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To explore the mechanism of the hypoglycemic efect of BQP in type 2 diabetic mice induced by the combination of high-fat diet
(HFD) and streptozotocin (STZ). Treatment with BQP signifcantly ameliorated blood glucose and lipid levels and improved
oxidative stress levels and liver injury levels. Te results of the intestinal fora study showed that the concentration of short-chain
fatty acids (SCFAs) in cecum contents of BQP group mice was signifcantly higher than those of the diabetic mice. BQP treatment
improved microbial disorders in feces, altered the diversity of intestinal fora, reduced the Bacteroidota to Firmicutes (B/F) ratio in
diabetic mice, and increased the abundance ofDubosiella, Akkermansia, Faecalibaculum, and Allobaculum. Spearman correlation
analysis showed that changes in intestinal microorganisms were closely related to biochemical parameters. Te function’s
prediction of gut microbiota indicated that the microbial compositions involving chemoheterotrophy, aerobic chemohetero-
trophy, Gram-negative, potential pathogenicity, and sulfur cycle were changed. Conclusion. Intake of BQP can efectively regulate
the blood glucose level of diabetic mice through improving glucose and lipid metabolism, and its mechanismmay be related to the
improvement of obesity and intestinal microecological balance.

1. Introduction

Te incidence of type 2 diabetes mellitus (T2DM) is in-
creasing every year as people’s lifestyles change (high-fat
food intake and sedentary lifestyle) [1]. In addition, the
increase in the number of patients with T2DM has put
tremendous pressure on healthcare services [2]. Te eco-
nomic burden of diabetes is mainly due to the development
of diabetes-specifc complications, including retinopathy,
nephropathy, neuropathy, and cardiovascular disease [3].
Te glucose-lowering drugs currently on the market have
certain therapeutic efects, but they have been also proved to
have some inevitable side efects [4]. Terefore, natural,
efcient, and less toxic compounds have become the focus of
researchers’ attention.

Polysaccharides are a class of structurally diverse mac-
romolecules. Tey have attracted much attention from
scholars because of their antidiabetic, antioxidant, and

immunomodulatory functions, as well as their ability to
reduce the toxicity, teratogenicity, and potential carcino-
genicity of synthetic chemical drugs [5, 6]. An increasing
number of studies have shown that polysaccharides can be
involved in changes in the composition and function of the
intestinal fora, which is a large microbial community in the
intestine, and that polysaccharides can infuence the glucose
homeostasis of the host by improving the intestinal fora
[7–10]. Meanwhile, polysaccharides can ferment in the in-
testinal fora and alleviate T2DM by producing metabolites
such as SCFAs [11, 12].

Quinoa is an annual herb native to the Andean region of
South America and has been introduced in recent years as
a cold- and drought-tolerant plant for cultivation in many
countries [13]. In addition to the main nutritional ingredient
carbohydrates, quinoa also contains many phytochemicals,
including phenolic compounds, bioactive peptides, and
polysaccharides [14]. Quinoa polysaccharide has been
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reported to have antioxidant and antidiabetic activity and
immunomodulatory activity against RAW264.7 cells [15].
However, there are fewer studies on the ameliorative efects
of BQP on type 2 diabetic mice.

Te present study was undertaken to investigate the
antidiabetic properties of the polysaccharide from black
quinoa in HFD and STZ-induced T2DM models. Further-
more, the efect of polysaccharides on the imbalance of
intestinal fora in T2DM was investigated by 16S rRNA.

2. Materials and Methods

2.1. Materials. STZ was obtained from Beijing Coolaber
Technology Co., Ltd. Basal feed and HFD were obtained
from ShenyangMaohua Biotechnology Technology Co., Ltd.
Black quinoa was obtained from Golmud Namu Blue
Trading Co., Ltd. (Qinghai, China).

2.2. Preparation of BQP. Some modifcations were made to
BQP extraction as described by Ren and Liu [16, 17]. After
crushing black quinoa, soaked in petroleum ether to de-
grease and fltered.Te fltrate was soaked in 95% ethanol for
24 h and then fltered. After drying, the flter residue was
soaked in distilled water (1 : 21, w/v) for 2 h at room tem-
perature and then placed in an ultrasonic device. Te
temperature was 61°C for 51min. After removing the protein
with trypsin. Collect the supernatant, and then adjust the
pH to 7.0 and concentrate. Soak in 95% ethanol at 4°C for
1 day. Te precipitate was dissolved in an appropriate
amount of distilled water, left for dialysis for 3 days, and then
freeze-dried to obtain BQP.

2.3. Chemical Composition Analysis. Te polysaccharide
content was measured by the phenol-sulfuric acid method
[18]. Te monosaccharide composition was determined by
high-performance liquid chromatography [19]. Molecular
weight (Mw) of BQP was determined by gel permeation
chromatography (GPC) [20]. Te molecular morphology of
the polysaccharides was characterized by SEM [19].

2.4. Animal and Experimental Design. Eight-week-old male
C57BL/6 mice (21± 1 g) were acquired from Liaoning
Changsheng Biotechnology Co., Ltd. (Liaoning, China,
SCXK2020-0001). All operations were approved by the
Animal Care Committee of Heilongjiang Bayi Agricultural
University and carried out as per ethical standards (Refer-
ence number: SPXY2023008).

All mice were caged at 24± 2°C with lights on from 8:00
a.m. to 8:00 p.m. After 1 week of acclimation, 28 mice were
randomly selected to be fed HFD for 6weeks and then
injected with STZ (50mg/kg). Injection was given once every
day for 3 consecutive days. Mice were free to eat and drink
during the modeling period. After 3 days of modeling, the
mice were made to fast on water for 6 h, and fasting blood
glucose (FBG) measured by tail-tip blood≧ 11.1mmol/L was
considered successful modeling. After successful modeling,

the mice were divided into 4 groups (n� 7): NC group
(treated with basal diet), diabetic control (DC) group
(treated with HFD), BQP-L group (treated with HFD+BQP
400mg/kg), and BQP-H group (treated with HFD+BQP
800mg/kg).

During the experiment, mice were free to eat and drink.
After 28 days of BQP intervention, the mice were anes-
thetized and dissected after fasting for 12 h. Blood was taken
from the abdominal aorta and centrifuged. Te liver was
cleaned with saline. Serum, liver, and fecal contents were
stored at −80°C (Figure 1).

2.5. Determination of Body Weight (BW) and Oral Glucose
Tolerance Test (OGTT). Te BW, water intake, and food
intake of mice were measured every 7 days. After 21 days of
oral administration, the mice were made to fast for 12 h, and
the glucose solution was administered at a dose of 2 g/kg.
Tissue weight was divided by mouse BW to calculate liver
and heart indices [4]. Te blood glucose concentration was
measured at 0, 30, 60, 90, and 120min, and the area under
the curve (AUC) was calculated.

2.6. Analysis of Fasting Blood Glucose (FBG), Glycated He-
moglobin (GHb), Insulin (INS), and Homeostasis Model As-
sessment of Insulin Resistance (HOMA-IR). FBG was
measured from the tail vain after fasting for 10 hours a week.
Te levels of GHb and INS were measured according to
ELISA instructions (Shanghai Enzyme-Link Biotechnology
Co. Ltd.). HOMA-IR was calculated using the following
formula [21]:

HOMA-IR �
FBG (mmol/L) × INS (mIU/L)

22.5
. (1)

2.7. Determination of Lipid Parameters. Te serum total
cholesterol (TC), triglyceride (TG), low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein choles-
terol (HDL-C) levels were measured with commercial kits
(Nanjing Jiancheng Bioengineering Institute).

2.8. Determination of Oxidative Stress. Malondialdehyde
(MDA), nitric oxide (NO), and glutathione peroxidase
(GSH) levels were measured according to the kit instructions
(Nanjing Jiancheng Bioengineering Institute). Te catalase
(CAT) assay was performed using kit instructions (Beijing
Solarbio Science & Technology Co., Ltd.).

2.9. Determination of Infammation and Liver Injury.
Interleukin-1β (IL-1β) was measured according to the
ELISA instructions with the standard (Shanghai Enzyme-
linked Biotechnology Co. Ltd., Shanghai China). Te as-
sessment of liver function was performed by detecting al-
anine transaminase (ALT) activity using commercial kits
(Nanjing Jiancheng Bioengineering Institute).
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2.10. Quantifcation of SCFAs in Cecal Samples. Te mouse
feces weighing 0.2 g were added to 0.24mL 2.5mM sulfuric
acid solution, and the 0.2mL supernatant was obtained after
centrifugation. Adding 25% (V/V) metaphosphoric acid
solution 0.04mL, fully mixed and placed in refrigerator
overnight. Ten it was completely thawed, and the sample
was centrifuged at.Te supernatant was fltered by a 0.22 μm
aqueous membrane for high-performance liquid chroma-
tography (HPLC) analysis. Te contents of SCFAs were
determined using an Agilent 1200 high-performance liquid
chromatographer equipped (Agilent Technologies Co. Ltd.).

2.11. Gut Microbiota Analysis. After genomic DNA was
extracted from feces, 1% agarose gel electrophoresis was
used to check the DNA extract, and DNA concentration and
purity were determined with a NanoDrop 2000 UV-vis
spectrophotometer (Termo Scientifc, Wilmington, USA).
Te hypervariable region V3-V4 of the bacterial 16S rRNA
gene was amplifed with primer pairs 338F (5′-ACTCCT
ACGGGAGGCAGCAG-3′) and 806R (5′-GGAC-
TACHVGGGTWTCTAAT-3′) by using an ABI GeneAmp®9700 PCR thermocycler (ABI, CA, USA). Purifed amplicons
were pooled in equimolar and paired-end sequenced
(2× 300) on an Illumina MiSeq platform (Illumina, San
Diego, USA) according to the standard protocols by
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China).

Te raw 16S rRNA gene sequencing reads were
demultiplexed, quality-fltered by Fastp, and merged by
FLASH. Operational taxonomic units (OTUs) with 97%
similarity cutof were clustered using UPARSE. Te tax-
onomy of each OTU representative sequence was analyzed
by RDP Classifer (https://rdp.cme.msu.edu/) against the
16S rRNA database using a confdence threshold of 0.7.

2.12. Statistical Analysis. All values were presented as the
mean± SD for each group. Statistical analysis was performed
using SPSS 26.0.

3. Results

3.1. Physicochemical Characteristics of BQP. Te total sugar
content of BQP was 78.23± 0.38%. Te relative percentages
of monosaccharide composition of BQP were 0.560%
(mannose), 0.418% (ribose), 0.467% (rhamnose), 1.889%
(glucuronide), 0.388% (galacturonic acid), 91.169% (glu-
cose), 2.512% (galactose), 0.305% (xylose), 2.031% (arabi-
nose), and 0.262% (fucose) (Figure 2(a)). Te GPC spectrum
showed a peak in BQP (15.823min). Mw was 8.087×103Da
(Figure 2(b)). At low magnifcation, the BQP consists of
irregular and fragmented structures. As the magnifcation
increases, it can be observed that the BQP surface is rough
and forms irregular aggregates with abundant porosity
(Figure 3).

3.2. Efects of BQP on BW, Food Intake, Water Intake, and
Organ Weight. Te BW, water intake, food intake, heart
index, and liver index of mice in the DC group were in-
creased. After 4 weeks of administration, the BQP of both
groups inhibited the upward trend, and the BQP-H efect
was better. Te results showed that BQP could improve
obesity, food intake, water intake, and organ index in di-
abetic mice (Table 1).

3.3. Efects of BQP on FBG, GHb, INS, and HOMA-IR.
FBG, GHb, INS, and HOMA-IR were signifcantly higher in
the DC group than in the NC group, indicating that the DC
mice developed glucose metabolism disorders and insulin

C57BL/6
(Eight-week-old male) 

Acclimatization
for 1 week 

‧ TC ‧ GHb

‧ TG ‧ OGTT
STZ 

(50 mg/kg) ‧ LDL-C ‧ INS

Diabetes control (DC) · HDL-C ‧ ALT

· IL-1β
High fat diet for 6 weeks BQP low dose group (BQP-L) 

(400 mg/kg) 

BQP high dose group (BQP-H) 

(800 mg/kg) 

‧ CAT ‧ NO
4 weeks ‧ GSH ‧ MDA

0 W 

Normal control (NC) 
Basal diet for 10 weeks 

6 W 10 W 

‧ SCFAS
‧ 16S rRNA

Figure 1: Animal experimentation.
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resistance. After 4 weeks of BQP-L and BQP-H in-
terventions, the levels of FBG, GHb, INS, and HOMA-IR
were reversed (Figures 4(a)–4(d)). Tis indicates that BQP
intervention was benefcial for restoring blood glucose levels
and improving insulin resistance.

3.4. Efect of BQP on OGTT. OGTT is used to assess glucose
tolerance in diabetes. After 30min of glucose challenge, the
blood glucose levels of normal and diabetic mice rose rapidly
and then fell slowly. From 60min onwards, the blood
glucose in the BQP-L and BQP-H groups was signifcantly
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Figure 2: Chemical composition of BQP. (a) Standard curve of monosaccharide composition and monosaccharide composition of BQP:
1-mannose, 2-ribose, 3-rhamnose, 4-glucuronic acid, 5-galacturonic acid, 6-N-acetyl-glucosamine, 7-glucose, 8-N-acetyl-amino-
galactose, 9-galactose, 10-xylose, 11-arabinose, and 12-fucose; (b) molecular weight distribution.
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Figure 3: SEM images of BQP: (a) 200 μm, (b) 50 μm, (c) 10 μm, and (d) 2 μm.
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lower than that in the DC group. At 120min, the blood
glucose in the BQP-L and BQP-H groups was close to the
initial blood glucose level and signifcantly lower than that in
the DC group (Figure 4(e)), and the AUC of OGTTwas also
signifcantly lower than that in the DC group (Figure 4(f)),
showing that BQP can regulate glucose tolerance in
diabetic mice.

3.5. Efect of BQP on SerumLipids. Serum TC, TG, and LDL-
C were signifcantly higher, and HDL-C was signifcantly
lower in the DC group thanmice in the NC group, indicating
the presence of abnormal lipid metabolism in the DC group.
After BQP treatment, TC, TG, and LDL-C were signifcantly
lower and HDL-C was signifcantly higher in the BQP-L and
BQP-H groups than mice in the DC group (Table 1). It
showed that BQP could improve abnormal lipid metabo-
lisms in diabetic mice.

3.6. Efect of BQP on Antioxidative Stress Ability.
Compared to the NC group, the DC group showed signif-
icantly lower ALT and GSH activities and higher MDA and
NO levels. In contrast, after the intervention of BQP-L and
BQP-H, CAT and GSH levels increased signifcantly, NO
levels decreased and MDA levels decreased signifcantly
(Figures 5(a)–5(d)), indicating that BQP could improve the
antioxidant capacity in diabetic mice.

3.7. Efects of BQP on Infammation and Liver Injury. Te
levels of IL-1β and ALT in the DC group were signifcantly
higher than those in the NC group. Compared with the DC
group, the levels of IL-1β and ALT in the BQP-L and BQP-H
groups were reduced to diferent degrees (Figures 5(e) and
5(f)), indicating that BQP could relieve infammation and
liver injury in mice.

3.8. Determination of SCFAs in Gut. Te contents of acetic
acid, propionic acid, butyric acid, and total acid were sig-
nifcantly lower in the DC group than in the NC group.
However, the contents of acetic acid, propionic acid, butyric
acid, and total acid recovered to some extent after BQP-L
and BQP-H intervention (Figure 6).

3.9. Diversity of the Gut Microbiota. Te above experiments
showed that BQP-Hwasmore efective in the intervention of
T2DM.Terefore, BQP-H was chosen for the determination
of intestinal fora. Te rarefaction curves show that the
sequencing results cover almost all the sequences in the
samples, indicating that the sequencing results could refect
the real situation of the microbial community in the samples
(Figures 7(a) and 7(b)).

To assess the efect of BQP treatment on the diversity of
the intestinal fora, we analyzed the alpha diversity and beta
diversity of the intestinal fora after 4 weeks of BQP treat-
ment. In alpha diversity, the Chao1 index and the ACE index
were used to calculate the richness of bacterial communities,
and the Shannon index was used to calculate the diversity of
bacterial communities. Te results showed that the richness
and diversity of the intestinal fora decreased after BQP
intervention (Figures 7(c)–7(e)). PCoA based on
Bray–Curtis distance is used to analyze the beta diversity.
DC and BQP occurred within group aggregation, indicating
that each group was composed of similar microbial com-
munities (Figure 7(f )).

3.10. Composition Analysis of the Gut Microbiota. Te rel-
ative abundance of the dominant groups at the phylum level
was analyzed for two groups (Figures 8(a)–8(c)). Compared
to the DC group, the BQP group showed an increased
abundance of the Firmicutes and decreased abundance of
the Bacteroidota and the B/F ratio (Figure 8(d)). To further
determine the enriched bacteria in two groups, LEfSe
analysis was performed (Figures 9(a)–9(b)). In the BQP
group, Erysipelotrichaceae and Akkermansiaceae were in-
creased at the family level. Compared with the DC group, the
abundance ofDubosiella,Akkermansia, Faecalibaculum, and
Allobaculum was increased in the BQP group, while the
abundance of Helicobacter, Odoribacter, and Mucispirillum
was decreased.

3.11. Correlation of the Gut Microfora with Metabolic
Parameters. To explore the associations of the gut micro-
biota with biochemical parameters, we specifcally calculated
Spearman’s correlation coefcient between the top 40 most
abundant genera and the biomarkers. Helicobacter and

Table 1: Efects of BQP on body weight and serum lipid levels in diabetic mice.

NC DC BQP-L BQP-H
Initial weight (g) 25.83± 0.91∗∗ 27.89± 0.97 27.15± 0.67 26.80± 0.61
Final weight (g) 29.07± 0.88∗∗ 32.50± 1.05 30.57± 0.62∗∗ 30.05± 0.40∗∗
Weight gain (g) 3.24± 0.39∗∗ 4.61± 0.34 3.41± 0.42∗∗ 3.26± 0.30∗∗
Food intake (g/mouse/day) 4.51± 0.28 4.65± 0.18 4.47± 0.13 4.38± 0.33
Water intake (mL/mouse/day) 5.02± 0.49∗∗ 8.24± 0.57 7.76± 0.28 7.42± 0.35∗
Heart index (%) 0.39± 0.04∗ 0.48± 0.07 0.39± 0.02∗ 0.38± 0.04∗∗
Liver index (%) 3.50± 0.14∗∗ 4.21± 0.23 3.92± 0.79∗ 3.71± 0.10∗∗
TC (mmol/L) 1.82± 0.14∗∗ 3.37± 0.13 2.78± 0.13∗ 2.63± 0.19∗
TG (mmol/L) 0.64± 0.09∗∗ 0.91± 0.12 0.77± 0.05∗∗ 0.74± 0.09∗∗
LDL-C (mmol/L) 3.57± 0.27∗∗ 5.49± 0.98 4.10± 0.54∗∗ 3.99± 0.32∗∗
HDL-C (mmol/L) 1.20± 0.11∗∗ 0.54± 0.14 1.06± 0.16∗∗ 1.15± 0.17∗∗

Note. vs. DC group, ∗p< 0.05; ∗∗p< 0.01. vs. BQP-L group, #p< 0.05; ##p< 0.01.
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Mucispirillumwere enriched in the DC group, and they were
positively correlated with the levels of IL-β, NO, LDL-C, TG,
MDA, BW, ALT, FBG, HOMA-IR, INS, TC, and GHb but
negatively correlated with CAT, GSH, HDL-C, and SCFAs
levels. In addition, microorganisms enriched in the BQP

group, such as Allobaculum, Faecalibaculum, Dubosiella,
and Akkermansia, were negatively correlated with IL-β, NO,
LDL-C, TG, MDA, BW, ALT, FBG, HOMA-IR, INS, TC,
and GHb but positively correlated with CAT, GSH, HDL-C,
and SCFAs (Figure 10).
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Figure 4: Efects of BQP on blood glucose levels and OGTT in diabetic mice. (a) FBG, (b) GHb, (c) INS, (d) HOMA-IR, (e) changes in oral
glucose tolerance blood glucose concentration, and (f) area under the curve (AUC) in diabetic mice. vs. DC group, ∗p< 0.05; ∗∗p< 0.01. vs.
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3.12.FunctionalAnalysis. When studying the function of the
microbiome, the analysis of the phenotype of the micro-
biome is also signifcant. Te BugBase phenotype analysis
(Figures 11(a)–11(f)) showed that the relative abundance of
Gram-Positive and Contains-Mobile-Elements was signif-
cantly increased compared with the DC group, but the
relative abundance of Forms-Bioflms, Gram-Negative, and
Potentially-Pathogenic was signifcantly decreased. Tere-
fore, the change in microbiome composition was accom-
panied by the change in bacterial phenotype, and the efect of

BQP on intestinal fora of diabetic mice was also refected in
bacterial phenotypes.

We further predicted the microbial community function
using the FAPROTAX software (Figure 12). Functional
group chemoheterotrophy was the most abundant in the
bacterial community, and their abundance decreased after
BQP intervention. In addition, BQP improved animal
parasites or symbionts, human pathogens, and human
pathogen pneumonia that may have a negative impact on
diabetes. Meanwhile, BQP could enhance the functional
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Figure 5: Efects of BQP on oxidative stress, infammatory factors, and liver injury in diabetic mice. (a) MDA, (b) NO, (c) CAT, (d) GSH,
(e) IL-1β, and (f) ALT. vs. DC group, ∗p< 0.05; ∗∗p< 0.01. vs. BQP-L group, #p< 0.05; ##p< 0.01.
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groups related to the sulfur cycle of sulfate respiration and
respiration of sulfur compounds and reduce the functional
groups related to carbon cycles such as photoautotrophy and
oxygenic photoautotrophy.

4. Discussion

In this study, black quinoa was used as a raw material to
extract polysaccharide. SEM showed that the surface of BQP
was rough and irregularly aggregated. BQP was mainly
composed of glucose with a molecular weight of
8.087×103Da. Low molecular weight polysaccharide (less
than 104Da) is conducive to human absorption and has high
activity for human health [22].

Moreover, this study also revealed the antidiabetic efects
and their mechanistic role of BQP in C57BL/6 mice. Te
mice are susceptible to diet-induced obesity and exhibit
metabolic abnormalities, such as dyslipidemia and hyper-
glycemia [23]. After 4 weeks of administration, BW gain and
an abnormal increase in food intake and water intake were
modifed in the BQP group mice. BQP treatment also de-
creased the levels of serum TC, TG, and LDL-C and in-
creased the level of HDL-C. Furthermore, the levels of FBG,
GHb, INS, and HOMA-IR were signifcantly reduced after
28 days in the BQP group mice, compared with the DC
group mice. Obesity is a major deleterious factor afecting
insulin sensitivity, and appropriate supplementation with
bioactive plant extracts as a weight loss intervention has been
shown to have a positive efect on glycemic control and
prevention of diabetic complications [24]. Te results
showed that BQP intervention could modulate abnormal

lipid metabolism and hyperglycemia and improve insulin
resistance in diabetic mice.

Obesity-induced insulin resistance and disorders of
glucose and lipid metabolism increase oxidative stress [25].
Oxidative stress produces excess oxygen species (ROS) and
makes tissues susceptible to oxidative stress, which ulti-
mately leads to the development and progression of most
diabetic complications [7]. After BQP intervention, the
concentration of CAT and GSH was increased, while the
concentration of NO and MDA decreased. CAT and GSH
are important antioxidants, scavenging free radicals in the
organism, thus turning ROS into stable and harmless
molecules [17, 26, 27]. Excess NO produces oxidative stress
and eventually MDA, which leads to cellular aging or death
[17, 28]. Besides, BQP intervention reduces the concen-
tration of IL-1β and ALT. Oxidative stress produces
proinfammatory cytokines, which can induce insulin re-
sistance and promote the development of T2DM and cause
liver injury [29]. Together, these results showed that BQP not
only ameliorates oxidative stress but also inhibits the in-
fammatory response and the development of liver injury.

Intestinal fora is closely related to diseases such as
obesity and diabetes [29]. In our study, microbial com-
munity abundance and distribution in diabetic mice were
signifcantly altered by BQP intervention. Alpha diversity
was reduced after 4 weeks of BQP treatment, which was
consistent with a previous report [30]. It was mainly caused
by the bacteriostatic efect of quinoa [31]. Te beta diversity
results also showed that BQP signifcantly altered the
composition of the gut microbiota. Interestingly, a decrease
in the B/F ratio was found in the BQP group mice, which
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could be associated with an improvement in oral glucose
loading [32]. Moreover, BQP reduced the abundance of
Helicobacter, Odoribacter, and Mucispirillum and increased
the abundance of Allobaculum in T2DM mice, which were
thought to connect with the development of diabetic in-
fammation and damage to the intestinal barrier [33–36].
Te signifcant decrease of IL-1β levels in the BQP group
mice also proved this inference. In addition to the decrease
in pathogenic bacteria, the increased abundance of Dubo-
siella,Akkermansia, and Faecalibaculum could be thought to
lead to an increase in the content of SCFAs in BQP group
mice, as the previous studies reported [37–40]. In the present
study, BQP intervention signifcantly increased SCFA
content in diabetic mice, which may lead to improvement of

islet cell dysfunction and insulin resistance [41]. In SCFAs,
acetic acid inhibits fat accumulation and propionic acid
improves insulin sensitivity [29]. Acetic acid, propionic acid,
and butyric acid can all improve glycolipid metabolisms
through diferent pathways [29, 42]. Te above results
demonstrate that BQP could improve abnormal glycolipid
metabolism in diabetic mice by reducing the number of
pathogenic bacteria and increasing the number of SCFAs-
producing bacteria. Meanwhile, Spearman correlation
analysis was to determine whether the abundance of gut
microbes was associated with characteristic indicators of
T2DM. IL-β, NO, LDL-C, TG, MDA, BW, ALT, FBG,
HOMA-IR, INS, TC, and GHb were positively correlated
with Allobaculum, Faecalibaculum, Dubosiella, and
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Akkermansia, and the above biochemical indicators were
negatively correlated with Helicobacter and Mucispirillum.
Te results indicated that the changes in intestinal micro-
organisms were closely related to the biochemical param-
eters. It was further confrmed that intestinal fora is
involved in host glycolipid metabolisms, oxidative stress,
infammation, and liver injury and plays an important role
in the development of diabetes.

Furthermore, BugBase was used to predict potential
pathogenicity, and FAPROTAX was used to predict the
function of bacterial data. BQP altered the sulfur cycle. Te
interaction between the sulfur cycle and the gut microbiota
produces hydrogen sulfde which has been shown to have the
potential to interfere with diabetes and its associated
complications [43]. In addition, BQP intervention reduced
Gram-negative bacteria and potential pathogenicity in the
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intestinal fora of diabetic mice. Lipopolysaccharides (LPS)
produced by Gram-negative bacteria are implicated in the
development of several diseases, and low-level infammation
caused by LPS damage to the intestinal mucosa can damage
pancreatic islet β-cells [44, 45], suggesting that BQP may

improve diabetes-induced immune dysfunction in mice,
reduce the number of potential intestinal pathogens, and
reduce coinfections.

Tis experiment preliminarily demonstrated the ame-
liorative efect of BQP on T2DM in mice with T2DM
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induced by the combination of HFD and STZ. However,
animal experiments have some limitations. First, the
sample size of the experiment was limited, and more
samples would have provided a more solid foundation for
this study. Second, there are some diferences between mice
and human individuals.Tird, the efect of purifed BQP on
fecal microbiota and metabolites in T2DM mice was fur-
ther investigated. Finally, in vitro fermentation experi-
ments could also help to further characterize the
antidiabetic efects of BQP as well as its efects on the
intestinal fora. Terefore, it is worthwhile to conduct more
studies on the efects of BQP on gut fora in the future. For
example, the efects of BQP on T2DM can be further ex-
plored by performing fecal transplantation tests on T2DM
patients.

5. Conclusion

In conclusion, our results suggest that BQP intervention can
efectively improve obesity and lipid levels in T2DM mice
and ultimately alleviate glycemic abnormalities and insulin
resistance in T2DMmice. In addition, BQP can improve the
antioxidant capacity, alleviate infammatory response, and
reduce liver injury in T2DM mice. In addition, BQP can
increase the level of SCFAs in the cecum of diabetic mice and
alter the intestinal fora, thereby efectively improving gas-
trointestinal health. Te underlying mechanism by which

BQP has a benefcial efect on T2DM may be through the
modulation of obesity and gut microbiota, which provides
a theoretical basis for the use of BQP as a potential prebiotic
for food and pharmaceutical applications to ameliorate the
development of T2DM.
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