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Aggregation and non-enzymatic glycation of amyloidogenic peptides, amyloid-beta (Aβ), and insulin are key features of
neuropathology. In this study, we evaluate the anti-glycation efect of Cassia seed-derived secondary metabolites on human
insulin and bovine serum albumin, as well as their anti-Aβ aggregation and antioxidant efects using in vitro spectrofuorometric
method, thiofavin T fuorescence, and peroxynitrite (ONOO‒) scavenging assay. Furthermore, molecular docking simulation was
performed to investigate the binding characteristics of test compounds and Aβ42 peptide. Among 38 compounds, anthraquinones
9–12 and 14–18; naphthopyrones 24, 25, 27, and 33–36; and 38 from the naphthalenes and naphthalenic lactone groups showed
moderate-to-good inhibition of AGE formation with IC50 values ranging from 7.52± 1.19 to 155.86± 0.79 µM. Likewise,
compounds 5, 24, 15, 16, 27, and 20 showed good inhibition of D-ribose-mediated glycation of human insulin, with an IC50 value
range of 46.37± 4.06 to 97.69± 7.88 µM. In the thiofavin-T assay, compounds 8 and 12 showed promising inhibition of Aβ
aggregation, comparable to that of the reference compound morin. Molecular docking simulations confrmed that these active
compounds have strong potential to interact with Aβ42 peptides and interrupt their self-assembly and conformational trans-
formation, thereby inhibiting Aβ42 aggregation. In addition, compounds 5, 8, 10, 14, and 35 scavenged ONOO− at low
concentrations. Overall, Cassia compounds’ anti-glycation, anti-Aβ aggregation, and antioxidant efects warrant further in vivo
studies to evaluate their potential neuroprotective efects against comorbid AD and diabetes.

1. Introduction

Te non-enzymatic glycation or oxidation of the amino
(-NH2) groups of amino acids, proteins, peptides, and
hormones by reducing sugars results in a set of diferent
products, the advanced glycation end products (AGEs), that
assemble in various parts of the human body and increase

the risk of diabetic complications, including neuropathy,
nephropathy, and cardiovascular diseases. In addition to
their role in diabetic complications, AGEs have also been
implicated in the pathogenesis of Alzheimer’s disease (AD)
and other neurodegenerative diseases [1]. Te presence of
senile plaques and neurofbrillary tangles (NFTs) charac-
terizes the pathology in AD, and amyloid β protein (Aβ) and
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tau proteins are their major constituents. Glycation of tau
protein enhances paired helical flament formation [2], and
glycation of Aβ prolongs its half-life, which accelerates
amyloid protein aggregation [3].

Similarly, glycation of insulin and proinsulin in the
insulin-resistant diabetic state [4] and α-synuclein in Par-
kinson’s disease (PD) [5] is well documented. Spher-
oproteins or normal globular proteins can be refolded into
amyloid fbrils (a major component of proteinaceous pla-
ques), comprising a cross-β structure, during glycation [6].
In addition, a highly reactive intermediate product, 3-
deoxyglucosone, of the glycation reaction can reinforce
the formation of intermolecular and intramolecular cross-
links in AGE-modifed protein monomers.

Glycation of proteins by glucose occurs via several
pathways [7]: (a) through nucleophilic addition between an
amino group of a protein and the carbonyl group of glucose
to form a reversible Schif base, (b) through oxidative
degradation in the presence of reactive oxygen species
(ROS), and (c) through the reaction of dicarbonyl com-
pounds from glucose auto-oxidation with the amino groups
of proteins. Hormones, peptides, and proteins are endog-
enous sources of AGEs that are responsible for disease
development. A modern diet comprised of high-heat-
processed meats, processed milk, and bakery products with
enhanced favor and taste is a major contributor to oxidative
stress, infammation, and liver fbrosis, along with several
chronic disease states [8]. In regard to the role of AGEs in the
development of diabetic complications and other diseases,
various natural and synthetic compounds have been eval-
uated for their anti-glycation properties. Inhibiting any step
of glycation and preventing the formation of intermediate
and end products, scavenging of free radicals, detoxifcation
of liver enzymes, etc. can help in the prevention of AGE
formation and diabetic complications [9]. To date, nu-
merous synthetic compounds with anti-glycation properties
have been discovered including but not limited to urea and
thiourea derivatives of glycine/proline conjugated benzi-
soxazole analog [10], bis-Schif bases of isatins [11], benz-
imidazole derivatives [12], oxindole derivatives [13],
bergenin derivatives [14], and piroxicam derivatives [15].
However, due to fewer complications compared to synthetic
compounds, natural compounds are considered a better
treatment for inhibiting the glycation process and AGE
formation. Terefore, there is an emerging interest in the
discovery of new anti-glycation agents from natural sources.
With this aim, we investigate Cassia obtusifolia Linn seeds-
derived secondary metabolites.

Cassia obtusifolia Linn seed is a traditional Chinese
medicine that is well known for its anti-infammatory and
antioxidant properties. Cassia seed is consumed as brewed
tea in South Korea. Cassia seed extract has been reported to
have numerous biological activities, including hypolipi-
demic [16, 17], antifungal [18], hypotensive [19], antioxidant
[20], and neuroprotective [21] efects. Similarly, secondary
metabolites from Cassia seeds have larvicidal [22], antiox-
idant [23], anti-AD [24], hepatoprotective [25], antidiabetic
[26], antihypertensive [27], comorbid diabetes and de-
pression [28] and antimutagenic efect [29]. However, there

are a limited number of studies on the anti-glycation
properties of Cassia seed-derived metabolites. A few num-
bers of naphthopyrone glycosides [30] and anthraquinones
[31] have previously been reported to have an inhibitory
efect on BSA-glycation. Tis study reports the anti-
glycation properties of other Cassia compounds in human
insulin and bovine serum albumin, as well as anti-Aβ ag-
gregation and antioxidant efect. To our knowledge, this is
the frst report of the anti-glycation and insulin-glycation
inhibition properties of these metabolites.

2. Materials and Methods

2.1. Chemicals and Reagents. Bovine serum albumin (BSA),
L-penicillamine, D-(−)-fructose, D-(+)-glucose, D-(−)-ribose,
human insulin, aminoguanidine hydrochloride, dihydro-
rhodamine (DHR) 123, and diethylenetriamine-pentaacetic
acid (DTPA) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Te Aβ42 peptide was purchased from Bachem
AG (Bubendorf, Switzerland). Peroxynitrite was obtained
from Calbiochem/Merck Millipore (Darmstadt, Germany).
Solvents for column chromatography were of reagent grade
and were used as received from commercial sources.

2.2. Isolation of Compounds. Details on plant material, ex-
traction, fractionation, and isolation have been described in
our recent work [32]. Chemical structures of isolated
compounds are shown in Figure 1.

2.3. Bovine Serum Albumin Glycation Inhibition Assay.
Following some modifcations in the spectrofuorometric
method previously described by Vinson and Howard [33],
the inhibitory potential of isolated compounds in AGE
formation was evaluated. At frst, the AGE reaction mixture
was prepared by mixing 10mg/ml BSA in 50mmol/L so-
dium phosphate bufer (pH 7.4), 0.2M fructose, and 0.2M
glucose. To prevent bacterial growth, the reaction mixture
was maintained in 0.02% sodium azide. Subsequently,
950 μL of reaction bufer was mixed with 50 μL of the test
sample (2.5 μM to 250 μM) solution in vials and incubated at
37°C for 7 days. Color controls were prepared similarly and
incubated at 4°C for 7 days. Te inhibition percentage was
calculated by measuring the fuorescence intensity of the
reaction product at 450 nm after excitation at 350 nm in
a microplate spectrofuorometer (Molecular Devices, Sun-
nyvale, CA, USA). Te inhibition result was validated with
aminoguanidine HCl as a positive control.

2.4. Human Insulin Glycation Inhibition Assay. Te in-
hibition potential of test compounds on insulin glycation
was evaluated according to a recently describedmethod [34],
with slight modifcations. First, monomeric insulin was
obtained by dissolving human insulin in ultra-pure water at
pH 2.0. Ten, the monomeric insulin solution was neu-
tralized to pH 7.0 and kept in phosphate bufer (50mM;
pH 7.0). To obtain a glycated insulin control, 10 μL of
monomeric human insulin (fnal concentration:
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0.5mg/mL), 10 μL of 0.5M D-ribose in phosphate bufer
(50mM; pH 7.0), and 10 μL of ultra-pure water were mixed,
fltered through 0.2 μm flter, and incubated at 37°C for
7 days.Te anti-glycation properties of test compounds were
evaluated by adding 10 μL of the test sample (2.5 μM to
250 μM; replacing 10 μL water from the control) to a mixture
of insulin and D-ribose and incubating at 37°C for 7 days. For
the protein control, human insulin was incubated with
bufer only. Ten, the fuorescence signal was measured at
λex 320 nm/λem 410 nm in a microplate spectrofuorometer
(Molecular Devices, Sunnyvale, CA, USA).

2.5. Anti-Aggregation Assay. TT is known to exhibit fuo-
rescence upon binding to the β-sheet structure [35].We used
TT analysis to investigate the efect of test compounds on
the aggregation of Aβ that undergoes structural conversion
into a β-sheet-rich fber. For Aβ aggregation, we added 3rd
distilled water to synthetic Aβ42 to produce Aβ42 at
a concentration of 25 μM.Te Aβ peptide chemically treated
with aqueous ammonia, purchased from Bachem AG
(Bubendorf, Switzerland), is monomeric and has no fuo-
rescence when measured by theTTassay. We used a 25 μM
concentration that was obtained from 50% toxicity among
diferent concentrations in the cell viability test. Te Aβ42
peptide, purchased from Bachem AG (Bubendorf, Swit-
zerland), was dissolved in 0.1M aqueous ammonia. To in-
vestigate the efects of Cassia compounds on the aggregation
of Aβ, TT assays with non-aggregated Aβ42 were per-
formed. TT assays were carried out in black polypropylene
96-well plates (SPL Life Science, Republic of Korea). For
Aβself-aggregation, triple distilled water was added to the
Aβ42 stock until it reached a concentration of 25 μM.
Various concentrations of Cassia compounds (2.5, 25, and
250 μM) and the positive control, morin (100 μM), were
added together with aTTsolution (15 μM in 50mM glycine
bufer, pH 8.9) into the 25 μMAβ42 solution. All solutes
used in the experiment were well soluble in the solvent. Tey
were then incubated for 3 h at 37°C (Figure 2). Finally, the
TT fuorescence intensity was measured at excitation
wavelengths of 440 nm and emission wavelengths of 484 nm
using a SpectraMax iD3 Multi-Mode Microplate Reader
(Molecular Devices, San Jose, CA, USA). Experiments were
performed in triplicate.

2.6. Molecular Docking Simulation. We used AutoDock 4.2
to investigate the binding characteristics of test compounds
and Aβ42 peptide. To determine the receptor structures, we
obtained the three-dimensional structures of Aβ42 peptides
from the Protein Data Bank (PDB code: Aβ42: 1Z0Q and
2BEG). Two- and three-dimensional structures of the test
compounds and morin were obtained from the PubChem
database, and energy minimization and ligand structure
conversion to the PDB fle format were performed using
Chimera 1.15 (https://www.cgl.ucsf.edu/chimera). For mo-
lecular docking purposes, we prepared receptors and ligands
using AutoDockTools, whereas to conduct molecular
docking, we applied the prepared macromolecules and

ligands using AutoDockTools [36]. In the case of the
monomer structures of Aβ, we used Autogrid to generate
grid parameters centered on the reference ligand and created
a grid box of 60× 60× 60 Å. In the case of Aβ42 pentamer
(2BEG), the grid parameters were generated using the mean
coordinates of the hydrophobic core (16KLVFFA 21) and C-
terminal (29GAIIGLMVGGVVIA42) segments, and grid
boxes of 90× 90× 90 Å were set at the established co-
ordinates using Autogrid. One hundred Lamarckian generic
algorithms were run for docking, and the other docking
parameters were set to default values. Te docking results
were analyzed using AutoDockTools and visualized using
Discovery Studio (v17.2, Accelrys, San Diego, CA, USA).Te
docking pose with the lowest binding energy and the highest
number of cluster populations was selected for the analysis
of docking results.

2.7. Peroxynitrite (ONOO‒) Scavenging Assay.
ONOO-scavenging activity was assessed using the modifed
Kooy’s method, which involves the monitoring of highly
fuorescent rhodamine 123, which is rapidly produced from
non-fuorescent DHR 123 in the presence of ONOO− [37].
In brief, the rhodamine bufer (pH 7.4) consisted of 50mM
sodium phosphate dibasic, 50mM sodium phosphate
monobasic, 90mM sodium chloride, 5mM potassium
chloride, and 100 μM DTPA. Te fnal DHR 123 concen-
tration was 5 μM. Te assay bufer was prepared before use
and placed on ice. Test samples were dissolved in 10%
DMSO (fnal conc., 100 μM). Te background and fnal
fuorescent intensities were measured 5min after treatment
with and without the addition of authentic ONOO− (10 μM),
dissolved in 0.3N sodium hydroxide. Te fuorescence in-
tensity of the oxidized DHR 123 was evaluated using
a microplate spectrofuorometer (Bio-Tek Instruments Inc.,
Winooski, VT, USA) at excitation and emission wavelengths
of 480 and 530 nm, respectively. Te values of ONOO−

scavenging activity were calculated as the fnal fuorescence
intensity minus the background fuorescence, via the de-
tection of DHR 123 oxidation. L-Penicillamine was used as
the positive control.

2.8. Statistical Analysis. All statistical analyses were con-
ducted using the GraphPad Prism 7.0 software (GraphPad
Software, La Jolla, CA, USA). All statistical data are dis-
played as mean± standard error of the mean (SEM). An
independent t-test was used to evaluate the normality of the
data. Statistical signifcance was set at P< 0.05.

3. Results

3.1. Inhibition of D-Glucose/D-Fructose-Mediated Glycation
of Bovine Serum Albumin. Te protective efect of anthra-
quinones, naphthopyrones, naphthalenes, and naphthalenic
lactones (Figure 1) isolated from Cassia seeds against protein
glycation was evaluated in vitro, and the results are tabulated
in Table 1. As shown in the table, most of the anthraquinones
showed good inhibition potential on AGE formation.
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Among the active anthraquinone aglycones, 8 (IC50;
11.50± 0.07 μM) was the most active, followed by 11 (IC50;
86.29± 7.09 μM) and 12 (IC50; 118.12± 3.11 μM). Aglycones
9, 10, and 5 had a similar efect (IC50 values approx. 170 μM),
while 6 was slightly weaker (IC50; 189.61± 1.70 μM).
However, aglycones 1–4were inefective up to 200 μMunder
the given experimental conditions.

Similarly, among anthraquinone glucosides, only single
glucose-bearing anthraquinones (14–18, except 7 and 13)
were active. Te most potent among these compounds was
18 (IC50; 32.51± 1.40 μM). Other glucosides 14–17 had an
IC50 in the range of 105 to 155 μM. Anthraquinone glyco-
sides with two or more glucose moieties (19–23) were in-
efective up to 200 μM.

From the naphthopyrone series, only 24, 25, 27, and 33–36
were active. Te most potent compound in this series was 36
(IC50; 7.52± 1.19μM), followed by 38 (IC50; 11.63± 0.12μM),
37 (IC50; 23.40± 1.05μM), 27 (IC50; 38.89± 2.05μM), 35 (IC50;
40.36± 1.36μM), 24 (IC50; 42.58± 1.79μM), and 25 (IC50;
101.37± 4.72μM). Other glycosides 26 and 28–32 showed no
observable efect up to 200μM.

Similarly, between the two compounds from naphtha-
lenes and naphthalenic lactone group, only 38 showed
a moderate efect, with an IC50 value of 89.03± 3.08 μM.
Interestingly, 33 was inefective up to 200 μM. Te overall
results of this in vitro anti-glycation assay revealed that
naphthopyrones from Cassia seeds are promising inhibitors

of protein glycation. Furthermore, all of the active com-
pounds had better activity than the positive control, ami-
noguanidine HCl (IC50; 590.94± 2.81 μM).

3.2. Inhibition of D-Ribose-Mediated Glycation of Human
Insulin. Next, we evaluated the efect of Cassia compounds on
D-ribose-mediated glycation of human insulin. As shown in
Table 1, among twenty-three anthraquinones, only four (5, 15,
16, and 20) showed moderate inhibition of insulin glycation
with an IC50 value range of 46.37± 1.19 to 83.23± 0.38µM.
Rubrofusarin (24) and its gentiobioside (27) also showed
moderate inhibitory activity with IC50 values of 87.03± 3.93
and 97.69± 7.88μM, respectively. None of the naphthalene and
naphthalenic lactones exhibited inhibitory activity.

3.3. Inhibitory Efect on Aβ42 Self-Aggregation. Some an-
thraquinones, naphthopyrone, and favonoids have been
reported to inhibit the formation of Aβ fbrils in a TT
study [38–40]. In this study, the efect of aurantio-obtusin
(5), chryso-obtusin (6), aloe-emodin (9), 2-hydrox-
yemodin (8), questin (12), glucoaurantio-obtusin (14) and
naphthopyrones ‒ nor-rubrofusarin glucoside (cassiaside,
25), rubrofusarin apiosylglucoside (28), and toralactone
gentiobioside (33) on Aβ42 aggregation was evaluated.
We observed that various concentrations of these

1: R1=R6=OH; R2=R4=R5=H; R3=CH3

2: R1=R6=OH; R2=R5=H; R4=OCH3; R3=CH3

3: R1=R4=R5=OCH3; R2=R6=OH; R3=CH3

4: R1=OCH3; R2=R6=OH; R4=R5=H; R3=CH3

5: R1=R5=OCH3; R2=R4=R6=OH; R3=CH3

6: R1=R4=R5=R6=OCH3; R2=OH; R3=CH3

7: R1=OCH3; R2=O-glu; R4=R5=H; R6=OH; R3=CH3

8: R1=R4=R5=R6=OH; R2=H; R3=CH3

9: R1=R6=OH; R2=R3=R5=H; R4=CH2OH

10: R1=R4=R6=OH; R2=R5=H; R3=CH3

11: R1=OCH3; R2=R4=R6=OH; R3=CH3; R5=H

12: R1=R4=OH; R2=R5=H; R3=CH3; R6=OCH3

13: R1=R4=R5=R6=OCH3; R2=O-glu; R3=CH3

14: R1=R5=OCH3; R2=R6=OH; R3=CH3; R4=O-glu

15: R1=O-glu; R2=R5=H; R3=CH3; R4=R6=OH

16: R1=OH; R2=R5=H; R3=CH3; R4=OCH3; R6=O-glu

17: R1=O-glu; R2=H; R3=CH3; R4=R5=R6=OH

18: R1=OH; R2=O-glu; R3=CH3; R4=R6=OH; R5=OCH3

19: R1=OH; R2=R5=H; R3=CH3; R4=OCH3; R6=O-glu (1→6) glu

20: R1=OH; R2=R4=R5=H; R3=CH3; R6=O-glu (1→6) glu

21: R1=O-glu (1→6) glu; R2=R5=H; R3=CH3; R4=R6=OH

22: R1=OH; R2=R4=R5=H; R3=CH3; R6=O-glu
(1→6) glu (1→3) glu

23: R1=OH; R2=R4=R5=H; R3=CH3; R6=O-glu
(1→6) glu (1→3) glu (1→6) glu

33: R1=H; R2=CH3; R3=glu (1→6) glu

34: R1=CH3; R2=CH2OH; R3=glu (1→6) glu

35: R1=CH3; R2=CH2OH; R3=glu

36: R1=COOH; R2=CH3; R3=glu

37: R1=O-apiose; R2=OCH3; R3=O-glu; R4=OCH3

38: R1=R3=OCH3; R2=O-apiose (1→6) glu; R4=OH

24: R1=OCH3; R2=OH

25: R1=H; R2=O-glu

26: R1=OCH3; R2=O-glu

27: R1=OCH3; R2=O-glu (1→6) glu

28: R1=OCH3; R2=O-glu (1→6) apiose

29: R1=OCH3; R2=O-glu (1→6) glu (1→3) glu

30: R1=OCH3; R2=O-glu (1→6) glu (1→3) glu (1→6) glu

31: R=O-glu

32: R=O-glu (1→6) glu
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Figure 1: Chemical structures of compounds isolated from Cassia obtusifolia Linn seeds.
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Table 1: Anti-glycation efect of major anthraquinones and naphthopyrones from Cassia obtusifolia Linn seeds.

Compounds BSA Human insulin
IC50 (µM)a

Anthraquinones
Chrysophanol (1) >200 ND
Physcion (2) >200 ND
Obtusin (3) >200 ND
Obtusifolin (4) >200 ND
Aurantio-obtusin (5) 166.33± 0.83 55.69± 1.19
Chryso-obtusin (6) 189.61± 1.70 135.26± 2.98
Obtusifolin 2-glucoside (7) >200 >200
7-Hydroxyemodin (alaternin) (8) 11.50± 0.07 >200
Aloe-emodin (9) 169.79± 2.97 122.27± 5.49
Emodin (10) 169.56± 1.09 >200
2-Hydroxyemodin 1-methyl ether (11) 86.29± 7.09 140.82± 2.56
Questin (emodin-8-methyl ether) (12) 118.12± 3.11 194.80± 5.01
Chryso-obtusin 2-glucoside (13) >200 >200
Glucoaurantio-obtusin (14) 155.86± 0.79 146.60± 4.69
Emodin 1-O-β-D-glucopyranoside (15) 105.61± 6.32 67.45± 3.02
Physcion 8-O-β-D-glucopyranoside (16) 120.64± 2.97 83.23± 0.38
Alaternin 1-O-β-D-glucopyranoside (17) 113.49± 3.05 159.12± 9.61
1-Desmethylaurantio-obtusin 2-O-β-D-glucopyranoside (18) 32.51± 1.40 >200
Physcion 8-O-β-gentiobioside (19) >200 >200
Chrysophanol 1-O-β-gentiobioside (20) >200 46.37± 4.06
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Figure 2: Anti-aggregation efect of diferent kinds of Cassia compounds on Aβ42. Te molar ratios of Aβ : Cassia compounds are 10 :1
(2.5 μM), 1 :1 (25 μM), and 1 :10 (250 μM). Te vehicle group was treated with 3rd distilled water. Morin (100 μM) was used as a positive
control as an Aβ aggregation inhibitor. Values in parentheses are percentages of the control value. Numbers below the compound name in
each graph represent the assigned compound number.
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compounds (2.5, 25, and 250 μM) signifcantly inhibited
Aβself-aggregation in a dose-dependent manner. Morin,
which was used as a positive control, signifcantly reduced
Aβself-aggregation (Figure 2).

3.4. In Silico Molecular Docking Simulation of AβMonomers.
We conducted an in silico study to elucidate the mechanism
underlying the anti-aggregation efects of diferent kinds of
Cassia compounds on Aβ42. Tere are two types of Aβ
monomers: α-helical and β-sheet. Terefore, we performed
a molecular docking study to evaluate the binding between
these Cassia compounds and the two types of Aβ chains
(Tables S1–S3; Figures S1–S3). Since some of the anthraqui-
nones, naphthopyrones, and favonoids have already been
reported for inhibition of Aβ aggregation [38–40], we chose
unreported compounds for Aβ42 aggregation assay and pre-
dicted their binding afnities via docking study. Cassia com-
pounds interacted with the Aβ α-helical monomer (1Z0Q) and
the β-sheet monomer and pentamers (2BEG) with a binding
afnity of about −4.00 to −5.00 kcal/mol, involving hydrogen
bonds and hydrophobic and electrostatic interactions
(Tables S1–S3; Figures S1–S3). Morin, a reference ligand, and
1Z0Q Aβ formed a complex with a binding afnity of
−4.66 kcal/mol through three hydrogen bond interactions
(Gln15, Glu11, Glu22) and a π-anion interaction with Glu22
(Table S1 and Figure S1). Morin interacted with the 2BEG Aβ
pentamer via three hydrogen bonds (Leu17C,E, Phe19D) and six
hydrophobic bonds with residues Leu17E (π-alkyl), Leu17D
(π-σ, π-alkyl), Phe19C (π-π T-shaped), Val40C (π-σ, π-alkyl),

and Val40D,E (π-alkyl) with a binding afnity of −7.42 kcal/mol
(Table S3 and Figure S3). Anthraquinones and naphthopyrone
glycosides fromCassia seeds bound to the α-helical and β-sheet
monomers in a similar manner as the reference compound
morin (Tables S1 and S2; Figures S1 and S2), demonstrating an
anti-aggregation efect on Aβ42, which was verifed with the
TT assay. We also conducted a molecular docking study on
Cassia compounds and the β-sheet pentamer (2BEG) to de-
termine the interaction of the test compounds with Aβ ag-
gregates. We found that these compounds conjugated with
Aβ42 β-sheet pentamers with a binding afnity of −6.39 to
−9.02 kcal/mol via a hydrogen bond interaction, hydrophobic
interactions, and a π-lone pair interaction (Table S3 and
Figure S3).

3.5. Peroxynitrite (ONOO‒) Scavenging Activity. In the case
of the ONOO-radical scavenging assay, compounds 8 and 33
showed strong scavenging activity with EC50 values of
0.83± 0.03 and 2.05± 0.04 μM, respectively (Table 2).
Compounds 5 and 14 also showed potent activity with EC50
values of 4.33± 0.12 and 9.34± 0.86 μM, respectively. In-
terestingly, the ONOO‒ radical scavenging activity of
compound 8 was two-fold higher than that of the positive
control, L-penicillamine (IC50 �1.61± 0.09 μM). Compound
33 showed a similar scavenging activity as L-penicillamine.
Other test compounds (Table 2) showed moderate to mild
scavenging efects. Altogether, our study demonstrates that
compounds 8, 33, 5, and 14, in descending order, are
promising antioxidants.

Table 1: Continued.

Compounds BSA Human insulin
IC50 (µM)a

Emodin 1-O-β-gentiobioside (21) >200 >200
Chrysophanol triglucoside (22) >200 >200
Chrysophanol tetraglucoside (23) >200 >200
Naphthopyrones
Rubrofusarin (24) 42.58± 1.79 87.03± 3.93
Cassiaside (25) 101.37± 4.72 >200
Rubrofusarin 6-O-β-D-glucopyranoside (26) >200 >200
Rubrofusarin 6-O-β-D-gentiobioside (27) 38.89± 2.05 97.69± 7.88
Rubrofusarin 6-O-β-D-apiofuranosyl-(1⟶6)-O-β-D-glucopyranoside (28) >200 175.38± 6.62
Rubrofusarin triglucoside (29) >200 128.35± 4.39
Rubrofusarin tetraglucoside (cassiaside B2) (30) >200 >200
Demethylfavesperone 10-O-β-D-glucopyranoside (31) >200 >200
Isorubrofusarin gentiobioside (32) >200 163.79± 5.97
Toralactone 9-O-β-gentiobioside (33) 40.36± 1.36 >200
Cassialactone 9-O-β-gentiobioside (34) 7.52± 1.19 >200
(3R)-Cassialactone 9-O-β-D-glucopyranoside (35) 23.40± 1.05 >200
(3S)-9,10-Dihydroxy-7-methoxy-3-methyl-1-oxo-3,4-dihydro-1H-benzo[g]
isochromene-3-carboxylic acid 9-O-β-D-glucopyranoside (36) 11.63± 0.12 >200

Naphthalenes and Naphthalenic lactones
Cassitoroside (37) >200 >200
1-Hydroxyl-2-acetyl-3,8-dimethoxy-naphthalene-6-O-β-D-apiofuranosyl-(1⟶2)-
β-D-glucopyranoside (38) 89.03± 3.08 >200

Aminoguanidineb 590.94± 2.81 —
aTe 50% inhibitory concentration (IC50) values (μM) were calculated from a log dose inhibition curve and are expressed as mean± SEM of triplicate
experiments. bPositive control.
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4. Discussion

Advanced glycation end products (AGEs) are a heteroge-
neous class of molecules (hydroimidazolones, 3-
deoxyglucosone derivatives, bis(lysyl)imidazolium cross-
links, and monolysyl adducts) formed due to non-
enzymatic protein glycation by glucose, which have detri-
mental efects on the normal physiology and functions of
a biological system. Te formation and accumulation rate of
AGEs is elevated in diabetes, renal failure, and aging.
Considerable evidence links accelerated AGE formation
with hyperglycemia, which leads to the development of long-
term vascular complications due to subsequent accumula-
tion in vessel wall proteins [41].

Te ability of insulin to regulate plasma glucose ho-
meostasis is impaired by glycation. Once insulin is glycated,
insulin receptors do not recognize the hormone, prolonging
the half-life, which leads to hyperinsulinemia and insulin
resistance [42]. A recent study by Iannuzzi et al. [43]
demonstrated that D-ribose-induced insulin glycation af-
fects endothelial cell viability through the mitochondrial
pathways of apoptosis (caspase 9 and 3/7), intracellular ROS
activation, and the transcription factor NF-kB activation.

ROS is one signaling molecule for signal transduction of
several receptors, including the receptor for advanced gly-
cation end products (RAGE).Te interaction of this receptor
with AGEs causes oxidative stress by enhancing ROS gen-
eration and NF-kB activation.

AD and T2D share many pathophysiological features,
including increased oxidative stress and amyloid aggrega-
tion [44], and cerebrovascular disease is one of the major
complications of T2D. Of the various forms of insulin, a key
hormone regulating glucose homeostasis, monomeric and
dimeric forms are less stable than hexamers and tend to
aggregate, forming amyloid fbrils [45, 46]. Pathological
conditions related to insulin fbril formation can occur in
diabetic patients. In addition, insulin is susceptible to non-
enzymatic glycation under diabetic conditions. Accumula-
tion of the end products of glycation, AGEs, is the main
factor responsible for the development and progression of
several diabetic complications, including nephropathy,
retinopathy, and neuropathy [47]. In addition, increasing
evidence suggests that depending on the glycating agent,
glycation diferentially afects the amyloid aggregation
[48, 49]. Tus, the study of anti-amyloidogenic and anti-
AGE agents to develop new potential therapeutic strategies

Table 2: Peroxynitrite scavenging activity of compounds isolated from C. obtusifolia.

Compound Concentration (μgmL−1)a Inhibition (%) (mean± SD)
IC50

b

μgmL−1 μM

Obtusifolin (4) 10 17.51± 8.02 38.99± 1.85 137.28± 2.4550 75.37± 4.34

Aurantio-obtusin (5)

0.4 33.64± 3.88

1.43± 0.24 4.33± 0.122 59.05± 3.57
10 71.72± 1.74
50 87.75± 1.67

Obtusifolin 2-glucoside (7) 10 9.02± 3.93 50.68± 1.89 113.63± 3.1450 49.50± 2.73

7-Hydroxyemodin (alaternin) (8)
0.08 29.60± 2.80

0.24± 0.02 0.83± 0.030.4 69.31± 2.45
2 95.86± 0.84

Emodin (10)
2 5.21± 7.83

14.83± 3.00 54.92± 1.2210 42.79± 5.02
50 96.14± 41.20

2-Hydroxyemodin 1-methyl ether (11) 10 16.87± 7.29 30.78± 3.21 102.60± 7.1150 79.16± 2.42

Questin (12) 10 2.65± 2.00 33.95± 0.50 119.54± 4.8150 85.21± 0.54

Glucoaurantio-obtusin (14) 2 32.59± 8.05 4.60± 0.12 9.34± 0.8610 79.51± 0.26

Chrysophanol triglucoside (22) 10 4.37± 2.29 59.27± 1.55 80.09± 0.9750 41.70± 0.74

Toralactone 9-O-β-gentiobioside (33)

0.4 36.05± 1.59

1.22± 0.06 2.05± 0.042 63.07± 0.38
10 82.92± 0.80
50 93.22± 0.50

Penicillamine
0.4 56.10± 1.54

0.24± 0.04 1.61± 0.092 82.92± 1.51
10 97.39± 1.60

aFinal compound concentration of the test samples was 0.4–50 μgmL−1, which were dissolved in DMSO. bTe concentrations producing 50% inhibition (IC50,
in μgmL−1 and μM) were calculated from the log dose inhibition curve and expressed as mean± SEM of duplicate experiments.
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in amyloid-based neurodegenerative disease is increasing
[50, 51].

In light of these considerations, we designed the current
study to investigate the anti-glycation efect of Cassia seed-
derived secondary metabolites in human insulin and bovine
serum albumin, as well as their anti-Aβ aggregation and
antioxidant efects.

Tiofavin T fuorescence enhancement indicates the
structural changes and formation of fbrils as a result of
glycation. Natural products have been shown to ofer pro-
tection from structural changes caused by glycation [52]. In
the Aβ aggregation assay, anthraquinones 5, 8, 9, and 12 and
naphthopyrone glycosides 25 and 28 showed promising
inhibition of Aβself-aggregation in a dose-dependent
manner. Several low-molecular-weight compounds have
recently been discovered that can alter the Aβ-aggregation
process. However, detailed descriptions of their interactions
with oligomers and fbrils have so far been lacking. In
a previous study, molecular dynamics simulations were used
to investigate the efect of two relatively similar planar
tricyclic compounds, 9,10-anthraquinone and anthracene,
on the early stages of segmental Aβ-aggregation [39].
Simulations demonstrated that 9,10-anthraquinone hinders
the heptapeptide segment H14QKLVFF20, a hydrophobic
stretch that promotes Aβself-assembly more than anthra-
cene. In particular, 9,10-anthraquinone intercalates into
β-sheets because polar interactions between compounds and
peptide backbones disrupt interchain hydrogen bonds and
promote their failure. Recently, a similar study demon-
strated that emodin, daunorubicin, and Adriamycin inhibit
the aggregation of tau protein into paired helical flaments
[53]. Likewise, carmine, an anthraquinone core attached to
a glucose moiety, efectively reduced aggregation of the
model 41 GCWMLY 46 peptide fragment (GDC6 peptide) in
a dose-dependent manner [54]. Natural quinones remain an
important source of novel anti-amyloid inhibitors. Emodin
and purpurin, two natural anthraquinones, have been re-
ported to inhibit tau protein aggregation and have neuro-
protective efects [53, 55]. Te phenolic hydroxyl groups on
the anthraquinone backbone can bind to hydrophobic
residues to prevent oligomerization caused by hydrophobic
interactions. Tis feature may explain why anthraquinone
derivatives inhibit aggregation more efectively than an-
thraquinones [56]. Te prime interactions leading to the
activity of anthraquinone molecules are hydrogen bonds,
aromatic contacts, and charge-based contacts [39].

To gain further insights into the molecular interaction of
Cassia compounds with Aβ aggregates, in silico studies were
undertaken. Molecular docking studies of Cassia com-
pounds with the fbrillar form of α-helical Aβ42 monomer
(PDB ID: 1Z0Q), β-sheet Aβ42 monomer, and Aβ42 pen-
tamer (PDB ID: 2BEG) were performed to determine the
likely mode of interaction. Test compounds bound to
α-helical monomers (1Z0Q) and β-sheet monomers (2BEG)
with binding afnities of approximately −4.00 to −5.00 kcal/
mol, via hydrophobic, electrostatic, and hydrogen bonding
interactions (Tables S1–S3; Figures S1–S3).

A natural favonol, morin, exhibits a neuroprotective
efect by inhibiting AB aggregation via fbril destabilization

and the production of of-pathway intermediates [57], in-
hibition of the formation of IAPP aggregates, and disag-
gregation of preformed fbrils [58]. In addition, morin binds
to monomeric, oligomeric, and fbrillary insulin, thereby
preventing conformational changes and avoiding the release
of oligomeric species [59]. Terefore, morin is used as
a reference natural drug. In the docking study, reference
ligand morin and 1Z0Q formed a complex with a binding
afnity of −4.66 kcal/mol through three hydrogen-bonding
interactions (Gln15, Glu11, Glu22) and a hydrophobic in-
teraction with Glu22 (Table S1 and Figure S1). Morin has
three hydrogen bonds (Leu17C, E, Phe19D) and six hydro-
phobic residues, Leu17E (π-alkyl), Leu17D (π-σ, π-alkyl),
Phe19C (π-π, T form), Val40C (π-σ, π-alkyl), and Val40D,E
(π-alkyl), for 2BEG pentamer through binding with
a binding afnity of 7.42 kcal/mol (Table S3 and Figure S3).
In particular, Cassia anthraquinone and naphthopyrone
glycosides bound to α-helix or β-sheet monomers like that of
the reference compoundmorin (Tables S1 and S2; Figures S1
and S2) which also corroborate a recent report [60]. Like-
wise, with binding afnities of −6.39 to −9.02 kcal/mol via
hydrogen bonding, hydrophobic, and π lone pair in-
teractions (Table S3 and Figure S3), these compounds bound
to the Aβ42 β-sheet pentamers.

Te in vitro anti-glycation assay results show that Cassia
compounds inhibit the protein glycation reaction in human
insulin. In particular, compounds 5, 15, 16, 20, 24, and 27
inhibited the glycation of human insulin with IC50 values
less than 100 µM. Interestingly, compounds 8, 18, 24, 26,
and 33–36 inhibited the glycation of bovine serum albumin
with IC50 values less than 50 µM, whereas 11 and 38 showed
IC50 values between 50 and 100 µM.A small change in the
functional moiety in the structure greatly afects the bio-
activity. Our graphical abstract relates diferences in the
structures of a series of molecules to diferences in their
biological activity. However, a detailed structure-activity
relationship should be conducted to explore further.

An exposure time of the glycating agent afects the
structural changes in the protein. In a study by Khan et al.
[61], thymoquinone showed a much more protective efect
on the glycation of superoxide dismutase by methyl-
glyoxal at short incubation time (1 h) compared to longer
incubation (10 days). In the same study, the band in
SDS-PAGE appeared lighter with an increase in the du-
ration of exposure to the sugar, presumably indicating
cross-linking and/or degradation into small peptides. In
our study, the incubation time is 7 days. So, based on the
previous report [61], our test compounds could have
a promising anti-glycation efect in a short
incubation time.

Proteins exposed to glucose are cleaved and undergo
conformational changes, forming fuorescent adducts called
“sugar fuorophores.” Glycation is a functional and struc-
tural change in macromolecules resulting from exposure to
high glycemic levels of glucose, caused by the covalent
binding of glucose to amino groups of proteins, resulting in
surface charges, hydrogen-bonding capacity, cellular rec-
ognition, and/or altered formation of cross-linkable com-
plex products [62–64]. Protein fragmentation by
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monosaccharides has been observed previously but was not
considered equivalent to free radical damage [65]. A study
by Hunt et al. demonstrates that monosaccharide in-
corporation into proteins can be independent of the frag-
mentation and conformational changes that occur when
proteins are exposed to glucose [66]. Tey also showed that
the level of sugar fuorophore formation does not match the
extent of protein conformational changes. Tus, the con-
formational change induced by the exposure of the protein
to glucose can be dissociated from the incorporation of the
monosaccharide into the protein itself and confrms that free
radical and peroxide production must be considered in any
situation where biological structures are exposed to high
levels of monosaccharides.

Due to the antioxidant properties, several natural com-
pounds are used to treat depression, an example being poly-
phenolic compounds that modulate neurotransmitter systems
and simultaneously induce anti-infammatory, anti-apoptotic,
antigenic toxicity, antimutagenic, and antioxidant efects that
can protect against cellular damage [67]. In this study, the
ONOO-radical scavenging assay showed that compounds 5, 8,
14, and 33 are strong antioxidants (Table 2). As oxidative stress
is directly involved in the pathogenesis of depressive disorders
[68], the promising antioxidant efect of Cassia compounds via
ONOO-radical scavenging could be neuroprotective, which
warrants in vivo studies.

5. Conclusion

In summary, a total of thirty-eight metabolites from Cassia
seeds comprising anthraquinones, naphthopyrones, naph-
thalene, and naphthalenic lactones and their glycosides were
tested for anti-glycation, anti-β-amyloid aggregation, and
antioxidant efects. Results showed that compounds 9–12,
14–18, 24, 25, 27, 33–36, and 38 exhibit good inhibition of
AGE formation. Likewise, compounds 5, 15, 16, 20, 24, and
27 showed good inhibition of D-ribose-mediated glycation
of human insulin. In addition, compounds 8 and 12 showed
promising inhibition of Aβ aggregation in the thiofavin-T
assay, and compounds 5, 8, 14, and 33 scavenged the
peroxynitrite anion (ONOO−) at lower concentrations.
Molecular docking simulations confrmed that these active
compounds have great potential to interact with the Aβ42
peptide and interfere with its self-assembly and confor-
mational transition, and the inhibition of Aβ aggregation
prevents full peptide Aβ42 aggregation. Overall, the present
study highlights Cassia compounds as potential neuro-
protective agents against comorbid AD and diabetes.

Still, in silico molecular dynamics studies predicting the
stability of ligand-receptor complexes are lacking. Pene-
tration into the central nervous system and stability of the
ligand-receptor complex remain to be studied in vivo. Te
efects of the tested compounds at the cellular or organismal
level remain unknown because in silico modeling cannot
account for interactions between compounds and other
unrelated targets. In the future, a more detailed un-
derstanding of amyloid β-aggregation, especially using
in vivo models, will be critical to ensure the activity of these
Cassia compounds in comorbid AD and diabetes.
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