC methodologies
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are more widely used and chosen. Te best model was
chosen based on the large value of R2 and the small value of
AIC and BIC. From Table 2, it can be clearly observed that
the SLRM shows better outcomes for every model selection
criterion. It has a small AIC and BIC as compared to all three
models, which are 2163.28 and 2171.99, respectively. Te
value of the DW statistic is 1.92, which lies in no auto-
correlation area. Terefore, there is no evidence of auto-
correlation; hence, it will not impact the forecasting of our
data. Moreover, there should be multicollinearity between t
and t2, but it has no impact as it is formed. Tis is known as
structural multicollinearity as new predictors are created
from the same predictor.

Te series is not stationary. Tis means that mean,
variance, and covariance are not stationary over some time.
Te ACF and PACF also show that the series is not sta-
tionary. Using the ADF test, it has been observed that the
series is not stationary with the Dickey–Fuller test
statistic� −2.7809 and p value� 0.2517. Tis violation has
been removed by taking the frst diference and it was found
that the series is stationary at frst diference and it is sta-
tionary with test statistic� −6.5213 and p value� −0.01∗∗∗.
Figure 1 shows the time series plots of ACF and PACF of
malaria cases from January 2011 to March 2022. After
making the series stationary by taking the frst diference in
the observed series, Figure 2 shows the graph of stationary
series with ACF and PACF.

In Box–Jenkins ARIMA methodology, after having
established the stationary of the series at 1st diference, the
next step is to look for the appropriate autoregressive and
moving average terms to be included in the model which
depends upon the behavior of the correlogram of auto-
correlations and partial autocorrelations. From the behavior
of the correlogram of the autocorrelation function, we de-
termine the number of moving average terms (q), and from
the behavior of the partial autocorrelation function, we
decide the number of autoregressive terms (p) to be included
in the model. Diferent nonseasonal ARIMA models will be
applied on the series and that model will be selected which
has the smallest value of AIC, RMSE, and MAE. ACF has
declining trend and PACF has one signifcant spike which
suggests that the initial model will be ARIMA (1,1,0).

Tentative autoregressive integrated moving average
(ARIMA) model is ARIMA (1, 1, 0). Starting from this
model, the best forecast ARIMA (p, d, q) model is chosen by
diagnostically comparing all possible ftted models. Te frst
step of ARIMA model, i.e., identifcation, was achieved by
making it stationary using the ADF test and selecting the
appropriate model using ACF and PACF. Te next step
would be the estimation of parameters of the model with
their diagnostic checks [29].

From Table 1, it can be seen that all the models selected
are signifcant at 5% level of signifcance since the p value is
less than 0.05. However, it can be concluded that the ARIMA
(1,1,0) model showed the lowest values of AIC, RMSE, and
MAE and a high value of R2 for malaria case series among all
other models for modeling and forecasting. Figure 3 shows
the decomposition of the series for malaria cases and it is
showing the seasonal trend in the model. Terefore, the
SARIMA model has been applied to look for the seasonal
pattern in the series.

From the diferent models of SARIMA evaluated, the
best is the SARIMA (2,1,2)(1,1,0)12 model since it has the
smallest value of AIC 15.25, RMSE � 476.90, MAE� 370.88,
MSE � 562.21, and MAPE � 13.21. Te SARIMA model was
selected using the ARIMA() package of the R under forecast
() library which resulted in the fnal model of SARIMA
(2,1,2)(1,1,0)12. To check the validity of the model, we move
on to the third step of the Box–Jenkins methodology which
is diagnostic checking and applying the normality tests to
the residual of the selected model. To check the normality
of the model’s residuals, we apply the Shapiro–Wilk nor-
mality test. Te value of the Shapiro–Wilk normality test
for full sample data is W � 0.98633 and p value �0.2334
which means we do not reject our null hypothesis. Te test
statistics of Ljung box test Q∗ � 12.998 with p value �0.477
showing that the model does not show any lack and re-
siduals are uncorrelated. Te time plot of the residuals in
Figure 4 depicts that the variation of the residuals stays
much the same across the historical data, apart from the
one outlier, and therefore, the residual variance can be
treated as constant. Tis can also be seen on the histogram
of the residuals. Te histogram suggests that the residuals
are normal.

Table 1: ARIMA (p, d, q) models with the diagnostics for malaria cases.

Model (p, d, q) AIC R-square RMSE MAE MAPE MSE p value
ARIMA (1,1,0) 15.56∗ 0.79 560.92 357.46 13.48 567.28 0.001
ARIMA (1,1,1) 15.57 0.78 559.76 360.13 13.49 568.25 0.001
ARIMA (2,1,0) 16.29 0.54 801.33 552.69 21.02 812.95 0.001
ARIMA (2,1,1) 15.57 0.78 561.85 356.70 13.50 568.30 0.001

Table 2: Regression models with their coefcients and diagnostic checks.

Models Coefcients with p value R-square Adjusted R-square AIC BIC
SLRM a� 4497.01337 (0.001∗∗∗) b� −24.704336 (0.001∗∗∗) 0.645 0.642 2163.28 2171.99
QRM a� 4436.8575 (0.001∗∗∗) b� −22.069775 (0.001∗∗∗), c� −0.019372 (0.001∗∗∗) 0.646 0.640 2165.09 2176.72
LRM a� 6492.6574 (0.001∗∗∗) b� −935.191189 (0.001∗∗∗) 0.535 0.531 2199.81 2208.53
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Applying the Holt–Winters multiplicative model (three
parameters) to our malaria data, the estimated permanent
component (intercept) of the proposed model is 0.48 and the
trend and multiplicative seasonal factor are zero which
means they have been estimated as fxed and are not
changing. Te RMSE of the model is 417.42, MAE� 350.34,
MAPE� 12.10, and MSE� 558.91 which are the lowest
among all the earlier estimated models. Tis model will be
plotted against the original data. We have included the
forecasted values of the Holt–Winter model ARIMA (1,1,0)
and a SARIMA (2,1,2)(1,1,0)12 term for comparison pur-
poses between them. Te forecasts from the multiplicative
exponential smoothing method are doing a great job in
detecting the seasonal movements in the actual series of

malaria cases. Te fgure shows the ft of all three proposed
models. Te RMSE of ARIMA (1,1,0) is 560.92, SARIMA
(2,1,2)(1,1,0) is 476.92, and Holt–Winter multiplicative
model is 417.42. Terefore, from the RMSE perspective, the
Holt–Winter model is the best forecasting model among the
ARIMA and SARIMA models.

Te short-term forecasting ahead by Holt–Winter
multiplicative best selected model is mentioned in Table 3.
Tere will be 738 cases of malaria in RYK till Jan 2023.

From Table 3, the maximum number of forecast malaria
cases in the district Raheem Yar khan was found to be 1281
in the month of October and the minimum number of cases
was found to be 586.75 in the month of Jun 2022 by applying
the best selected Holt–Winter multiplicative forecast model.
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Table 3 also shows malaria cases are higher in the months of
August–November 2022 than the rest of the months.

Figure 5 shows the plotting of actual data against all
the selected models, and it was concluded that the
Holt–Winter multiplicative model best ftted among all
the other models. Te graph of actual versus ftted shows
that malaria cases are decreasing gradually due to better
management.

4. Discussion

ARIMA, SARIMA, and Holt–Winter techniques have been
applied which considered seasonal, linear, and nonseasonal
factors for modeling the malaria cases in the district RYK,
Pakistan. SARIMA (2,1,2)(1,1,0)12 showed the best results
since the series contained a seasonal component. A model
with small RMSE was proposed by comparing the models.
After comparison, the Holt–Winter multiplicative model
outperformed ARIMA and SARIMA models in modeling
and forecasting the malaria cases in Pakistan. It was noted
from the forecasting results that malaria cases in the district
Raheem Yar khan will be 1281 in the month of October and
minimum cases will be 586.75 in the month of Jun 2022 by
applying the best selected Holt–Winter multiplicative
forecast model. Forecast estimates also showed malaria cases
are higher in the months of August–November 2022 than in
the rest of the months.

5. Conclusion and Way Forward

Several climate and environmental variables have been as-
sociated with malaria incidence. Forecast estimates of
malaria cases were high in the month of October and
minimum in the month of Jun 2022. Te forecasting models
developed in the study provide stakeholders of RYK district
with expected malaria cases in advance, which would be
a useful guidance for timely prevention and control mea-
sures to be efectively planned. Te knowledge of the
forecasting results of the malaria at the subdistricts would
also greatly aid in targeting the control measures, even
though the forecasting is feasible at the district-level data due
to the small number of cases at the subdistrict level. It is
paramount for the GOP (Govt. of Pakistan) to enhance the
vaccination policy to erase the efects of malaria cases to
fatten the curve.

Te main limitation of models based on time series is
that they provide forecasting for a longer period, and this
results in the negative confdence intervals. Further research
is recommended to evaluate the efectiveness of integrating
the forecasting model into the existing malaria control
programmed in terms of its impact in reducing the disease
occurrence and also the cost of control interventions.
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