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Aim of the Review. Tis study aims to summarize the therapeutic efect of luteolin on the pathogenesis of viral pneumonia, explore
its absorption and metabolism in the human body, evaluate the possibility of luteolin as a drug to treat viral pneumonia, and
provide a reference for future research.Materials andMethods. We searchedMEDLINE/PubMed,Web of Science, China National
Knowledge Infrastructure, and Google Scholar and collected research on luteolin in the treatment of viral pneumonia and related
diseases since 2003. Ten, we summarized the efcacy and potential of luteolin in directly inhibiting viral activity, limiting
infammatory storms, reducing pulmonary infammation, and treating pneumonia complications. Results and Conclusion.
Luteolin has the potential to treat viral pneumonia in multiple ways. Luteolin has a direct inhibitory efect on coronavirus,
infuenza virus, and respiratory syncytial virus. Luteolin can alleviate the infammatory factor storm induced bymultiple factors by
inhibiting the function of macrophages or mast cells. Luteolin can reduce pulmonary infammation, pulmonary edema, or
pulmonary fbrosis induced bymultiple factors. In addition, viral pneumoniamay causemultisystem complications, while luteolin
has extensive protective efects on the gastrointestinal system, cardiovascular system, and nervous system. However, due to the
frst-pass metabolismmediated by phase II enzymes, the bioavailability of oral luteolin is low.Te bioavailability of luteolin can be
improved, and its potential value can be further developed by changing the dosage form or route of administration.

1. Introduction

Pneumonia is one of the leading causes of morbidity and
mortality worldwide. Before 2019, about 450 million cases of
pneumonia were diagnosed per year, and 3 to 4 million people
died as a result [1]. Pneumonia is also the leading cause of death
among children under 5 years old globally. In 2015 alone,
pneumonia caused nearly one million deaths among children
[2]. It is worth noting that COVID-19 pneumonia, which has
been raging around the world since 2019, has caused 621
million confrmed cases and 6.5million deaths by 16thOctober
2022 [3], and the economic losses caused are difcult to es-
timate. Viruses are the main pathogen of community-acquired

pneumonia. Tere are about 200 million cases of viral pneu-
monia each year, and half of them are children [4]. A case-
control study of 1769 pneumonia children with positive chest
X-rays from 7 countries in Asia and Africa showed that viruses
are the cause of pneumonia in 61.4% of study subjects, in-
cluding respiratory syncytial viruses (31.1%), human rhinovi-
rus, human metapneumovirus (hMPV) A or B, and human
parainfuenza virus [5]. In addition, coronavirus, infuenza A
virus, and adenovirus are also common causes of viral
pneumonia [4].

Luteolin (3′, 4′, 5, 7-tetrahydroxyfavone), a natural
favonoid, and its derivatives are found in a variety of herbs,
vegetables, and fruits, including apple skins, broccoli,
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cabbages, carrots, onion leaves, and peppers [6, 7]. Struc-
turally, like all favonoids, luteolin has a diphenylpropane
structure (c6-c3-c6) and is linked with a hydroxyl group
(-OH) at 3′-, 4′-, 5-, and 7- positions. Derivatives of luteolin
are defned as luteolin compounds in which the hydroxyl
group (-OH) is replaced by other groups at 3′-, 4′-, 5-, or 7
positions. Luteolin and its derivatives may exist as aglycone
or combine with one or several sugars as glycoside in nature
[8]. After organismmetabolism, luteolin can also exist in the
form of glucuronide, monoglucoside, monoglucuride, or
sulfate etc. Te chemical structural formula of luteolin and
some of its derivatives are shown in Figure 1.

Luteolin and its derivatives have shown a variety of
biological activities in vivo, in vitro, and in silico studies [6],
including anti-infammatory, antiviral, antiallergic, and
immunomodulatory efects [9–13]. Tis article aims to give
an overview of the possible efcacy of luteolin and its de-
rivatives in the treatment of viral pneumonia and explore the
possibility of developing this favonoid as a drug for the
prevention and treatment of viral pneumonia. Te mech-
anism of pathological damage caused by viral pneumonia is
shown in Figure 2.

2. Direct Antiviral Effect of Luteolin

2.1. Coronaviruses. Coronaviruses are a family of enveloped,
positive sense, and single-strand RNA viruses. Before the
outbreak of SARS-CoV-2 in 2019, the SARS-CoV reported in
2003 and the MERS-CoV reported in 2012 caused a huge
negative impact on human society [14]. SARS-CoV-2 contains
a single-stranded RNA of about 26000–32000 bases, which is
80% similar to SARS-CoV and 50% similar toMERS-CoV [15].
Te genomes of coronavirus are composed of 6–11 open
reading frames (ORFs), with the frst ORF (ORF1a/b) con-
taining 67% of the viral RNA and encoding two large replicase
polyproteins, pp1a and pp1ab. Tese polyproteins are further
processed to 16 nonstructural proteins (NSPs) by virally
encoded chymotrypsin-like proteases (3CLpro) or main pro-
teases (Mpro) and one or two papain-like proteases (PLpro)
[16, 17], which are required for viral genome replication and
transcription. Te other ORFs code for 4 structural proteins
(spike, envelope, membrane, and nucleocapsid) and accessory
proteins [14].

Similar to SARS-CoV, the cellular entry of SARS-CoV-2
depends on the binding of viral spike (s) proteins to the SARS-
CoV receptor ACE2 (angiotensin converting enzyme 2) [18],
and luteolin showed a binding ability to both viral protein and
the ACE2 receptor. Yi et al. found that luteolin could bind to
the S protein from SARS-CoV and prevent the virus from
infecting Vero E6 cells (EC50�10.6μM and CC50�155μM),
with signifcant antiviral activity [19]. Yu et al. found that
luteolin may form 4H-bonds with residues GLN-965, SER-968,
and ASN-969 of SARS-COV-2 S protein and π-cation in-
teraction with residues PHE-970, but the binding energy is low
[20]. Based on a relaxed complex scheme, Shadrack et al. found
that luteolin strongly binds to the anchor residues TYR453,
TYR505, and GLY496 of the virus, as well as residues HIS34,
LYS353, ASP38, and GLN35 from the ACE2 receptor of the
host cell, showing binding energy of about 36.82KJ/mol [21].

Besides, Halil Ibrahim Guler found that luteolin can bind
Tyr127, Ser128, Tr129, and other groups of ACE2 receptors
with a binding energy of −7.29 kcal/mol [22].

3CLpro is also essential for virus replication. Te 3CLpro
inhibitor can inhibit the replication of SARS-CoV-2 in primary
human airway epithelial cells cultured in vitro [23]. In the
mouse model of MERS-CoV infection, the 3CLpro inhibitor
increased the survival rate of mice, reduced the pulmonary
virus titer, and alleviated lung tissue damage. Ran Yu screened
the binding sites between luteolin and the crystal structure of
3CLpro by molecular docking technology; luteolin forms 5
hydrogen bondswith residues GLN-189, LEU-4, ASN-142, and
THR-26 and forms hydrophobic interaction with MET-49 and
VAL-3 [20]. Ryu et al. found that luteolin inhibited 3CL protein
activity (IC50� 20.2μM) by using fuorescence resonance
energy transfer (FRET) technology, whichmay be related to the
C-3′-substituted hydroxy group of luteolin [24].

2.2. Respiratory Syncytial Virus. Saisai Wang found that
luteolin signifcantly inhibited RSV replication in a dose-
dependent manner in vitro. In mice, luteolin reduced the
viral titer in the lungs and alleviated the pathological damage
of lung tissues [25]. Te anti-RSV efect of luteolin may be
achieved by inducing the expression of miRNA-155 in host
cells. Te high expression of miRNA-155 can down-regulate
the expression of SOCS1, which is a negative regulator of
STAT1, and promote the upregulation of ISG expression to
produce an anti-RSV efect [26]. Ooi et al. found that
luteolin-7-O-glucoside inhibited the cytotoxicity of RSV in
Hep-2 cells through cytopathic efect reduction assay and
that its antiviral activity was equivalent to that of ribavirin
[27]. It is worth noting that after using 3 kinds of 6-C-
monoglycosides of luteolin to intervene Hep-2 cells, Ying
Wang observed the same RSV inhibitory efect [28].

2.3. InfuenzaVirus. After infuenza virus infection, the viral
polymerase-RNA complex is transported to host cells and
plays an important role in viral replication and transcription.
Infuenza RNA polymerase is a heterotrimeric enzyme,
which contains three subunits: PA (polymerase acidic
protein), PB1 (polymerase basic protein 1), and PB2 (po-
lymerase basic protein 2) [29]. Te virus cannot synthesize
the 5′-mRNA cap, which is necessary for eukaryotic cell
translation, and the primer needs to be obtained through the
“cap sequencing” mechanism [30]. In this process, PB2 frst
binds 5′-cap (m7GTP) of host pre mRNA, then PA cleaves
about 10–13 nucleotides downstream of 5′-cap as primers,
and fnally, PB1 uses this as a template for viral gene syn-
thesis [31–33]. RNA-dependent RNA polymerase is highly
conservative in all infuenza virus strains, and the “cap se-
quencing” mechanism has been observed in all infuenza
viruses [34]. Terefore, drugs targeting RNA polymerase
may be able to inhibit infuenza virus replication.

A structural biology study found that luteolin and its
C-glucoside orientin inhibit the PA N-terminal domain
(PA-Nter) of infuenza RNA-dependent RNA polymerase
with endonuclease activity [35]. Te most efective in-
hibitors are luteolin (IC50 � 73 ± 3 nM) and its 8-C-

2 Journal of Food Biochemistry



glucoside orientin (IC50 � 42 ± 2 nM) [35]. Te endonu-
clease active site of PA-Nter is a negatively charged
pocket, which is composed of His-41 and Lys-134 as well
as a triad of acid residues and can combine with Mg2+ or
Mn2+ ions [36, 37]. Trough X-ray crystallography,
Václav Zima found that 3′, 4′-dihydroxyphenyl moiety of
luteolin can combine with the active site of endonuclease
through coordination with manganese ion and form
a strong hydrogen bonding network to eliminate the
biological activity of endonuclease [37].

Infuenza neuraminidase (NA) is also a key enzyme in
the replication and transmission of the infuenza virus. NA is
a glycoprotein on the surface of infuenza virus particles,
which can recognize the carbohydrate structures and bind to
the terminal sialic acid on the surface of host cells [38]. NA
acts together with another key glycoprotein, hemagglutinin,
to regulate the separation and binding of viruses and host
cells and afect the movement of viruses in the respiratory
tract [38]. Amolecular docking study shows that luteolin can
bind to the NA site of the infuenza virus with a binding

Pathological damage
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Figure 2: Pathological damage of viral pneumonia.
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Figure 1: Luteolin and its derivatives.
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energy of −7.1 Kcal/mol (binding energy of oseltamivir:
−5.8 Kcal/mol) [39]. In-Kyoung Lee found that luteolin
efectively inhibited the NA activity of H1N1, H3N2, and
H5N1 infuenza viruses in a dose-dependent manner, and
CPE reduction assay results showed that luteolin reduced the
cell injury of MDCK cells (Madin Darby cancer kidney cells)
induced by infuenza viruses [40].

In addition, Haiyan Yan infected multiple cell lines with
two subtypes of infuenza A virus and found that the rep-
lication of the virus can be inhibited by luteolin [40]. At the
same time, luteolin can down-regulate viral endocytosis
β-COP protein, which prevents the absorption and in-
ternalization of viruses [41]. Yu et al. found that luteolin, as
an efective component of Moslea Herba favonoids, can
target NOX4 to inhibit the NF-κB/MLCK pathway to reduce
the release of cytokines induced by infuenza virus and the
damage of pulmonary microvascular endothelial cells and
protect the pulmonary endothelial barrier [42].

3. Regulate Immune Response and Inhibit
Inflammatory Cytokines Storm

Cytokine storm or cytokine release syndrome is a life-
threatening systemic infammatory syndrome character-
ized by elevated circulating cytokine levels and hyperactivity
of immune cells, which can be induced by a variety of
pathogens, cancers, autoimmune diseases, single-gene dis-
eases, and so on [43]. Viral infection, including viral
pneumonia, is one of the causes of cytokine storms. In
patients with SARS-CoV-2 pneumonia, cytokine storms can
cause serious complications, including acute respiratory
distress syndrome, sepsis, and multiple organ failure, in-
creasing the risk of death [44]. In viral pneumonia, cytokines
are frst produced by alveolar cells or activated endothelial
cells due to virus replication in lung tissue cells [45, 46].
Subsequently, activated macrophages and dendritic cells
trigger further immune responses and produce a large
number of cytokines [47]. In viral pneumonia, mast cells are
also an important source of cytokines [48].

3.1. Macrophage Signaling Pathways. Macrophages can not
only phagocytose pathogens directly, induce other immune
cells to release cytokines, and activate downstream immune
responses but can also cause cytokine storms to damage
normal tissues [49]. Evangelos J Giamerellos-Bourboulis
observed 54 patients with SARS-CoV-2 pneumonia, 28 of
whom had severe respiratory failure (SRF). All SRF patients
showed macrophage activation syndrome accompanied by
excessive release of TNF-α and IL-6 and substantial re-
duction of CD4 lymphocytes, CD19 lymphocytes, and
natural killer (NK) cells [50]. Te autopsy and pathological
investigations of 2 deceased cases with COVID-19 showed
that the S protein of COVID-19 could directly bind to the
ACE2 receptor expressed by alveolar macrophages. Te
researchers also found that IL-6 in the blood of these 2 cases
increased, indicating that abnormal activation of macro-
phages may exist among COVID-19 patients [25]. Te in-
fuenza virus can also replicate efciently in alveolar

macrophages [51]. Upon infuenza virus infection, macro-
phages can induce TNF related apoptosis inducing light
(TRAIL) expression by releasing IFN-β, causing damage to
alveolar epithelial cells [52].

Alveolar macrophages can interact with T cells to con-
tinuously drive persistent alveolar infammation during
virus infection [13]. Grant et al. collected bronchial lavage
fuid from 88 patients with respiratory failure secondary to
COVID-19 infection and found that there were a large
number of CD4+, CD8+T cells, and monocytes in their
alveoli [13]. Bulk and single-cell transcription profling re-
sults showed that Tcells secrete a large amount of IFN-c and
induce alveolar macrophages to release infammatory
cytokines [13].

Macrophages are extremely plastic and can be divided
into classically activated (or infammatory) macrophages
(M1) and alternatively activated (or wound-healing) mac-
rophages (M2) [53]. M1 macrophages promote in-
fammation, while M2 macrophages repair damaged tissues
[54]. Te M1/M2 macrophage balance is often destroyed in
severe infection [54].

Luteolin can regulate macrophage polarization. Luteolin
can inhibit the production of reactive oxygen species in
RAW264.7 murine macrophage cells stimulated by lipo-
polysaccharide (LPS), reduce the activation of the NLRP3
infammasome complex, and promote the polarization of
macrophages from M1 into M2 [55]. Shuxia Wang also
observed the same phenomenon: luteolin prevented LPS-
induced polarization of RAW264.7 cells towards M1 and
reduced IL-6 and TNF-α by down-regulating p-STAT3 and
up-regulating p-STAT6 [56]. Xiumei Chen isolated mac-
rophages from the peripheral blood of BALB/c mice and
found that luteolin promotes macrophage M2 polarization
by up-regulating the expression of arginase and mannose
receptor C type 1 [57].

In addition, luteolin can reduce the aggregation and
activation of macrophages in white adipose tissue of obese
mice induced by a high-fat diet and alleviate chronic in-
fammatory reactions [58]. Luteolin can also reduce the
activity of mouse macrophage ANA-1 cells in vitro and
induce apoptosis and autophagy of ANA-1 cells by activating
Akt and MAPK signaling pathways [59].

3.2. Mast Cell Pathway. Mast cells (MCs) can participate in
a variety of severe infammatory syndromes including severe
COVID-19 pneumonia by releasing mediators that promote
infammation, fbrosis, and thrombosis [48]. Mast cells are
widely distributed throughout the body, especially on the
mucosal surface. Upon viral invasion, mast cells frst contact
with pathogens and produce complex reactions [60], syn-
thesizing and releasing histamine, tryptase, TNF, β-hex
(β-hexosaminidase), IL-6, IL-8, CCL2 (chemokine ligand
2), and other infammatory factors [61, 62].

Luteolin and its novel structural analog 3′, 4′, 5, 7-
tetramethoxyluteolin can inhibit mast cell function [63].
In human cultured LAD2 mast cells stimulated by substance
P (SP), degranulation was signifcantly inhibited by luteolin
or methoxyluteolin, and the synthesis and release of
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cytokines such as IL-1β and TNF were inhibited [64]. In
human cord-blood-derivedMCs stimulated by IgE/anti-IgE,
the release of β-hex, histamine, TNF, and CCL2 was
inhibited [63]. Luteolin andmethoxyluteolin may inhibit the
degranulation of mast cells by reducing intracellular calcium
ions [65, 66] while inhibiting the release of infammatory
factors throughout the NF-κB signal pathway [63]. Luteolin
and methlut can inhibit intranuclear phosphorylation of
IκBα and the DNA-binding activity of NF-κB p65, while
reducing the mRNA expression of NFKB1 and RELA and
blocking NF-κB activation at both the gene and protein
levels [63]. Luteolin or methoxyluteolin can inhibit IL-31,
CCL2, and CCL5 released by IL-33 stimulated mast cells,
while ERK, JNK, p38 MAPK, and NF-κB p65 activation are
also inhibited [9, 67].

In addition, luteolin can inhibit mast cell activation
stimulated by hormones or neuropeptides [68]. Te
corticotropin-releasing hormone can induce mast cells to
express the IgE receptor, FcεRI. Luteolin can reduce the
expression of the IgE receptor and inhibit the ability of mast
cells to release the vascular endothelial growth factor
(VEGF) when stimulated by IgE/anti-IgE [68]. Mast cells can
produce infammatory mediators TNF, CXCL8, and VEGF
in response to neuropeptide stimulation; this phenomenon
can be inhibited by luteolin by preventing mTOR activation
[69]. Luteolin can also inhibit the interaction between mast
cells and T cells [70]. Compared with incubation alone,
Jurkat cells activated by anti-CD3/anti-CD28 increase IL-2
release by 30-fold when incubated with mast cells, and
luteolin can inhibit not only myelin basic protein-induced
human mast cell activation but also mast cell-dependent
stimulation of Jurkat T cells [70].

4. Attenuate Pulmonary Inflammation

Respiratory viruses can target ciliated epithelial cells, alve-
olar cells, or lung immune cells to directly cause lung tissue
damage, and they can also destroy the balance between the
elimination of viruses and the protection of normal tissues in
the immune system, thus mediating immune damage [45].
CT fndings indicate that the characteristics of viral pneu-
monia include consolidation or ground-glass infltrates of
lung tissue, necrosis and exfoliation of bronchial epithelium,
thickening of the bronchial wall, alveolar edema, and fbrin
exudation, and so on [71, 72]. Luteolin not only directly
inhibits viruses and prevents cytokine storms but also has
extensive protective and immune regulatory efects on lung
tissues.

In animal models, luteolin has protective efects on acute
lung injury induced by surgery [73–75], drugs (bleomycin)
[76],and small molecular substances such as LPS, mercuric
chloride, or cadmium [10, 77–79].

Sepsis can be induced by pathogens that invade the
circulation and produce systemic infammatory response
syndrome, which can afect almost all organs. Luteolin can
reduce infammatory factors IL-6, IL-1α, IL-1β, IL-6, IL-
17A, and TNF-α in lung tissue of sepsis mouse models,
reduce the damage of lung tissue [73–75], mitigate oxidative
stress [73, 75], and prevent cell apoptosis [75]. It is worth

noting that the protective efect of luteolin may be achieved
by regulating the diferentiation of helper T cells. Luteolin
contributes to the expression of CD4+CD25+FOXP3+ Tregs
and the release of IL-10 and inducesmacrophages to polarize
toward M2 [74]. If Treg cells are depleted, the lung tissue
protective efect of luteolin will disappear, while the use of
antibodies combined with IL-10 will aggravate cell
pyroptosis [75].

LPS is the main component of the cell wall of gram-
negative bacteria, which can be recognized by pattern rec-
ognition receptors and trigger a series of immune reactions,
hence causing lung damage. Luteolin can diminish lung
infammation induced by LSP and reduce the release of
infammatory factors such as TNF-α, IL-6, IL-1β, iNOS, and
COX-2 [80–82]. At the same time, luteolin can alleviate
pulmonary edema by reducing vascular injury and neu-
trophil infltration [78, 81] and decreasing apoptosis of
bronchial epithelial cells [82]. Luteolin blocks the NF-κB
pathway to exert protection on lung tissue stimulated by
LPS. Luteolin can inhibit NF-κB DNA-binding activity in
macrophages and block IκB degradation and nuclear ac-
cumulation of the NF-κB P65 subunit [80]. Besides, luteolin
can also reduce the activation of neutrophils by blocking the
PI3K/Akt pathway [78, 81].

Last but not least, luteolin can also reduce bleomycin-
induced lung injury and pulmonary fbrosis, prevent alveolar
epithelial cells from transforming into mesenchymal cells
with a myofbroblast-like phenotype, and inhibit fbroblast
proliferation [76]. By up-regulating Nrf2 and down-
regulating NF-κB, luteolin alleviates lung injury caused by
mercury chloride or cadmium [10, 79]. Luteolin can induce
helper T cells to diferentiate into CD4+CD25+FOXP3+ Tregs
and promote the release of IL-10, which also exists in OVA-
sensitized asthma mouse models [83]. At the same time,
luteolin can also attenuate airway allergic infammation, re-
duce mucus hypersecretion in the airway, and reduce goblet
cell hyperplasia and collagen deposition [84, 85]. Te direct
protective efect of luteolin on lung tissue is shown in Table 1.

5. Control Systemic Complications

5.1. Gastrointestinal Complications. Gastrointestinal symp-
toms are the most common complications of viral infection.
Existing epidemiological studies show that the highest
proportion of COVID-19-infected patients with diarrhea
and anorexia symptoms is 49.5% and 26.8%, respectively
[86, 87]. Xiao et al. analyzed 73 hospitalized COVID-19
pneumonia patients and found that 39 patients (53.42%) had
positive RT-PCR results for COVID-19 in their feces, and 17
patients (23.29%) continued to have positive results in feces
after showing negative results in respiratory samples [88].
Te positive staining of ACE2 and COVID-19 could also be
observed in the gastrointestinal epithelium of these patients
[88]. Qian et al. found that RNA and virus particles appeared
in surgically-resected rectal specimens of COVID-19-in-
fected patients, accompanied by the infltration of a large
number of lymphocytes and macrophages [89]. Besides,
virus RNA can also be detected in the feces of infuenza
virus-infected individuals [90].
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In addition to directly binding to intestinal cells [91],
viruses can also induce the migration of infammatory cells,
causing intestinal immune damage [92]. After infuenza
virus infection, lung-derived CD4+Tcells will enter the small
intestine mediated by chemokines, CCL25 and CCR9, work
together with the gut microbiota to promote the polarization
of T17 cells, and cause immune damage [92].

Respiratory viruses can also damage the barrier function
of the intestinal tract, alter the microbiota of the gastroin-
testinal tract, and afect its function [93, 94]. Te expression
of genes involved in the construction of the intestinal barrier
in infuenza A virus-infected mice was signifcantly down-
regulated, while the expression of infammation-related
genes in the liver was signifcantly up-regulated [95]. In
patients with high infectivity of COVID-19, the gut
microbiota is characterized by loss of salutary bacteria and
increased functional capacity for nucleotide, amino acid
biosynthesis, and carbohydrate metabolism [94]. Te
damage to gut microbiota caused by viruses will weaken the
pulmonary immune function, resulting in double-infection
of respiratory viruses and bacteria [96].

Luteolin can alleviate intestinal infammation through
multiple pathways. In the intestinal infammation mouse
model induced by dextran sulfate sodium (DSS), luteolin
reduces the release of infammatory factors and alleviates
infammatory damage through down-regulating NF-κB [97].
By up-regulating PPAR-c, luteolin can increase the trans-
porter OCTN2 and reduce cytokines IL-1β and IL-6 to al-
leviate intestinal infammation [98]. Luteolin can activate the
Nrf2/HO-1/NQO1 pathway, reduce infammatory factors
such as iNOS, MDA, TNF-α, and IL-6, increase the activities
of catalase and superoxide dismutase, and reduce oxidative
damage [99, 100]. Apart from that, luteolin can also activate
the ERK1/2 pathway, reduce the apoptosis and autophagy of
intestinal epithelial cells induced by infammation, and
promote crypt cell proliferation [101].

Luteolin can protect intestinal barrier function. Trough
the SHP-1/STAT3 pathway, luteolin can reverse TNF-α and
IFN-c induced increase in permeability of Caco-2 cells and
increase tight junction proteins such as OCLN, CLDN1, and
ZO1 [102]. Te protective efect of luteolin on intestinal
barrier function is also refected in the rat model of the
nonalcoholic fatty liver. Luteolin maintains the integrity of
intestinal barrier function by increasing the level of intestinal
tight junction protein [103, 104]. At the same time, luteolin
reduces liver steatosis by inhibiting the TLR4/NF-κB signal
pathway, reduces IL-1β, IL-6, and TNF-α in the liver, and
reduces liver infammatory damage [103].

Te inhibitory efect of luteolin on intestinal in-
fammation and the protective function of the intestinal
barrier is benefcial to the regulation of gut microbiota under
infammatory conditions. Te KEGG enrichment analysis of
intestinal infammation and gut microbiomes after luteolin
administration showed that the afected gut microbiomes
were related to DNA repair, protein recombination, purine,
pyrimidine, ribosome, and peptidase metabolism [97].
Luteolin can regulate the relative abundance of certain
microbiota in the model of metabolic disorder and non-
alcoholic fatty liver induced by a high-fat diet. At the level of

phylum, frmicutes and bacteroides predominate in the
intestine, and the ratio of Firmicutes and Bacteroides (F/B)
will increase in rats on a high-fat diet [103]. Luteolin can
down-regulate F/B [12, 103] at the level of genus, and
luteolin increases the relative abundance of Lactobacillus,
Bifdobacterium, Desulfovibrio, Parvibacter, Faecalitaleq,
and Allobaculum [103, 104]. At the level of the family,
luteolin increases the abundance of Lachnospiraceae, Hel-
icobacteraceae, Mariniflaceae, and Peptococcaceae [12].Te
gastrointestinal protective efect of luteolin is shown in
Table 2.

5.2. Neurological Complications. Nervous system damage is
an insidious and dangerous complication of viral pneu-
monia. Before the COVID-19 pandemic, the outbreak of
infuenza A (H1N1) in 2009 gave us a glimpse of the
neurological complications of viral infection. Compared
with common infuenza, H1N1 infuenza causes more se-
rious damage to the nervous system [106]. Tere are reports
of severe neurological complications leading to disability
and death worldwide [107].

Te nervous system may be afected in the early stage of
COVID-19 infection. A study of 417 mild or moderate
COVID-19 pneumonia patients from 12 hospitals showed
that 85.6% and 88.0% of the patients had olfactory and taste
disorders, respectively, and there was a signifcant correla-
tion between these two symptoms [108]. A retrospective
study of 214 patients with COVID-19 showed that 78 pa-
tients (36.4%) had neurological symptoms, and those with
severe infection had a higher proportion sufering severe
neurological diseases such as acute cerebrovascular diseases,
disturbance of consciousness, and seizures [109]. Notably,
children with viral infections are more likely to sufer from
serious neurological complications [110]. A retrospective
study showed that 7.5% of children (23 in 307) infected with
H1N1 infuenza will sufer from nervous system compli-
cations, 65% of these children will require intensive care
monitoring, and 13% will die as a result [111]. During the
H1N1 infuenza pandemic in Texas from 2009 to 2010, about
2/3 of the children with central nervous system complica-
tions required admission to intensive care, and about half of
them required mechanical ventilation [112].

Viruses can damage the nervous system in multiple
ways. Viruses may enter the central nervous system from
peripheral organs through the peripheral nervous system or
directly enter the central nervous system from the olfactory
nerve or nasal mucosa epithelium through the intranasal
route [113]. SARS-CoV antigen and RNA can be found in
the brain neurons of patients who died from SARS [114]. Xu
et al. isolated the SARS coronavirus strain from the brain
tissue specimens of SARS patients with severe central ner-
vous system symptoms [115]. Moreover, the lungs of mice
infected with MERS-CoV were shown to contain MERS
titers and RNA four days after infection [116].

Virus infection can damage blood brain barrier function
(BBB). A cohort study of 102 COVID-19 patients showed
that 24 (23.5%) patients had severe neurological in-
volvement [117] including cerebral ischemia, intracerebral
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hemorrhage, seizures, and encephalitis, of which 8 severe
patients had BBB injury with elevated cytokines such as IL-6,
IL-8, and TNF-α in cerebrospinal fuid [117].

Additionally, the immune response caused by the virus is
also an important cause of neurological complications. Te
degranulation of mast cells can occur in the dura matter
[118, 119]. Once mast cells are activated in brain tissue,
microglia will also be activated, thus releasing a large
number of cytokines [120], which indicates that mast cell-
mediated infammatory storms may occur in the brain [121].
In cerebrospinal fuid and serum samples of 2 children who
died of an infuenza-related acute encephalopathy, IL-6 and
TNF-α signifcantly increased [122]. One case also had
vasogenic cerebral edema and systemic vasculopathy, in-
dicating immune damage to vascular endothelium [122].

Luteolin has extensive protective efects on the nervous
system. A randomized controlled trial showed that palmi-
toylethanolamide combined with luteolin can improve the
olfactory impairment of COVID-19 patients and promote
the recovery of olfactory, which was more efective in pa-
tients with long-term olfactory dysfunction [123].

Luteolin can inhibit the activation of microglia and
reduce the neuroinfammation induced by microglia. In the
rat model of acute intracerebral hemorrhage, luteolin re-
verses the TLR4/TRAF6/NF-κB signal pathway by inhibiting
the ubiquitination of TRAF6 and blocking NF-κB p65 nu-
clear translocation, thereby reducing infammatory factors
IL-6, IL-1β, and TNF-α to protect neurons [124]. In another
study, luteolin alleviated LSP-induced infammation of BV2
microglia and inhibited the release of infammatory factors
such as TNF-α and IL-1β in the hippocampus and cerebral
cortex of mice [125]. In the rat model of chronic cerebral
hypoperfusion (CCH), luteolin inhibits the hyperactivation
of microglia, reduces the number of astrocytes in the hip-
pocampus and cerebral cortex, and reduces the mRNA and
protein levels of TNF-α, IL-1β, and IL-6 [126]. At the same

time, luteolin also improved CCH-induced learning,
memory impairments, and white matter injury and in-
creased presynaptic transmitter release in rats [126].

Luteolin has a protective efect on BBB. Zhang used
coculturing human brain microvascular endothelial cells
(hBMECs) and human astrocytes (hAs) to build a BBB
model in vitro and found that luteolin can protect vascular
endothelial function under fAβ1–40 stimulation, maintain
BBB function, and reduce infammatory factors such as
COX-2, TNF-α, IL-6, IL-8, and IL-1β [127].

Luteolin can efectively alleviate oxidative damage to the
nervous system. Luteolin decreases the infammatory and
oxidative stress damage in the spinal cord of spinal cord
ischemia-reperfusion injury (SCII) rats [11]. At the same
time, luteolin reduces the level of MDA, XO, and other
oxides, improves the activities of antioxidant enzymes SOD
and GSH-Px, and protects mitochondrial function [11]. Te
protective efect of luteolin on spinal neurons involves the
upregulation of Nrf2 and down-regulation of NLRP3 [128].
In the model of secondary brain injury (SBI) after in-
tracerebral hemorrhage, luteolin can increase the nuclear
displacement of Nrf2, inhibit the ubiquitination of Nrf2,
activate the p62-Keap1-Nrf2 pathway, increase the levels of
antioxidant proteins such as HO-1, NADPH, and NQO1,
and reduce the production of superoxide in neurons [129].
Te neuroprotective efect of luteolin is shown in Table 3.

5.3. Cardiovascular Complications. Cardiovascular compli-
cations are also important extrapulmonary manifestations of
severe pneumonia. Pneumonia patients may have a series of
cardiovascular complications, including the decreased
function of the left ventricle, myocardial injury, arrhythmia,
and vascular endothelial lesions [130]. Once cardiovascular
complications occur in patients admitted for community-
acquired pneumonia, the short-term or long-term risk of

Table 2: Luteolin can reduce gastrointestinal complications.

Signal pathways involved
in the efect
of luteolin

Pharmacological efects of
luteolin Reference

Unclear Reducing IL-17 and IL-23 in the intestinal tract, increasing PPAR-c, and adjusting
intestinal fora [97]

Inhibiting the SHP-1/STAT3 pathway
Reducing intestinal cell permeability, increasing tight junction proteins such as
OCLN, CLDN1, and ZO1, reducing CLDN2, and relieving symptoms of ulcerative

colitis
[102]

Unclear

Reducing liver steatosis and infammatory damage, maintaining the integrity of
intestinal mucosa, reducing intestinal permeability, up-regulating tight junction
proteins such as OCLN, CLDN1, and ZO1, and increasing the diversity of intestinal

fora

[103]

Inhibiting the TLR4/NF-κB pathway Improving liver fat accumulation and infammation, adjusting intestinal fora,
reducing intestinal permeability, and reducing plasma LPS [104]

Activating the Nrf2 pathway Reducing intestinal iNOS, TNF-α, and IL-6 levels and reducing oxidative damage in
the colon [105]

Inhibiting the NF-κB pathway Alleviating intestinal damage and down-regulating SOD, MPO, MDA, PGE2,
TNF-α, IL-1β, and CRP [100]

Inhibiting the PPAR-c/RXRα pathway Reducing intestinal damage and the levels of IL-1β and IL-6, and increasing the level
of OCTN2 in the colon [98]

Activating the ERK1/2 pathway Reducing intestinal TNF-α and COX-2 expression, reducing autophagy and
apoptosis of intestinal epithelial cells, and promoting the proliferation of crypt cells [101]
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death increases [131, 132]. Many pathogens of viral pneu-
monia, including infuenza virus, respiratory syncytial virus,
and adenovirus, can also cause myocarditis [130, 133, 134].
In COVID-19 pneumonia patients, the incidence of myo-
cardial injury characterized by elevated cardiac troponin I
varies from 7.2% to 27.8% [135]. Compared with the sur-
viving patients, patients who died from COVID-19 had
a higher probability of cardiovascular diseases [136].

Te respiratory virus can directly infect the myocardium
or cause myocardial injury through an immune response.
Guido Tavazzi performed a myocardial biopsy on
a COVID-19 patient with acute myocardial injury and found
viral particles in the endocardium [137]. Chonyang L Albert
found viral RNA in the myocardium of another COVID-19
patient with cardiogenic shock, making it clear that
COVID-19 can infect the myocardium [138].

In the autopsy of patients who died from COVID-19,
researchers found that endothelial infammation and small
vessel lesions in the lungs and other organs were one of the
main characteristics of pathological damage [139, 140], often
accompanied by thrombosis and infammatory cell in-
fltration [139, 141]. Valentina O. Puntmann conducted
a cardiac magnetic resonance study on 100 patients who had
recently recovered from COVID-19. 78% of the patients had
abnormal results, and 60% had ongoing myocardial in-
fammation, which was characterized by active lymphocyte
infammation [142]. In addition, COVID-19 infection can
also induce Kawasaki-like systemic infammatory syndrome
in children, which is characterized by conjunctivitis, hand-
foot edema, lymphopenia, thrombocytopenia, and com-
plement consumption [143].

Luteolin has been identifed to provide cardioprotective
efects [144]. In the mouse model of myocardial ischemia-
reperfusion (IR), luteolin can up-regulate the expression of
Bcl-2, reduce the ratio of Bax to Bcl-2, reduce cardiomyocyte
apoptosis, and reduce the infarct size [145–148]. By down-
regulating TLR4, NLRP3, MyD88, and NF-κB-related re-
ceptors, luteolin can reduce the levels of AST, CK-MB, and
LDH in the serum of myocardial IR rats, reduce myocardial
damage, and inhibit the secretion of IL-1β, IL-18, and TNF-α
by H9c2 cells in vitro [149]. By inhibiting p38 MAPK and
NF-κB pathway activation, luteolin can reduce the levels of
LDH, MDA, and ROS in cardiomyocytes, increase the ac-
tivity of superoxide dismutase (SOD), stabilize the mito-
chondrial membrane potential [150], and reduce IR
myocardial oxidative damage [150, 151].

Luteolin can also enhance myocardial contractility.
Luteolin can promote the expression of SERCA2a through
multiple pathways [152–155], thus promoting calcium ion
transport, enhancing myocardial contractility, and im-
proving left ventricular function [152–154].

Last but not least, luteolin also has a protective efect on
vascular endothelium. Luteolin can signifcantly inhibit
TNF-α induced adhesion of monocytes to EA. Hy 926 cells,
and inhibits the secretion of MCP-1, ICAM-1, and VCAM-1
in vitro [34, 156]. Fan Xia pretreated human umbilical vein
endothelial cells with luteolin and found that TNF-α-in-
duced oxidative damage was alleviated and intracellular
ROS, as well as the expression of Nox4, p22phox, ICAM-1,

and VCAM-1, were down-regulated [157]. Using luteolin-7-
O-glucoside to intervene in endothelial cells in vitro can
inhibit endothelial cell proliferation and reduce the ex-
pression of infammation-related genes [158]. Analysis of
cell metabolites showed that cholesterol-hydroxylated sub-
stances in endothelial cells were signifcantly reduced after
luteolin-7-O-glucoside treatment [158]. Te cardiovascular
protective efect of luteolin is shown in Table 4.

6. Absorption and Metabolism of Luteolin

6.1. Absorption of Luteolin. Luteolin usually appears as
glycosylated protein forms [159], and absorption of luteolin
requires transportation across the intestinal epithelial bar-
rier, whether from vegetables, fruits, or herbal water sol-
vents. Te small intestine is the main site for the absorption
of favonoid glucosides, and beta-glucosidases-mediated
deglycosylation is the key to absorption [159]. Kayoko
Shimoi studied the absorption of luteolin and luteolin 7-O-
β-glucoside in rats and human intestines [160].Te results of
the everted intestine absorption experiment in rats showed
that luteolin 7-O-β-glucoside was difcult to pass through
the bowel wall and was barely detectable in rat plasma, so
Kayoko Shimoi speculated that luteolin glycosides need to be
deglycosylated to aglycones by gut microbiota before being
absorbed [160]. On the other hand, using LC/MS analysis,
Kayoko Shimoi detected free luteolin and monoglucuronide
of unchangeable luteolin in the plasma of rats taking luteolin
orally and obtained the same results in humans [160]. Tis
suggests that monoglucuronide may be the main metabolite
of luteolin and may be related to the antioxidant activity of
the hydroxyl group of luteolin on 3′-, 4′-, 5-, and 7-positions
[160].

Intravenous injection can ensure that luteolin glycosides
enter the circulation. Ran Yin studied the pharmacokinetics
of three luteolin glycosides in beagle dogs [161], Te cali-
bration curves of luteolin-7-O-gentiobioside, luteolin-7-O-
β-D-glucoside, and luteolin-7-O-β-D-glucuronide show
good linearity in the concentration ranges of 1.0–250 ng/ml,
1.0–250 ng/ml, and 4.0–1000 ng/ml, respectively [161]. Te
extraction recoveries of all luteolin glycosides in blood were
over 75% [161]. Te blood drug concentrations of three
luteolin decreased rapidly after intravenous administration,
and the average half-elimination time was between 1.10 h
and 1.33 h [161].

Wittermer et al. studied the metabolic process of arti-
choke leaf extract containing luteolin-7-O-glucoside in the
human body [162]. Researchers gave 14 healthy volunteers
two diferent extracts containing luteolin glycosides equiv-
alent to 14.4 or 35.2mg of luteolin, respectively. After taking
the two extracts, luteolin-7-O-glucoside could not be de-
tected in the plasma and urine samples of volunteers.
Analysis of blood and urine by HPLC showed that luteolin
administered orally in the form of glucoside would exist in
the body as sulfate or glucuronide after metabolism [162].
Te peak plasma concentration of the two groups of vol-
unteers appeared 30–40minutes after administration (59.08
and 156.58 ng/mL), and its elimination half-life was 2-3 h
[162]. Te rapid absorption of luteolin indicates that its
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absorption site may be in the upper digestive tract, and the
short elimination half-life indicates that luteolin may be
rapidly metabolized once in circulation.

Zhou et al. found that the efective permeability and the
absorption rate constant of pure luteolin (5.0 microg/mL)
in the duodenum and jejunum of rats were signifcantly
higher than those in the colon and ileum [163]. It is worth
noting that the peak concentration and the area under the
curve of luteolin in the form of peanut shell extract in rat
plasma are signifcantly higher than those of pure luteolin,
suggesting that the bioavailability of luteolin in the form of
peanut shell extract is signifcantly higher than that of pure
luteolin [163].

Compared with luteolin aglycone and luteolin-7-O-
glucoside in pure solution, luteolin in the form of a plant
extract is more easily absorbed by intestinal epithelial Caco-
2 cells [164]. Mukinda et al. incubated intestinal epithelial
Caco-2 cells with luteolin aglycone, luteolin-7-O-glucoside,
and unhydrolyzed or acid-hydrolyzed Artemisia afra extracts
and collected samples on the basolateral and apical sides of
Caco-2 cells for HPLC and LC-MS analyses [164]. Te results
showed that the apical-to-basolateral permeability coefcients
of luteolin and luteolin-7-O-glucoside in the extract were
1.6–2 times higher than those of the nonplant solution. At the
same time, researchers also found that glucuronidation is an
important form of luteolin absorption [164].

Michiko Torii Yasuda studied the absorption and
metabolism of luteolin and its glycosides in chrysanthe-
mum extract in rats and Caco-2 cells. After oral adminis-
tration of chrysanthemum extract (equivalent to luteolin
22.8 μmol/kg and luteolin-7-O-glucoside 58.3 μmol/kg),
luteolin, luteolin monoglucoside, and luteolin mono-
glucuronide can be quickly measured in the blood of rats.
Te plasma concentration of luteolin reached the frst peak
after 1 hour and the second peak after 6 hours [165]. Te
reason for the second peak may be that luteolin glycosides
are converted to aglycones in the intestine after enter-
ohepatic circulation; its aglycone is metabolized into
conjugates and absorbed [165]. On the other hand, after the
administration of chrysanthemum extract on the apical side
of cells, luteolin was also rapidly detected in the basolateral
side of Caco-2 cells [165].

6.2. Metabolism of Luteolin. Te frst step of favonoid
metabolism in the human body is the hydrolysis of fa-
vonoid glycosides mediated by lactase pyrorizin hydrolase
(LPH) and human intestinal fora. After intestinal ab-
sorption and transportation by the portal system, phase II
metabolic enzymes including UDP-glucuronosyltransfers
(UGTs), catechol-O-methyltransferases (COMTs), and
sulfotransferases (SULTs) dominate the metabolism of
favonoids [166], and cytochrome P450 enzyme mediated
phase I metabolism has little efect on luteolin metabolism
[167]. It is because of the frst-pass metabolismmediated by
phase II enzymes that the bioavailability of luteolin is
limited [168].

Glucuronidation is the main pathway of luteolin
metabolism. Natsumi Hayasaka found that no matter what

form of luteolin (extracted from green pepper leaves, in-
cluding glycosides or aglycones) was given to rats, luteolin
glucuronide could be measured in their plasma and organs
[169]. If human beings take luteolin aglycone orally, the
most abundant luteolin metabolite in plasma is luteolin-3′-
O-sulfate, which indicates that there are diferences in
luteolin metabolism among species [169]. On the other
hand, luteolin glucuronide can also be metabolized into
aglycone by RAW264.7 cells in vitro [169].

UGTs-mediated glucuronylation may interact with
COMTs-mediated methylation [170]. Liping Wang used rat
liver S9 fractions to study the metabolism of luteolin in vitro
and found two main metabolic pathways. (1) A part of
luteolin is frst methylated by COMTs to glutathione and
diosgenin, and then glutathione and diosgenin are glucur-
onidated with the remaining luteolin by UGTs. (2) Luteolin
is frst catalyzed by UGTs to luteolin-7-glucuronide (Lut-7-
G), Lut-4′-G, and Lut-3′-G, and some Lut-7-G is further
methylated by COMTs [170]. Te above results indicate that
the metabolism of luteolin in the human body requires the
joint efect of UGTs and COMTs. If the efect of COMTs is
inhibited, the luteolin methylation products in plasma will
be signifcantly reduced, while the other metabolite con-
centrations will increase [171].

After giving luteolin orally to rats, Changrui Deng
collected plasma, urine, bile, feces, and multiple organ tis-
sues for analysis, and the results show that luteolin-3′-O-
β-D-glucuronide has the highest content in rat plasma and
most tissues. Compared with other organs, luteolin and its
metabolites have the highest content in the stomach, small
intestine, and liver, followed by the lung and kidneys [172].
After oral administration of luteolin (20 μ mol/kg) 48 hours
later, the cumulative recoveries of luteolin and its metab-
olites in bile, urine, and feces were 54.8%, 5.9%, and 5.8%,
respectively. Tis indicates that bile excretion is the main
metabolic pathway of luteolin taken orally [172].

6.3. Attempts to Improve the Bioavailability of Luteolin.
As the frst-pass metabolism mediated by phase II enzymes
limits the bioavailability of luteolin, researchers have carried
out relevant research to improve the efciency of
luteolin use.

One way to increase the application efciency is to in-
crease the solubility of luteolin, and lipid delivery technology
is the most common choice [173]. Liu et al. prepared luteolin
in the form of nanostructured lipid carriers and micro-
emulsions. Compared with luteolin suspension, the bio-
availability of luteolin in the form of nanostructured lipid
carriers or microemulsions is higher than that of luteolin
suspension in vivo and in vitro [174]. Wu et al. found that
luteolin encapsulated with liposome has a better anti-CT26
colon cancer efect than free luteolin. Pharmacokinetics
showed that the concentration of luteolin encapsulated in
liposome in plasma was 10 times that of free luteolin two
hours after injection [175]. Li et al. found that liposome-
coated luteolin has stronger anti-A549 cancer cell abilities
in vivo and in vitro than free luteolin and can remain in
circulation for a longer time [99].
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In addition to lipid encapsulation technology, Parichat
Tawornchat synthesized polymerized luteolin nanoparticles
by one-pot synthesis, which not only have a concentration-
dependent anti-infammatory activity but also have no cy-
totoxicity at high concentrations [176]. Yan et al. prepared
luteolin-loaded long-circulating micelles, which not only
have a long circulation time in vivo but also have a strong
anticancer efect on A549 cells and mild cytotoxicity against
normal cells [177]. Garbinato et al. used micronization
technology to prepare the micronized luteolin, of which the
average particle diameter is one-tenth that of wild luteolin,
and the bioavailability in zebrafsh is also higher than that of
wild luteolin [178].

Besides, researchers have explored the possibility of
transdermal administration of luteolin. Altamimi et al.
prepared luteolin-loaded cationic nanoemulsions, which can
enhance the transdermal ability of luteolin and increase the
local drug concentration [179]. Luteolin-loaded elastic li-
posomes can also penetrate the skin and are compared with
the luteolin standard. Luteolin-loaded elastic liposomes
showed much more obvious growth inhibition on human
breast cancer cells (MCF-7) in vitro [180]. Luteolin micelles
can not only penetrate the skinmore easily but also penetrate
the BBB efciently. In the rat model of cerebral IR injury,
luteolin micelles are more prone to accumulate in damaged
brain tissue [181].

7. Conclusion

Luteolin has great potential to improve the treatment of
viral pneumonia. Luteolin not only has a direct antiviral
efect but also can reduce pulmonary infammation and
efectively prevent or treat multiple system complications.
Luteolin exerts antiviral efects by inhibiting viral entry and
replication. Moreover, luteolin can prevent the aberrant
release of cytokines and prevent infammation storms by
regulating the macrophage and mast cell pathways. In
addition to reducing lung infammation, luteolin also has
protective efects on the gastrointestinal, cardiovascular,
and nervous systems, which indicates that luteolin can be
used for adjuvant therapy or prevention of severe pneu-
monia. Te key molecules in the signal pathway involved in
the therapeutic efect of luteolin include NF-κB, PI3K/Akt,
Nrf2, and ERK1/2, and exploring the correlation between
various action pathways of luteolin can be the direction for
future research.

Te COVID-19 pandemic reminds us that there is still
a lack of drugs that can efectively control viral pneumonia,
and luteolin may be a good choice. However, the problem of
low oral bioavailability of luteolin has not been solved, which
limits its clinical application. Interestingly, compared with
pure luteolin, luteolin mixed with other plant ingredients is
more easily absorbed, which suggests that the form of water
decoction may be more conducive to the use of natural plant
drugs. To further develop the potential value of luteolin,
further research is needed to improve its absorption and
bioavailability.
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