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Te of-favor disorder is one of the most quality deteriorating and undesirable postharvest physiological disorders in fresh fruits.
Over-biosynthesis and accumulation of ethanol metabolism-related metabolites such as acetaldehyde and ethanol have been
associated with an alcoholic of-favor disorder in various fresh fruits at both pre- and postharvest stages. Correspondingly, many
studies have reported the association of such of-favor disorders with several inducing factors, including anaerobic respiration,
low O2 stress, high CO2 stress, and storage temperature stress, that upregulate ethanol metabolism in fruits. Furthermore,
numerous metabolic and physiological mechanisms that govern ethanol metabolism under such factors are subsequently
addressed. Tese mechanisms include the c-aminobutyric acid (GABA) shunt pathway, mitochondrial energy metabolism,
glycolysis, Krebs or TCA cycle, cytosolic malate metabolism, and starch and sugar metabolism. To summarize the relevant
fndings, the current paper reviews the literature on alcoholic of-favor disorder, focusing on the role of signifcant underlying
causes and key metabolic and physiological mechanisms in boosting ethanol metabolism in fresh fruits. In addition, recent
measures that have been already taken or are in progress to control the higher activity of ethanol metabolism that may eventually
result in limiting the alcoholic of-favor disorder in harvested fresh fruits have also been discussed. Moreover, functions of
metabolic mechanisms, including respiratory mechanisms, and other factors such as fruit genetic makeup, degree of maturity, and
postharvest handling and storage conditions, are needed to be investigated in future work at both physiological and tran-
scriptomics levels to reveal the additional relation to alcoholic of-favor disorders in fresh fruits during ripening and storage.

1. Introduction

Fruits are one of the most desired horticulture commodities
among consumers due to their high nutritional content,
appealing color, and favor [1–5]. However, due to a fuc-
tuating ripening trend, most fresh fruits ripen rapidly after
harvest, even at ambient and low temperatures. In turn,
substantial-quality losses might occur in fruits, such as early
fruit softening, decay incidence, weight loss, color degra-
dation, fesh browning, skin pitting, nutritional breakdown,

chilling injury, and alcoholic of-favor development [6–8].
Such quality losses arise due to the ongoing metabolic ad-
aptations that alter the intended qualities of fruits until they
are unmarketable.

Te perception of of-favor sensations characterizes
alcoholic of-favor disorder as a result of an excess of fer-
mentation metabolites in ethanol metabolism, such as ac-
etaldehyde and ethanol [6, 9–11]. Acetaldehyde and ethanol
concentrations in fruits are often present in trace amounts
throughout normal ripening or postharvest storage but
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begin accumulating as fruits tend to ripen sharply under
high respiration rates, elevated temperatures, and anaerobic
respiration [12]. Such metabolites are involved in main-
taining the postharvest quality of the fruit under aerobic
respiration, notably during the volatile aroma production
stage [13]. Also, they can improve fruit favor, suppressing
ethylene production and reducing fruit frmness [14].
Conversely, increased levels of these metabolites develop
physiological disorders in fruit during postharvest storage as
their accumulation may impart the formation of of-favors
in various horticultural crops such as mandarins, pear,
dragon fruit, grapes, and kiwifruit.

Several studies have shown that anaerobic respiration
[15], low O2 stress [16], high CO2 stress [17], and high-
temperature stress [18] have a detrimental impact on ethanol
metabolism, which leads inevitably to over biosynthesis or
accumulation of acetaldehyde and ethanol, resulting in al-
coholic of-favor disorder in fruits. Subsequently, numerous
metabolic physiological mechanisms, including the
c-aminobutyric acid (GABA) shunt pathway [6], mito-
chondrial energy metabolism [19], glycolysis and Krebs
(TCA) cycle [12], cytosolic malate metabolism, and starch
and sugar metabolism [20, 21], tend to alter or regulate the
ethanol metabolism under the consequences of such stresses.
Te detrimental impact of undesirable modifcations in such
metabolic physiological pathways in response to stress
stimuli, specifcally accelerated ethanol metabolism, has
been demonstrated by various studies.

To date, as per our knowledge, no review article on the
alcoholic of-favor disorder in fresh fruits has been published.
Hence, this review article aims to discuss the comprehensive
literature regarding alcoholic of-favor disorders in fresh
fruits. Tis article particularly addressed the primary causing
factors involving physiological and metabolic mechanisms
and postharvest strategies to overcome alcoholic of-favor
disorders at an agroindustrial level. Furthermore, a research
gap that needs to be investigated at a molecular level in future
research has also been pointed out.

2. Ethanol Biosynthesis and Metabolism

Ethanol is an essential aroma-active volatile compound
naturally synthesized in fruits and vegetables during the
maturing and ripening processes via ethanol metabolism
[22]. Ethanol metabolism is a two-step pathway involving
the decarboxylation of pyruvate into acetaldehyde and
ethanol via the activities of pyruvate decarboxylase (PDC)
and alcohol dehydrogenase (ADH), as depicted schemati-
cally in Figure 1. Furthermore, acetaldehyde could be further
reduced to acetic acid via aldehyde dehydrogenase (ALDH)
activity, and ethanol could be converted to ethyl acetate via
an esterifcation reaction catalyzed by alcohol acetyl-
transferase (AAT) activity using acetyl-CoA as a key sub-
strate [6, 23, 24]. Ethanol metabolism is concomitant with
the continuous recycling and reoxidation of nicotinamide
adenine dinucleotide + hydrogen (NADH) to nicotinamide
adenine dinucleotide (NAD+) to generate adenosine tri-
phosphate (ATP) [25–27]. Studies reported that ethanol
metabolism is the only alternate pathway for ATP

biosynthesis to fulfll the plant’s metabolic energy demand
under hypoxic or anoxic stresses [12, 19].

Additionally, accelerated ethanol metabolism leads to
over-accumulation and the induction of alcoholic of-favor,
which deteriorate the fruit favor quality [19]. It has been
reported that the high stimulation of ethanol metabolism is
anticipated by cellular pH-stat. Pyruvate is catalyzed by
lactate dehydrogenase (LDH) to lactic acid, and lactic acid
production acidifed cytoplasmic pH and consequently ac-
tivates the frst ethanol metabolism enzyme PDC
[25, 27, 28]. Te intensity of ethanol metabolism can vary
based on PDC and ADH enzyme activities, resulting in
desired or immature favor development in various horti-
cultural crops. For example, Botondi et al. [29] and Huan
et al. [19] reported the correlation between excess ethanol
and acetaldehyde production or accumulation due to en-
hanced activities of PDC and ADH, resulting in alcoholic
of-favor disorder in “Hayward” and “Bruno” kiwifruit.

Similarly, Zhang and Watkins [30] reported the oc-
currence of of-favors compounds such as acetaldehyde and
ethanol and enhanced PDC and ADH activity in strawberry
fruit. Furthermore, Shi et al. [31] noticed enhanced acet-
aldehyde and ethanol contents due to upregulated PDC and
ADH transcriptional levels in mandarin fruit. Our previous
work also demonstrated that higher PDC and ADH activities
result in higher acetaldehyde and ethanol accumulation,
which leads to alcoholic of-favor disorder in “Bruno” ki-
wifruit at room temperature storage [6, 12, 32].

In contrast, some previous studies negatively correlated
PDC and ADH activities with acetaldehyde and ethanol
biosynthesis. For example, Ponce-Valadez and Watkins [33]
reported that the accumulation of acetaldehyde and ethanol
negatively correlated with changes in PDC and ADH ac-
tivities in “Jewel” and “Cavendish” strawberry fruit. Imahori
et al. [34] reported that increased activity of PDC and ADH
in bell pepper fruit was not correlated with acetaldehyde and
ethanol accumulation. Our previous study concluded
a negative correlation between kiwifruit fermentation me-
tabolites and enzymatic activities [32]. Such a correlation
could be based on the sensitivity range of each crop’s PDC
and ADH expression under various stresses [35, 36].
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Figure 1: Metabolic pathway of ethanol metabolism (PDC: py-
ruvate decarboxylase; ADH: alcohol dehydrogenase).
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2.1. Factors Leading to Upregulated Ethanol Metabolism in
Fresh Fruits. Te development of alcoholic of-favor is
limited during normal fruit growth or ripening, even at pre-
and postharvest stages. Meanwhile, due to the upregulation
of ethanol metabolism, fruits may be susceptible to the
occurrence of alcoholic of-favor, which may result in the
deterioration of fruit favor quality initiated by the following
inducing factors:

2.2. Anaerobic Respiration. Anaerobic respiration is a pro-
cess that initiates under the efect of reduced aerobic mi-
tochondrial activity and lower ATP biosynthesis as a result
of undesired stresses, activating ethanol metabolism to re-
generate ATP by using NADH [37, 38]. Plenty of ethanol
contents are produced and accumulated, resulting in alco-
holic of-favor development in various fruits [12, 19, 29, 39].

Moreover, a relationship between anaerobic respiration
and alcoholic of-favor disorder is described in detail by
Saltveit [15] as follows: “Anaerobic respiration is associated
with the regeneration of NAD+ and ATP to maintain the
plant cell energy demand by moving the pyruvate fux to the
ethanol fermentation/metabolism instead of the TCA cycle”
(Figure 2). Tis process further leads to the accumulation of
lactic acid in the lactate fermentation pathway, which results
in the acidifcation of cells and activates the PDC in ethanol
metabolism. PDC converts the pyruvate to acetaldehyde by
removing the CO2 and then to ethanol through the activity
of the ADH to generate more NAD+ content. Te anaerobic
pathway accounted for only 20% of the energy synthesis
ability, which is insufcient for plant survival. Tis fact
upregulated ethanol metabolism for more ATP synthesis,
resulting in an over-accumulation of ethanol and alcoholic
of-favor.

2.3. Low O2 Stress. Oxygen concentration in fruit tissues is
primarily based on each cultivar’s respiration rate, as the
ratio of O2 and CO2 fuctuates continuously due to organic
compounds’ consistent biochemical reactions and degra-
dation [40]. Te correlation between various physiological
disorders in many horticultural crops was investigated by
applying diferent modifed gas conditions during storage.
However, exposure of each cultivar to diferent concen-
trations of O2 atmosphere can be benefcial or harmful
depending on various factors such as storage temperature
and cultivar type. Oxygen acts as an electron acceptor in
mitochondrial cytochrome oxidase during aerobic path-
ways. However, in a scenario of a limited O2 atmosphere,
plant cells are exposed to fermentation pathways, energy
defcits, and storage disorders [17, 41]. Reduced O2 con-
centration appeared to have a benefcial relationship with
decreased respiration rate, senescence, ethylene synthesis,
and enzymatic oxidation at a certain level. In contrast,
lowered O2 induced physiological disorders such as alco-
holic of-favor, gummosis, fruit rots, fruit discoloration,
superfcial scald, split and shattered pits, gel breakdown,
greasiness, and pit burning in many fruits, including pear,
apple, mango, and stone fruits (nectarines, plum, cherry,
apricot, and peach) during storage [16, 42–44].

Te oxygen limit at which ethanol metabolism initiated
and accumulation occurred was named the pasture point, or
lower oxygen limit, and later referred to as fermentation
induction point [16]. Recently, Park et al. [45] reported that
the upregulated expression of ethanol metabolism-related
genes MdPDC2 and MdADH1 led to higher production of
acetaldehyde and ethanol in “Empire” apples during storage
in a 0.5 kPa O2 atmosphere compared to a 1.5 kPa O2 at-
mosphere. Burdon et al. [46] reported increased PDC and
ADH activities, resulting in a sharp accumulation of fer-
mentation metabolites in the “Hass” avocado under the
storage atmosphere with less than 0.5% O2 concentration.
Each crop has a specifc tolerance limit for low O2 levels, and
below that, plants adopt a fermentation pathway [47, 48].
Previously, many researchers exposed various fruits to low
O2 atmosphere for a short period and concluded benefcial
efects regarding quality. Meanwhile, susceptibility to al-
coholic of-favor disorder has been observed with long-term
exposure [16, 19, 49, 50].

Regarding alcoholic of-favor disorder in fruits under low
O2 stress, Wood et al. [51] reported that exposing fruits to
anoxic conditions (20.9 kPa O2) results in a higher concen-
tration of acetaldehyde and ethanol in apple fruit. Ntsoane
et al. [43] concluded that acetaldehyde and ethanol accu-
mulation were signifcantly higher in “Shelly” mango stored at
5% O2 than at 10% O2 in controlled atmosphere storage.
Moreover, Pintó et al. [52] concluded that the change in
pomegranate favor quality is caused by the accumulation of
ethanol and acetaldehyde due to a lowO2 storage atmosphere.
Under low O2 stress, acetaldehyde is produced by the de-
carboxylation of pyruvate by PDC and then converted to
ethanol by ADH by consuming NADH. Imahori et al. [53]
reported that elevated PDC and ADH transcription and
translation resulted in the synthesis of new mRNA and PDC
and ADH protein in a low O2 atmosphere. Tus, under low
O2 stress, activation of PDC and ADH is a critical response.
Another efect of low O2 stress is the accumulation of lactic
acid that lowers cytoplasmic pH and inhibits LDH activity.
Tis fact further activates PDC and ADH, resulting in ex-
cessive ethanol biosynthesis, as discussed above. Boeckx et al.
[23] and Botondi et al. [29] reported the accumulation of
acetaldehyde and ethanol and the occurrence of alcoholic of-
favor in “Jonagold” apple and “Hayward” kiwifruit under the
storage of ultra-low oxygen atmosphere. Ethanol accumula-
tion has been reported as a low-O2 stress biomarker during
horticultural crop storage [40].

2.4. High CO2 Stress. Optimal ranges of CO2 levels in fruit
tissue or the storage environment may regulate fruit quality
[53]. However, each crop’s sensitivity to elevated CO2 injury
varied according to genetic variation, resulting in diferent
responses [54, 55]. For example, the storage atmosphere
containing 20–30% CO2 concentration resulted in main-
taining the fruit frmness, ascorbic acid regulation, and ti-
tratable acidity level without deteriorating the favor quality
in several sweet cherry cultivars such as “Lapis,” “Van,”
“Kristin,” “Stella,” “Sam,” and “Huldra” [56, 57]. On the
other hand, Cozzolino et al. [58] described the occurrence of
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of-favor in sweet cherry cv. “Ferrovia” during storage based
on the accumulation of fermentation metabolites under
a 20% CO2 storage atmosphere. Te benefcial efects of
increased CO2 may inhibit respiration rate, ethylene bio-
synthesis, and N-assimilation in crop tissues, even while
promoting carbohydrate synthesis [59–61]. In contrast, Lu
et al. [62] reported the occurrence of an alcoholic of-favor
in satsuma mandarin fruit during storage in a modifed
atmosphere accompanied by a 15% CO2 concentration.
Harman and McDonald [63] also reported the efect of
a storage atmosphere consisting of 14% CO2 concentration
on the “Hayward” kiwifruit for 16weeks and noticed the
development of the alcoholic of-favor disorder. Surpris-
ingly, the optimum favor was retained when fruit was stored
at a lower CO2 concentration during storage. Te of-favor
sensation was identifed due to ethanol over-accumulation
in “Bartlett” pears, tomatoes, and lettuce stored in an ele-
vated CO2 storage atmosphere [64–68]. Te mango cultivar
“R2E2” was similarly reported to have an alcoholic of-favor
disorder after being stored under 8% CO2 rather than 6%
CO2 during the controlled storage atmosphere [69]. Simi-
larly, the storage atmosphere of 10 kPa CO2 produced less
ethanol and acetaldehyde in mango fruit than the storage

atmosphere of 25 kPa CO2 [70]. Wang et al. [71] evaluated
the efect of modifed atmosphere packing on the ethanol
content of two sweet cherry varieties, “Lapins” and “Skeena,”
resulting in of-favor disorder due to ethanol buildup in the
10% CO2 storage atmosphere rather than the 8% CO2
storage atmosphere. Forney et al. [72] reported the accu-
mulation of ethanol in several blueberry cultivars (such as
“Duke,” “Aurora,” “Brigitta,” “Jersey,” and “Liberty”) under
the storage condition of 25 kPa CO2.Te same fndings were
reported in the “Ottomanit” fg subjected to an elevated CO2
atmosphere [73]. Alcoholic of-favor was observed in the
“Italia” table grapes stored in a high CO2 (>20%) atmosphere
[9]. Furthermore, increased expression of the ethanol
metabolism-related gene VvADH was associated with in-
creased accumulation of of-favor aroma volatiles, including
ethanol, in table grapes during storage under higher CO2
conditions [74]. Overall, elevated CO2 levels have mostly
been associated with the deterioration of crop quality at-
tributes, particularly favor balance and sensory quality
[75–79].Te overall impacts of O2 and CO2 stress conditions
on ethanol metabolism-related metabolites, enzymes, and
genes transcriptions in fresh fruits are summarized in
Table 1.
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2ATP+2NADH

Pyruvate (2) Lactic
fermentation
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Figure 2: Fate of pyruvate fux under anaerobic respiration to ethanol fermentation.
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2.5. Storage Temperature Stress. An optimal storage tem-
perature range is critical to maintaining fresh fruit quality
and extending shelf life by reducing pathological and
physiological deterioration [80]. Te ideal temperature for
each crop’s storage varied depending on its origin or rip-
ening behavior. Kader and Yahia [37] recognized the op-
timal temperature range of 20–24°C for the anticipated
ripening of most harvested fruits. However, some fruits
experienced alcoholic of-favor disorder even at such
temperature range (Table 2) along with others disorders such
as freezing injury, heat injury, chilling injury, skin/fesh
discoloration, softening, and AsA degradation [84, 85].

Studies were conducted on the efect of varied tem-
perature environments on the alteration of volatile aromatic
compounds in several fresh fruits. For example, Saberi et al.
[81] noticed the alcoholic of-favor in “Valencia” oranges at
20°C than 5°C during storage. Ali et al. [6] reported the
alcoholic of-favor occurrence in “Bruno” kiwifruit during
storage at 24°C. Obenland et al. [82] reported a rapid decline
in the sensory quality of “W. Murcott Afourer’s” mandarins
due to an excess of alcohols and ethyl esters, resulting in
alcoholic of-favor disorder at 20°C compared to 5°C and
10°C. Similarly, Yang et al. [18] also concluded that high
temperatures have a deteriorative efect, particularly due to
the enhanced biosynthesis of volatile aromatic compounds
(primarily in ethanol) in banana fruit during storage at 30°C
than 20°C. Furthermore, Petracek et al. [83] likewise re-
ported an increase in ethanol content in sweet cherry
(Prunus avium L., cv. “Sams”) during storage at 20°C
compared to storage at 5°C, 10°C, and 15°C, resulting in
alcoholic of-favor disorder. On the other hand, Zou et al.
[86] demonstrated that lower storage temperatures ranging
from 4°C to 10°C signifcantly impacted the transcript ex-
pression of genes ADH2, PDC1-like1, and PDC1-like2 in
tomato fruit. In addition, the efects of storage temperature
either on the accumulation or reduction of of-favor
compounds in a variety of fruits have been reported, in-
cluding “Hort16A” kiwifruit [87], cantaloupe [88], straw-
berry [89], tomatoes [90], oranges [91], and nectarine [92].

3. Role of Physiological Mechanisms in
Regulating Alcoholic Off-Flavor in
Fresh Fruits

3.1. GABA Shunt Pathway. Te GABA shunt pathway
regulates many physiological mechanisms such as C :N
balance, pH-stat, plant development, plant defense against
insects, signal transduction, and osmoregulation [6, 93]. A
short pathway generally metabolizes GABA via the TCA
cycle that includes glutamate decarboxylase (GAD), GABA-
transaminase (GABA-T), and succinate semialdehyde de-
hydrogenase (SSADH), called the GABA shunt pathway
[94, 95], as depicted in Figure 3(a). So apart from GABA
benefcial roles, its accumulation under stress is linked to
various postharvest physiological disorders, including the
incidence of pear fruit core breakdown [96], pear fesh and
spathe browning [97, 98], reduced chilling tolerance in
Natura zucchini fruit [99], and controlled atmosphere-

related injury in “Honeycrisp” apples [100]. Enhanced
GABA levels have also been linked to tomato surface pitting
and soggy breakdown in “Honeycrisp” apples, respectively
[101, 102].

Regarding alcoholic of-favor disorder, Deewatthanawong
et al. [103] found that lower GABA-T activity under high CO2
storage conditions induced the synthesis and accumulation of
alcoholic of-favor compound ethanol along with GABA ac-
cumulation as a stress marker in response to a high CO2
environment in the “jewel” strawberry cultivar. Moreover, Mae
et al. [104] also reported an increase in GABA levels due to
upregulated GAD and limited GABA-T gene expressions in
tomatoes stored in a hypoxic atmosphere. According to the
preceding discussion, the relationship between GABA accu-
mulation is mostly similar to the results of low O2/high CO2 or
anaerobic respiration, which resulted in an ATP defcit and
reduced aerobic metabolic pathways. Interestingly, Dee-
watthanawong and Watkins [101] justifed the interlinking of
GABA enhancement with the accumulation of fermentation
metabolites. Our previous research concluded that the GABA
shunt pathwaymight initiate ethanolmetabolism, thus possibly
causing the alcoholic of-favor disorder in kiwifruit cv.
“Bruno” [6]. In Figures 3(b)–3(d), it has been shown that
inhibited activity of the GABA-T enzyme from 12days (d) to
onward in control kiwifruit cv. “Bruno” appears to be directly
linked to limited decarboxylation of GABA and thus shows
a sign of suppressed GABA shunt pathway that impacts the
functionality of the TCA cycle and thus leads to activation of
PDC and ADH, resulting in oversynthesis or accumulation of
acetaldehyde and ethanol contents. Our previous study noticed
this relationship by using 1-methylcyclopropene (1-MCP) to
reduce ethanol metabolism by regulating the GABA shunt
pathway under reduced climacteric respiration, avoiding the
occurrence of alcoholic of-favor disorder in kiwifruit during
storage [6]. However, limited research has been conducted to
investigate the GABA shunt pathway concerning ethanol
fermentation, suggesting the need for an integrated approach to
analyzing GABA shunt pathway-related gene expression,
protein level, and involved metabolites at transcriptomic,
proteomics, and metabolomics levels further to reveal the
GABA shunt infuence on ethanol fermentation.

3.2. Mitochondrial Energy Metabolism. Te cell mitochon-
dria are a primary site for maintaining the ATP or energy
status pool required for regulating the plant’s physiological
or biochemical reactions [105, 106]. Te mitochondrial
energy status is closely related to the activities of energy
metabolism-related enzymes, including succinic de-
hydrogenase (SDH), cytochrome C oxidase (CCO), H+-
adenosine triphosphatase (H+-ATPase), and Ca2+-adeno-
sine triphosphatase (Ca2+-ATPase) [12]. Previously, de-
creased ATP and energy charge (EC) in various fruits were
adversely associated with several physiological disorders i.e.,
chilling injury [107], tissue, pericarp, or peel browning [108],
skin pitting [109], and ethanol accumulation or alcoholic of-
favor disorder [12, 19, 95]. An energy defcit occurs due to
dysfunctional mitochondrial energy metabolism at the
cellular level [19, 77].
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In agreement, our previous study concluded a possible
correlation between dysfunctional mitochondrial energy
metabolism with reduced SDH, CCO, H+-ATPase, and
Ca2+-ATPase activities with upregulated ethanol meta-
bolism [12]. Moreover, Cukrov et al. [39] also reported the
occurrence of alcoholic of-favor in kiwifruit due to
downregulated mitochondrial energy metabolism during
storage. Consequently, Zhang et al. [110]; Huan et al. [19];
and Blanch et al. [77] further coincided with the suscepti-
bility of alcoholic of-favor disorder incidence under the
same circumstances in strawberry and kiwifruit during
storage.

3.3. Glycolysis and TCACycle. Glycolysis and the TCA cycle
are the central respiratory pathways in horticultural crops.
Tese pathways are involved in maintaining the ripening or
senescence processes by regulating the energy status, carbon

fux, NAD(P), and NAD(P)H levels through sequential cell
reactions [111]. However, research has revealed that such
respiratory pathways exhibit considerable variation under
diferent conditions. Te glycolysis ended up with pyruvate
formation that acts as a primary substrate for the frst en-
zyme of the TCA cycle, pyruvate dehydrogenase (PDH), and
ethanol fermentation (PDC) [11, 12]. Meanwhile, the con-
centration and fate of pyruvate either in the TCA cycle or
ethanol fermentation are profoundly infuenced by a high
CO2/low O2 atmosphere or anaerobic metabolism. For
example, Ummarat et al. [11] concluded that the of-favor
sensation caused by the over-accumulation of ethanol
correlated with enhanced pyruvate content in “Pixie”
mandarin during an anaerobic atmosphere generated by
waxing. Interestingly, it has been reported that enhanced
pyruvate is preferred for alcoholic fermentation over the
TCA cycle in anaerobic respiration [112]. Mannucci et al.
[113] reported that anaerobic metabolism eventually

Table 2: Efects of storage temperature stress on ethanol metabolism-related metabolites in fresh fruits.

Storage temperature (°C) Fruits Efects on ethanol
metabolism-related metabolites References

20 “Valencia” oranges Increased ethanol contents Saberi et al. [81]
24 “Bruno” kiwifruit Increased levels of acetaldehyde and ethanol Ali et al. [6]
20 “W. Murcott Afourer’s” mandarins Increased levels of ethanol contents Obenland et al. [82]
30 Banana Increased levels of ethanol contents Yang et al. [18]
20 Sweet cherry Increased levels of ethanol contents Petracek et al. [83]

Mitochondrial
matrix

GDH

Inner mitochondrial
membrane

Glutamate

Cytosol
NH4+

NH4+ GS/GOGAT
(chloroplast and cytosol)

Glutamate

α-Ketoglutarate

α-Ketoglutarate
α-KGDH Succinyl-

CoA

Glutamate

GAD

GABA-TK
CO2

TCA cycle Succinic
semialdehyde GABA GABA

Fumarate
Succinyl-CoA

ligase

SSADH

GABA-TP

Succinate Alanine Pyruvate Ca2+-CaM

NADH + H+

NADRespiratory

chain

ATP

ATP synthase

Succinic semialdehyde

NAD (P)H + H+

GHB

NAD (P)+

Outer mitochondrial
membrane

SSR

H+

(a)

50

40

30

20
0 3 6 9 12 15 18 21 24 27

G
A

BA
-T

 ac
tiv

ity
 (m

U
·k

g-1
)

Storage time d

Control
1-MCP

a

a

a

a a
a a

a b b b
b b b

G
A

BA
 co

nt
en

t (
m

g·
kg

-1
)

0 3 6 9 12 15 18 21 24 27
Storage time d

Control
1-MCP

250

200

150

100

50

a

a a

a a a a a

a
b b b b b

(b)

PD
C 

ac
tiv

ity
 (m

U
·k

g-1
)

0 3 6 9 12 15 18 21 24 27
Storage time d

8

6

4

2

0

a a a
a

aa

a

a b
b b

b b b A
D

H
 ac

tiv
ity

 (m
U

·k
g-1

)

0 3 6 9 12 15 18 21 24 27
Storage time d

Control
1-MCP

Control
1-MCP

3

2.5

2

1.5

1

0.5

0

a

a
a a

a

a
a

a

a b
b

b
bb

(c)

Et
ha

no
l (

m
g·

kg
-1

)

0 3 6 9 12 15 18 21 24 27
Storage time d

500

400

300

200

100

0
aa aa ab

a

a

a a

b
b b bAc

et
al

de
hy

de
 (m

g·
kg

-1
)

0 3 6 9 12 15 18 21 24 27
Storage time d

15

12

9

6

3

0

a a a
a

a
a

a

a
b b b b b

b

Control
1-MCP

Control
1-MCP

(d)

Figure 3: GABA shunt pathway and its possible correlation to ethanol (reprinted with permission: [6, 94]. (a)TeGABA shunt pathway. (b)
TeGABA-Tactivity and GABA contents. (c) Pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities. (d) Acetaldehyde
and ethanol contents).

Journal of Food Biochemistry 7



converts pyruvate to acetaldehyde and ethanol, suggesting
that pyruvate and ethanol contents are critically interlinked
under stress conditions.

Te increase or accumulation of glycolytic fux is
interlinked with the enhanced activity of pyruvate kinases
(PKs) or suppressed activities of TCA cycle enzymes that are
eventually indicated by the accumulation of TCA cycle
organic acid [12, 21, 114].Te functional TCA cycle is vital in
generating a vast pool of ATP for regulating the cell met-
abolic mechanisms via oxidative phosphorylation or elec-
tron transport chains to maintain the desired ripening
processes of horticultural crops [115–117]. Meanwhile, the
TCA cycle has been reported to be replaced by glycolysis,
which directs pyruvate to ethanol metabolism to generate
sufcient ATP to keep cell functions alive under hypoxic
conditions [12, 118, 119]. A number of previous research
reported that ethanol metabolism occurs under stressed
conditions as a result of a malfunctioned TCA cycle, which is
associated with suppressed PDH, SDH, and GABA-T en-
zyme activities as well as increased levels of organic acids
such as citric acid, succinic acid, and GABA content
[12, 26, 120–122].

3.4. Cytosolic Malate Metabolism. In plants, malate is im-
portant in regulating the cytoplasmic pH, cell acidity, and
carbon metabolism. Malate is synthesized by converting the
phosphoenol-pyruvate (PEP) into oxaloacetate (OAA) by
the activities of cytosolic enzymes, including phosphoenol-
pyruvate carboxylase (PEPC) and NAD-linked malate de-
hydrogenase (NAD-MDH) [33]. It has been demonstrated
that both OAA and malate can enter the mitochondrial TCA
cycle to generate numerous organic acids. Malate can also be
converted to pyruvate by the cytosolic NADP-linked malic
enzyme (NADP-ME) via a dicarboxylate carrier [123].

Little research has been done into the possible link
between cytosolicmalate metabolism and ethanol meta-
bolism. In a recent study, Huan et al. [21] reported the
promising involvement of higher expression of NADP-
dependent malic enzymes (NADP-MEs) in increased eth-
anol production that eventually develops an alcoholic of-
favor in kiwifruit cv. “Bruno” during ambient storage
conditions. Malate metabolism has previously been shown
to induce ethanol metabolism by converting stored malate
into pyruvate under various atmospheric conditions in
harvested fruit such as grapes, berries, and strawberries
[20, 123]. In contrast, Ponce-Valadez and Watkins [33]
found a discrepancy between ethanol metabolism-related
metabolites and enzymes involved in cytosolic malate
metabolism. However, more omics-based research is needed
to validate the role of cytosolic-malate metabolism in
causing alcoholic of-favor. A proposed schematic diagram
of the relationship between cytosolic malate and ethanol
metabolism is depicted in Figure 4.

3.5. Starch and Sugar Metabolism. Fruits primarily convert
their starch stores into sugars as their primary energy source
[124]. Te favor of ripe fruit is largely determined by the

number of soluble sugars that accumulate during ripening
[125]. Cultivars difer signifcantly in starch degradation and
sugar composition at various stages of fruit development and
ripening [126]. Te starch in starch-based crops reportedly
needs to be converted into simple sugars before it can be
fermented into ethanol [127]. Previous research has in-
dicated that sugars might be the most important substrates
utilized by ethanol fermentation during fruit ripening [128].
β-amylase plays a crucial role in carbohydrate metabolism by
depolymerizing α-glucan chains, thereby facilitating starch
degradation during fruit ripening [129, 130], as evidenced in
blueberries, as starch content drops at the same time as the
rise in β-amylase gene expression [131]. It has been shown
that the conversion of mango fruit starch to soluble sugars
occurs simultaneously when the anaerobic respiration
pathway is initiated [132]. Terefore, elevated starch deg-
radation to sugars phenomenon may afect the biosynthesis
of ethanol metabolism metabolites, which could initiate an
of-favor due to the over production and accumulation of
ethanol content under anaerobic respiration.

Regarding this, Huan et al. [21] revealed that starch-to-
sucrose metabolism (starch degradation) might induce al-
coholic of-favor disorder in “Bruno” kiwifruit during
postharvest storage based on the fndings associated with
a dramatic decline in starch contents coincided with in-
creased sucrose, fructose, and glucose levels accompanied
with enhanced acetaldehyde and ethanol contents along with
higher expressions of key genes such as starch phosphor-
ylases (SPs), beta-amylases, UDP-glucose pyrophosphor-
ylases (UGPases), sucrose synthases (SSs), and invertases
(INVs) which are responsible for accelerating starch con-
version to soluble sugars. Tis study provided transcriptome
evidence that increased starch catabolism during fruit rip-
ening may function as a substrate to promote ethanol fer-
mentation, which induces an alcoholic of-favor.

4. Measures to Control Alcoholic Off-Flavor
Disorder Based on Changes in
Ethanol Metabolism

4.1. Chemical Treatments. Numerous chemical treatments
have been studied and applied to various fresh fruits to
eradicate the susceptibility of alcoholic of-favor disorder
via suppressing the ethanol metabolism in both pre- and
postharvest stages. Our recent study indicates that 1-MCP
(1 μL·L−1) treatment signifcantly reduced the occurrence of
alcoholic of-favor disorder in kiwifruit during storage at
ambient conditions via inhibiting the ethanol metabolism-
related enzymatic activities of PDC and ADH [12]. Sub-
sequently, Huan et al. [133] also reported that 1 μL·L−1

1-MCP treatment could efectively reduce the alcoholic
of-favor disorder by suppressing ethanol metabolism in
kiwifruit during ambient storage. Tewes et al. [134]
concluded that applying 1-MCP together with dynamic
controlled atmosphere (DCA) was particularly efective in
lowering acetaldehyde and ethanol biosynthesis in apple
fruit. Such fndings were correlated with reduced PDC and
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ADH activity in apples, except during the mature stage,
regardless of the cultivar. Te lower levels of acetaldehyde
and ethanol contents were also noticed in “Galaxy” apples
under the efect of 1-MCP treatment and a dynamically
controlled atmosphere based on respiratory quotient [135].
It has also been observed that 1-MCP could substantially
lower the expression of PDC2 and ADH, reducing acetal-
dehyde and ethanol synthesis in apple fruit [136].

Recently, Lv et al. [22] demonstrated that exogenous
application of 100 μmol·L−1 nordihydroguaiaretic acid
(NDGA) on “Nanguo” pear fruit resulted in lower acetal-
dehyde and ethanol contents concomitant with down-
regulated expressions of PDC1, ADH1, and ADH2 genes.
Our previous work also suppressed the ethanol metabolism
via preharvest spraying of 5mmol·L−1 oxalic acid (OA),
which resulted in the absence of alcoholic of-favor disorder
in kiwifruit “Bruno” during storage under ambient condi-
tions [32]. In another study, Zhang et al. [137] demonstrated
that fumigation with 10 μmol·L−1 carbon monoxide (CO) on
the winter jujube might restrain the ethanol metabolism-
related metabolites (acetaldehyde and ethanol) under re-
duced PDC and ADH activities. Li et al. [17] reported that
treating strawberries with 1mM ATP in a 20% CO2 storage
atmosphere reduced acetaldehyde and ethanol over-
accumulation (72% and 75% lower in ATP+CO2-treated
fruit, respectively) that was linked to lower PDC and ADH
activities during fruit storage. In a recent study, the efects of
melatonin on ethanol metabolism in kiwifruit were also
investigated, resulting in reduced acetaldehyde and ethanol

contents under suppressed PDC and ADH activities and
downregulated expressions of potential genes such as
AdADH1, AdPDC1, and AdPDC2 during storage [138].
Tese changes may eventually result in decreased synthesis
of aromatic compounds such as acetaldehyde and ethanol,
thus controlling the alcoholic of-favor disorder in fresh
fruits during storage.

4.2. Hypobaric and Other Treatments. Several studies have
found that hypobaric treatments can help suppress or delay
various physiological disorders in fresh fruits. To suppress
the alcoholic of-favor disorder, Huan et al. [19] reported
the signifcant efects of hypobaric treatment (25± 5 kPa for
30min/twice treatment) in alleviating the alcoholic of-
favor disorder by inhibiting the activities of PDC and ADH
in kiwifruit during storage. Previously, it had been dem-
onstrated that fresh fruits could reduce the occurrence of
alcoholic of-favor by reducing the ethanol metabolism
metabolites during storage under modifed super-
atmospheric O2 exposure [44, 139]. Similarly, Wood
et al. [51] observed a decrease in acetaldehyde and ethanol
levels under controlled storage conditions (O2 kPa−1 CO2
kPa−2.5) for “Golden Delicious” and “Jonagold” apple fruit.
Furthermore, Chen et al. [140] reported the decrease in
ethanol and acetaldehyde production in “Benihoppe”
strawberries under low oxygen application (2 kPa O2)
during storage. Zuo et al. [141] investigated the efects of
high relative humidity (RH: 98± 2%) on ethanol meta-
bolism in zucchini fruit, identifying that it inhibited the
activities of PDC and ADH, as well as CpPDC1 and
CpADH1 gene transcripts, resulting in decreased acetal-
dehyde and ethanol levels during cold storage. Previously,
certain coating formulations were reported to initiate
ethanol metabolism, resulting in of-favor disorder in
various fruits due to a change in the internal gas atmo-
sphere of the fruit.

Meanwhile, a recent study showed that Carnauba wax
nano-emulsion (attributed to being an efective moisture
barrier and relatively permeable to gases) as a coating
material had the least impact on the occurrence of al-
coholic of-favor by avoiding the production of ethanol
above the threshold level in citrus fruit during storage
[142]. Moreover, Velazco et al. [143] also concluded that
BrillaquaF6 (18% solids (9.35% oxidized polyethylene wax
and 5.7% shellac)), CitrosolAK (18% solids (Carnauba
E903 and shellac)), and TeycerGLK (18% solids (Carnauba
and shellac)) coatings on citrus fruit had promising efects
about reduced acetaldehyde and ethanol contents, thus
decreasing the susceptibility to alcoholic of-favor dis-
order. Te overall impacts of chemical, hypobaric, and
other treatments on ethanol metabolism to suppress the
alcoholic of-favor disorder in fresh fruits are summa-
rized in Table 3.

Phosphoenol pyruvate (PEP)

Pyruvate
PEPC

Oxaloacetate

NADP-ME NAD-MDH

DIC
Malate Citric acid

Ethanol
metabolism TCA cycle

Cytosol Mitochondria

Figure 4: Correlation of cytosolic-malate metabolism to ethanol
metabolism (PEPC: phosphoenol pyruvate carboxylase; NAD-
MDH: NAD-linked malate dehydrogenase; NADP-ME: NADP-
dependent malic enzyme; DIC: dicarboxylate carrier).
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5. Conclusion and Future Work

Anaerobic respiration, low O2 stress, high CO2 stress, and
storage temperature stress are the most important factors for
inducing alcoholic of-favor disorder by upregulating eth-
anol metabolism in fresh fruits. Tese factors further cause
undesirable metabolic changes at cellular levels by altering
physiological mechanisms such as the GABA shunt pathway,
mitochondrial energy metabolism, glycolysis and TCA cy-
cles, cytosolic-malate metabolism, and starch and sugar
metabolism. Tese physiological metabolic mechanisms
might further activate ethanol metabolism, resulting in over-
biosynthesis and the accumulation of alcoholic of-favor-
relatedmetabolites such as acetaldehyde and ethanol in fresh
fruits. Several chemicals, hypobaric, and coatings treatments
have been practiced to overcome alcoholic of-favor dis-
orders in fresh fruits during storage. Despite this, a wide
research gap still prevails that needs further investigation at
the omics level to evaluate or validate the impact of nu-
merous physiological mechanisms on ethanol metabolism
and reveal the detailed mechanistic relation. In addition,
other mechanisms and factors, including respiratory
mechanisms, fruit genetic makeup, degree of maturity, and
postharvest handling and storage conditions, are also rec-
ommended for future work concerning the alcoholic of-
favor disorder in fresh fruits during storage. Te overall
thematic scheme representing the current review is shown in
Figure 5.
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