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Bile refux (BR) was considered to be an independent risk factor for the development of precancerous gastric lesions andGC.Dendrobium
ofcinale polysaccharides (DOP) show a novel potential in preventing the progress of gastric cancer. However, the specifc mechanism of
DOP that causes such activities remains amystery.Tis study aimed to investigate the efects of DOP on chenodeoxycholic acid (CDCA)-
induced gastric intestinalmetaplasia and explore the underlyingmechanisms. Diferent concentrations of DOPhad no signifcant damage
to normal GSE-1 cells and gastric intestinal metaplasia model cells by CCK-8 assay. After DOP treatment, the mRNA and protein
expression of CDX2 (p<0.01) andHNF4α (p<0.01)were decreased, andHO-1 (p<0.05) andTFF2 (p<0.01)were increased.TeNRF2
protein expression was slightly upregulated (p<0.05), and H-DOP further promoted NRF2 protein expression in the nucleus (p<0.05).
Hence, our fndings reveal that DOP could be used as a potential anti-infammation supplement by activating NRF2/HO-1 and
modulating the HNF4α/CDX2 signaling pathway to inhibit the progress of CDCA-induced gastric intestinal metaplasia.

1. Introduction

Gastric adenocarcinoma (GAC) is one of the most common
digestive tract cancers in China, and its morbidity and
mortality rates exceeded 10 and 13%, respectively, in 2018
[1]. Gastric intestinal metaplasia (GIM) is related to pre-
malignant conditions in which areas of human stomach
epithelium express mixed gastric and intestinal features [2].
Substantial epidemiologic evidence has indicated that GIM
is the result of the comprehensive efects of multiple envi-
ronmental factors, such as Helicobacter pylori (Hp) in-
fection, bile refux, aging, race, and lifestyle [3, 4]. Many
epidemiologic studies established a close relationship be-
tween long-term bile refux and GIM risk [4], and bile refux
was considered to be an independent risk factor for the
development of precancerous gastric lesions and gastric
cancer (GC) [5]. Although the antibiotics can eliminate

Helicobacter pylori in clinical treatment, such as amoxicillin
or clarithromycin, many of them cause undesirable sub-
sequent health complications, including hypersensitivity,
arrhythmias, hematopoietic disorders [6, 7], and gyneco-
mastia [8]. Terefore, the IM stage can be an important
broad time window to block the progression from gastritis to
GC. Currently, there is no efective progress in the treatment
or prevention of IM [9]. Importantly, some natural com-
pounds and small molecules that could be used for the
treatment have been discovered.

Bile refux, such as chenodeoxycholic acid (CDCA) and
deoxycholic acid (DCA)-induced GIM model in vivo and
in vitro, has been widely applied [10, 11]. Nuclear factor
erythroid-related factor 2 (NRF2), a central transcriptional
regulatory factor, can be activated by oxidative stress to
achieve self-protection and increase antioxidase expression
[12]. Upregulated NRF2/HO-1 shows an important
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protective function in various infammatory diseases [13].
After chenodeoxycholic acid (CDCA) treatment, the activity
of various transcription factors in gastric epithelial GES-1
cells was changed, and the result showed that NRF2 was
increased [14]. Several studies showed that the plenty of
polysaccharides from herbal medicines induce NRF2-
mediated antioxidant/detoxifying enzymes to improve an-
tioxidant capacity and reduce oxidative stress in cancer,
diabetes, and Alzheimer’s and infammation disease [15–18].

Caudal type homeobox 2 (CDX2) is an essential in-
testinal marker in the development and maintenance of
intestinal tissue in adult mammals [19]. Hepatocyte nuclear
factor 4 alpha (HNF4 α) in the gastric epithelium and
subsequent progression of IM contribute signifcantly to the
expression of bile acid-induced columnar genes via regu-
lating KLF4 and CDX2 [20]. Trefoil family factor 2 (TFF2) is
a mucin-associated peptide expressed in gastrointestinal
epithelial cells where it serves to maintain mucosal integrity
and promote epithelial repair [21]. Meanwhile, TFF2-
promoted epithelial restitution does not require cyclo-
oxygenase activation [22]. Indomethacin and aspirin
upregulated TFF2 by the activation of PPAR gamma to
reduce gastric mucosal injury since TFF peptides play an
important role in gastric mucosal protection [23, 24].
Terefore, TFF2 will enhance the gastric mucosal protection,
and HNF4a/CDX2 will directly reduce damage from CDCA.

Alternative and complementary therapies have brought
favorite results in precancerous lesions of gastric cancer
(PLGC) which is based on traditional Chinese medicine
(TCM) theory [25]. Dendrobium ofcinale Kimura et Migo
(called Tie Pi Shi Hu in Chinese, usually used as stems) is
listed in the pharmacopoeia of the People’s Republic of
China which belongs to the orchid genera. It has been re-
ported to have anticancer, anti-infammation, and immu-
nomodulatory properties [26–29]. Dendrobium ofcinale
(DO), its dried leaves, and fowers have been permitted for
use as food resources in Guizhou, Zhejiang, Yunnan, and
Fujian provinces [30]. Modern research confrmed that DO
had protected gastric mucosal injury, modulated enteric
dysbacteriosis, improved gut barrier, and promoted di-
gestion [31–33]. We found that DOP from stems reduced
intestinal metaplasia and made the atypical hyperplasia be
kept at the moderate or mild degree in a N-methyl-N′-nitro-
N-nitrosoguanidine (MNNG)-induced PLGC rat model
[34, 35]. However, it is unclear whether DOP has an in-
hibitory efect on bile refux-induced GIM in vitro.

Based on the above facts, we hypothesized that DOP
inhibits the intestinal metaplasia process on the bile acid-
induced gastric intestinal metaplasia model by activating
NRF2/HO-1 and regulating the HNF4α/CDX2 signal
pathway.Terefore, we could better confrm and understand
the efect and the mechanism of Dendrobium ofcinale
polysaccharides on precancerous lesions of gastric cancer.

2. Materials and Methods

2.1. Chemicals and Reagents. DOP was isolated and purifed
from D. ofcinale, its purity was more than 80%, and the
molecular weight was detected by high-performance gel

permeation chromatography (HPGPC) [35]. Generally
speaking, 50 g water extraction was dissolved in 2.5 L water
two times and then mixed with 95% alcohol at a ratio of 1 : 5.
After 24 hours, the mixture was collected by centrifuging at
4000 rpm for 15min, then deproteinized by savage reagent,
and dried to form crude DOP. Crude DOP is dissolved in
water at a concentration of 0.1 g/mL as the mother liquor,
and then it is diluted to the fnal concentration (800 μg/mL,
400 μg/mL, and so on). Human gastric epithelial GES-1 cell
lines were purchased from the Institute of Biochemistry and
Cell Biology at the Chinese Academy of Sciences (Shanghai,
China). Fetal bovine serum (FBS) and 1640 medium were
purchased from Solarbio (Shanghai, China). 2,2-Diphenyl-
1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxi-
dant power (FRAP) kits were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). Cell
counting kit-8 (CCK-8) assay kit was received from MCE
(New Jersey, USA), total protein extraction kit (Beyotime,
Shanghai, China), SYBR Premix Ex Taq II (Takara, Japan),
Lowry protein assay, and nuclear protein extraction kit
(Termo Fisher Scientifc, MA, USA). HNF4a, HO-1, and
TFF2 antibodies were purchased from Abcam (Cambridge,
MA, USA). CDX2 and β-actin antibodies were obtained
from Cell Signaling Technology (Danvers, MA, USA) and
SuperSignal™West Pico PLUS Chemiluminescent Substrate
(Pierce Biotechnology, Rockford, USA). Secondary anti-
bodies were purchased from Beijing Zhongshan Bio-
technology Company (Beijing, China).

2.2. Antioxidant Activities of Dendrobium ofcinale Poly-
saccharides by DPPH Assay. Te DPPH assay is the most
popular method for measuring antioxidant activity because
they are reliable and economical [36]. First, DOP was diluted
10-fold, and 45 μL of the diluted sample was added to a 96-
well plate. Ten, 100 μL of 0.2mM DPPH solution (in
ethanol) was added, mixed well, and placed in the dark for
30min at room temperature. Te absorbance A1 at 516 nm
was measured by a spectrophotometer, and 45 μL of an-
hydrous ethanol was used to replace the sample as blank
absorbance A0. 0.05 μg/mL ascorbic acid was selected as the
positive control.

Te unit of the DPPH·scavenging rate is recorded as “%”.
DPPH·scavenging rate (%)� (A0−A1)/A0×100 where A0 is
the absorbance of the blank sample and A1 is the absorbance
of the DOP. All experiments were performed at least 3 times.

2.3. Antioxidant Activities of Dendrobium ofcinale Poly-
saccharides by FRAP Assay. Te ferric reducing/antioxidant
power (FRAP) assay was used to determine the total anti-
oxidant capacity [37]. FRAP assay was carried out according
to the kit instructions [38]. 180 μL of FRAP working solution
was added to the 96-well plate, and 5 μL of sample
(400 μg/mL) or ultrapure water was added to the working
solution and mixed.Te absorbance was recorded at 593 nm
by a spectrophotometer after incubation at 37°C for 3min.
Te standard curve was determined with FeSO4 as the
standard product. Te results were expressed as Trolox
equivalents. Te unit of the total antioxidant capacity of the
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sample is expressed in “mM FeSO4 equivalent.” All ex-
periments were performed at least 3 times.

2.4. Establishment of CDCA-Induced Intestinal Metaplasia
Model on GES-1 Cells by Western Blot (WB). According to
[39], GES-1 cells were seeded in 60mm dishes at a density of
8×104 cells/well, were cultured in an environment of 37°C
and 5% CO2 for 24 hours to allow cells to adhere, and then
were serum-deprived for 12 hours prior to treatment with
50, 100, and 200 μm CDCA. After being treated with CDCA
for 24 hours, harvested cells were lysed with RIPA cell lysis
bufer supplemented with 1% PMSF to extract total protein.
Protein concentration was evaluated by Lowry protein assay
[40]. Te protein sample was separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
then transferred to polyvinylidene fuoride (PVDF) mem-
branes by the wet blotting method. Membranes were
blocked with 5% dried skimmed milk powder in Tris-
bufered saline Tween-20 (TBST). Membranes were in-
cubated with primary antibodies to CDX2 (1 :1000) and
β-actin (1 :1000). After washing in TBST, secondary anti-
bodies (1 :10000) conjugated with horseradish peroxidase
(HRP) were incubated on the membranes for 1 hour. ECL,
the enhanced chemiluminescence detection reagent, was
used to visualize the protein bands after the incubation. All
experiments were performed at least 3 times.

2.5. Establishment of CDCA-Induced IntestinalMetaplasia by
RT-PCR (Reverse Transcription-Polymerase Chain Reaction).
Tese genes CDX2, MUC2, HNF4α, KLF4, VILLIN1, SOX2,
and TFF2 were key intestinal metaplasia genes. After
choosing the appropriate concentration to establish CDCA-
induced intestinal metaplasia, the expression of key in-
testinal metaplasia genes was investigated by RT-PCR. Te
cell was collected, and its total RNA was extracted by the
EastepTM Super Total RNA Extraction Kit. Te integrity of
the RNA sample was measured by the Agilent Bioanalyzer
2100 system. 1 μg of total RNA was used to synthesize frst-
stand cDNA by the PrimeScript RT reagent kit with gDNA
Eraser following the manufacturer’s instructions. Primers
and templates were mixed with TB Green Premix Ex Taq II.
Te primers are listed in Table 1. RT-PCR was conducted
using the SYBR method on a CFX96™ Real-Time PCR
Detection system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). Te 2–ΔΔCTmethod was used to quantify the relative
mRNA expression levels [41]. All experiments were per-
formed at least 3 times.

2.6. Te Inhibitory Efect of DOP at Diferent Concentrations
on Normal GES-1 Cell and CDCA-Induced Intestinal Meta-
plasiaModel [42]. A 96-well plate at a density of 4×103 cells/
well was tested for the inhibitory efect of DOP at fnal
concentrations of 800, 400, 200, 100, and 50 μg/mL on
normal GES-1 cells. In the CDCA-induced intestinal
metaplasia model, DOP were at fnal concentrations of 400,
200, 100, and 50 μg/mL, which combined with 100 and
200 μmCDCA.Te control group was cultured in a medium

supplemented with 10% FBS. Te model groups were in-
duced by 100 and 200 μm CDCA. After twenty-four hours,
10 μL of CCK-8 solutions was added to 100 μL medium and
incubated for 4 hours according to the CCK-8 kit. Absor-
bance was measured at 450 nm after shaking and in the dark
for 5min.Te cell survival rate was calculated as follows: cell
survival rate (%)� (OD value in sample group/OD value in
normal group)× 100%. All experiments were performed at
least 3 times.

2.7. Efect of DOP on CDCA-Induced Intestinal Metaplasia by
RT-PCR. GES-1 cells were seeded in 60mm dishes for
24 hours to adhere and then were serum-deprived 12 hours
later, and 100 μm CDCA was used to induce intestinal
metaplasia. High, medium, and low concentrations of DOP
(400, 200, and 100 μg/mL) were added lasting for 24 hours.
Te cells were collected for RT-PCR. Te procedure of
RT-PCR was the same as above. Te genes were several
intestinal markers (CDX2, HNF4α, KLF4, MUC2, VILLIN1,
and TFF2), NRF2, HO-1, and NQO-1. All experiments were
performed at least 3 times.

2.8. Nuclear Translocation of NRF2 on CDCA-Induced In-
testinal Metaplasia Treated with DOP. Te nuclear trans-
location of NRF2 was assessed by WB. Nuclear and
cytoplasmic proteins were extracted using the Nuclear
Protein Extraction Kit. Histone H3 (1 :1000) and β-actin (1 :
1000) were used as internal reference antibodies and sub-
sequently incubated with the horseradish peroxidase-
conjugated goat antirabbit secondary antibody (dilution
1 : 5000) for 1 h at room temperature. Protein bands were
then detected using enhanced chemiluminescence Western
blot detection reagents (Termo Fisher Scientifc, MA,
USA). All experiments were performed at least 3 times.

2.9. Efect of DOP on CDCA-Induced Intestinal Metaplasia by
WB. Te method of collecting and dealing with the cell was
the same as above, the primary antibodies to HNF4a (1 :
1000), HO-1 (1 : 2000), NQO-1 (1 :1000), and TFF2 (1 :
2000) at 4°C for 12 hours. β-Actin (1 :1000) was used as an
internal reference antibody after all experiments were per-
formed at least 3 times.

2.10. Statistical Analysis. Data were analyzed using SPSS
version 16.0 software (IBM, Chicago, IL, USA). Data were
presented as the mean± standard deviation (SD). One-way
analysis of variance (ANOVA) was used to determine the
diferences between groups. P value <0.05 was considered to
be statistically signifcant.

3. Results

3.1. Antioxidant Activities of Dendrobium ofcinale Poly-
saccharides by DPPH and FRAP Assay. DPPH value is
expressed as ascorbic acid (GAE) having an equivalent
antiradical capacity. Te clearance rate of 50, 100, 200, 400,
and 800 μg/mL DOP was from 18.5% to 50.8%. For FRAP
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assay, FRAP value is expressed as the millimolar concen-
tration of Fe2+, obtained from a dilution of FeSO4 having an
equivalent antioxidant capacity. Te FRAP value of
50–800 μg/mL DOP was 1.75–2.45mmol Fe2+/g (Figure 1).

3.2. Establishment of CDCA-Induced Intestinal Metaplasia
Model on GES-1 Cells by WB. As shown in Figures 2(a) and
2(b), treated with 50 μm, 100 μm, and 200 μm CDCA, the
expression of CDX2 protein was all increased, especially
100 μm and 200 μm CDCA had statistical signifcance
(p< 0.05; p< 0.05). Accordingly, 100 μm CDCA was chosen
as a follow-up experimental study.

3.3. Establishment of CDCA-Induced IntestinalMetaplasia by
RT-PCR. As shown in Figure 3, the 100 μm CDCA model
group showed signifcantly higher gene expression of CDX2,
MUC2, HNF4α, KLF4, VILLIN 1, and SOX2 and a lower
level of TFF2 when compared to the control group [43], and
the result was consistent with the report, which means
100 μm CDCA could induce a successful model of intestinal
metaplasia.

3.4. Te Inhibitory Efect of DOP at Diferent Concentrations
on Normal GES-1 Cell and on CDCA-Induced Intestinal
Metaplasia Model. In order to evaluate the inhibitory efect
of DOP, diferent concentrations of DOP were treated on
normal GES-1 cell and CDCA-induced cell models. When
treated with 800 μg/mL DOP, the cell viability was about
85% and induced a little reduction when compared with the
control group (p< 0.05). Treated with these lower
50–400 μg/mL DOP, the cell viability was about 95–100%.
Terefore, 50–400 μg/mL DOP was used for follow-up
pharmacodynamic evaluation (Figure 4(a)).

Depending on the inhibitory efect of DOP on GES-1
cells, we tested the inhibitory efect of DOP on CDCA-
induced gastric intestinal metaplasia at diferent concen-
trations. Te cell inhibitory rate was, respectively, 11± 2.1%
and 20± 1.2% when induced by 100 μM and 200 μMCDCA.
When 200 μM CDCA was combined with 50–800 μg/mL
DOP, the cell inhibitory was signifcantly higher at 800 μg/
mL DOP when compared with the control group (p< 0.05).
However, the cell inhibitory has no change when treated
with 200 μM CDCA alone or combined with 50–400 μg/mL

DOP (Figure 4(b)). When 100 μM CDCA is combined with
50–800 μg/mL DOP, the cell inhibitory has no diferences
with 100 μM CDCA or DOP alone (Figure 4(c)).

3.5. Efect of DOP on CDCA-Induced Intestinal Metaplasia by
RT-PCR. Te mRNA expression of CDX2, HNF4α, KLF4,
MUC2, and VILLIN1 was signifcantly increased, and TFF2
was decreased by stimulation of CDCA in the model group
by RT-PCR. Te mRNA expression of NRF2, HO-1, and
NQO-1 was obviously increased. After DOP treatment, the
mRNA expression of CDX2, HNF4α, and VILLIN1 was
found to be signifcantly decreased. Although there was
a trend of lower KLF4mRNA expression treated with
H-DOP and M-DOP compared with the model group, they
did not have statistical signifcance. MUC2 has not been
afected. Interestingly, the mRNA expression of NRF2 and
HO-1 was further found to be increased by DOP, but NQO-
1 was decreased. TFF2mRNAwas downregulated in CDCA-
treated GSE-1 cells and was upregulated by DOP in the cell
model. Collectively, these results suggest that DOP increases
NRF2, HO-1, and TFF2 expression but decreases CDX2,
NQO-1, and HNF4α expression (Figure 5).

3.6. Te Protein Expression of NRF2 on CDCA-Induced In-
testinal Metaplasia Treated with DOP in Nucleus and
Cytoplasm. Te diferent protein NRF2 expressions were
determined byWestern blot after separating the nucleus and
cytoplasm. Te NRF2 protein expression in the nucleus was
upregulated in the CDCA-induced intestinal metaplasia
model. Te high dose of DOP promoted NRF2 protein
expression which means NRF2 enters the nucleus (p< 0.05)
(Figures 6(a) and 6(b)). At the same time, the protein ex-
pression of NRF2 in the cytoplasm was decreased by CDCA
and increased by high and medium doses of DOP (p< 0.05)
(Figures 6(a) and 6(c)).

3.7. Te Protein Expression of CDX2, HNF4a, HO-1, NQO-1,
and TFF2 on CDCA-Induced Intestinal Metaplasia Treated
with DOP. Te results showed that CDCA treatment in-
creased the protein expression of CDX2 (p< 0.01), HNF4α
(p< 0.01), and HO-1 and decreased the protein expression
of TFF2 (p< 0.05). Treated with diferent concentrations of
DOP, the protein expression of CDX2 (p< 0.01) and HNF4α

Table 1: RT-PCR primer information.

Gene name Sense (5′− 3′) Antisense (5′− 3′)
NRF2 TCAGCGACGGAAAGAGTATGA CCACTGGTTTCTGACTGGATGT
HO-1 AAACTTCAGAGGGGGCGAAG GACAGCTGCCACATTAGGGT
NQO-1 AAGAGCACTGATCGTACTGG CTTCAGTTTACCTGTGATGTCC
CDX2 GCTATAAATGCCAGAGCCAACC CACAGACCAACAACCCAAACAG
MUC2 AGTCCATCCTGCTGACCATC GGTGTAGGCATCGCTCTTCTC
KLF4 AAGAGTTCCCATCTCAAGGCAA GGGCGAATTTCCATCCACAG
Villin1 GCTTGGCAACTCTAGGGACTGG TGAGGTTGCTGTTAGCATTGACAC
TFF2 CCAAAGCAAGAGTCGGATCAG CAGTCTTCCACAGACTTCGGG
HNF4α GTTCAAGGACGTGCTGCTCCTA AGGCATACTCATTGTCATCGATCTG
SOX2 GGAGTTGTCAAGGCAGAGAAG CGCCGCCGATGATTGTTAT
β-Actin GAAACTACCTCAACTCCATC CGAGGCCAGGAGGAGCCGCC
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(p< 0.01) was remarkably decreased. Te protein expression
of HO-1 and TFF2 was increased by three concentrations of
DOP (p< 0.05; p< 0.01). Te protein expression of NQO-1
was downregulated by DOP (p< 0.05) (Figure 7).

4. Discussion

Dendrobium plants are famous traditional medicines and
are mainly distributed in South Asia and Oceania. Tere are
1547 accepted Dendrobium species worldwide, more than
80 Dendrobium species have been found in China with
a large annual production [44]. DO has a strong efect on
nourishing the stomach Yin, playing an important role in
treating gastrointestinal diseases, and modern pharmacol-
ogy research has shown that DO protects against gastro-
intestinal injury and aids in digestion [45, 46]. GIM is
considered an important precursor to gastric cancer. In this
study, DOP inhibited CDCA-induced gastric intestinal

metaplasia in the cell model, and furthermore, it improved
the NRF2/HO-1 and HNF4α/CDX2 signal pathway, which
was a further extension of our preliminary work in vitro. Our
previous studies had proved that the DOP prevented
MNNG-induced PLGC along with subsequent liver and
kidney damage, and the mechanism is associated with the
reduction of 8-OHdG levels and the activation of the NRF2
pathway and its related antioxidant enzymes HO-1 and
NQO-1 [35].

For DOP, many studies highlighted advances in anti-
oxidant properties from in vivo and in vitro by decreasing
free radicals, enhancing the antioxidant system, inhibiting
nuclear factor-kappa B, and downregulating infammatory
response [47–49]. In this study, we evaluated the antioxidant
activities ofDendrobium ofcinale polysaccharides by DPPH
and FRAP assay. Te result showed that the clearance rate of
50, 100, 200, 400, and 800 μg/mL DOP was from 18.5% to
50.8%. Xing et al. found when the concentrations of DOP
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were 0.5–5.0mg/mL, the DPPH radical-scavenging rates
were between 40 and 50% [50], which was consistent with
our experimental results.

NRF2 is a key transcription factor regulating antioxidant
enzymes and, therefore, protecting against antioxidant stress
and anti-infammation [51–53]. After CDCA treatment, the
activity of various transcription factors in GES-1 cells was
changed, and the result showed that NFE2 was increased
[14]. HO-1 as a downstream gene of NRF2 has a cytopro-
tective efect in normal tissues via restraining oxidative
dysregulation, inappropriate immune response, and related
disorders, especially in cancer carcinogenesis [52, 54]. Much
data report and in vivo studies revealed the increased ex-
pression of the HO-1 enzyme in tumors compared with the
surrounding normal tissues [55]. Our previous research
demonstrated the ability of DOP to induce NRF2 upregu-
lation and to increase HO-1 in the PLGC rat model [35]. In
this study, we also found that CDCA enables NRF2 to
translocate into the nucleus and upregulate redox-regulated
genes HO-1. After treatment with DOP, it could promote the
entry of NRF2 into the nucleus and upregulate the protein

expression of NRF2, especially the high concentration of
DOP. At the same time, the protein expression of NRF2 in
the cytoplasm was decreased by CDCA and increased by
high and medium doses of DOP. Meanwhile, the HO-1 was
upregulated after being treated with DOP on the CDCA-
induced intestinal metaplasia model. Tese data indicated
that DOP had the potential capacity to reduce the damage
from intestinal metaplasia through the NRF2/HO-1 pathway
in vitro. Te data have similarities with published reports
that D. nobile extract protects retinal pigment epithelial cells
from UV and oxidative stress damage via NRF2/HO-1 and
MAPK pathways [56]. Te bile acid-induced gastric in-
testinal metaplasia model was widely used [57, 58], especially
chenodeoxycholic acid (CDCA), which could increase
caudal type homeobox 2 (CDX2) and induce following
intestine-specifc markers in GES-1 cells [39]. CDX2 is an
essential intestinal marker in the development and main-
tenance of intestinal tissue in adult mammals [19]. HNF4α,
one of the TFs (Transcription factors), activates ectopic
CDX2 expression through a shadow 3′enhancer [59].
HNF4α, in gastric epithelium and subsequent progression of
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Figure 6: Te protein expression of NRF2 on CDCA-induced intestinal metaplasia treated with DOP in the nucleus and cytoplasm. High,
medium, and low concentration of DOP was 400, 200, and 100 μg/mL. (a, b) NRF2 expression in the nucleus; (a, c) NRF2 expression in
cytoplasm. Compared with the CDCA model group: #p< 0.05 and ##p< 0.01. n� 3 and repeated three times.
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IM, contributes signifcantly to the expression of bile acid-
induced columnar genes via regulating KLF4 and CDX2
[20]. TGR5-ERK1/2-HNF4α axis plays an important role in
the bile acid-induced gastric intestinal metaplasia model
[20, 60]. In our data, CDCA could increase CDX2 and
HNF4α mRNA as well as protein expression, while DOP
could decrease their expression. We demonstrate that DOP
could inhibit CDCA-induced gastric intestinal metaplasia by
downregulating the HNF4α/CDX-2 signal pathway. A re-
lation between HO-1 and HNF4α has been previously
proposed for both to share a common microRNA, and
HNF4α regulates miR-377 leading to upregulation of HO-1

[61]. Tis will be a potential pathway for further
investigation.

TFFs play a major role within the gastrointestinal mu-
cosal barrier. It has been demonstrated to promote cell
migratory and antiapoptotic activities so as to mediate
mucosal repair in epithelial cell culture models [62]. TFF2 is
illustrated with a homeostatic pattern during infammatory
processes, which results in an anti-infammatory efect that
would be conducive to create the necessary microenviron-
ment for tissue repair [21]. TFF2 drives epithelial repair by
activating CXCR4 in gastric organoids [63]. In the results,
DOP could upregulate the mRNA and protein expression of
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Figure 7: Western blot analysis of HNF4α, CDX2, TFF2, HO-1, and NQO-1 protein expression. High, medium, and low concentration of
DOP was 400, 200, and 100 μg/mL. (a) Te western blot bands and (b) the relative level of HNF4α, CDX2, TFF2, HO-1, and NQO-1. Te
relative level was calculated with target proteins/β-actin reference protein. Compared with the control group: ∗p< 0.05, ∗∗p< 0.01, and
∗∗∗p< 0.001. Compared with the CDCA model group: #p< 0.05, ##p< 0.01, and ###p< 0.001. n� 3 and repeated three times.
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TFF2, indicating that DOP generates an anti-infammatory
efect which will help to defend against mucosal injury.

5. Conclusion

DOP inhibits the intestinal metaplasia process on the bile
acid-induced gastric intestinal metaplasia model by acti-
vating NRF2/HO-1 and regulating the HNF4α/CDX2 signal
pathway. Tese fndings provide an experimental basis for
further application in gastric precancerous lesions.
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