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An innovative favored wine was developed by macerating six diferent edible fowers into Chardonnay wine, where the
physicochemical characteristics (titratable acidity, pH), antioxidant activity (DPPH, FRAP) and volatile profle were modulated.
Bottle aging of the fower-favored wines were performed for 9months where a signifcant (p< 0.05) increases of total phenolic
content and an opposite trend in antioxidant power (assessed by DPPH and FRAP assays) were observed. A total of 37 volatile
substances were characterized in the aged fower-favored wines. Te aging process led to a decline in fruity and foral odors.
Among the 12 month-aged wines, 1% (w/v)O. fragrans-favored Chardonnay wine aged for 12months was perceived as the most-
liked product in human sensory analysis. Tis study manifested a bright future of edible fowers as a novel additive in the
development of favored wine with desirable sensory attributes.

1. Introduction

Flavored wine, a type of specially fortifed wine, integrates
with additional natural additives (e.g., fruit, herb, spices),
thereby improving the aroma, favor, taste and mouthfeel of
wine [1]. It is often prepared by incorporating nongrape
materials before or after fermentation, thereby enriching the
wine matrix [1]. As the demand for new favored wine grew,
its sales increased by 40-fold in fve years [1]. However, many
wine-producing countries have implemented stringent
regulations regarding the use of favor additives in wine
production. For instance, in Australia, wine fortifed with
favoring materials may be classifed as either a “wine
product” or a “fruit wine” depending on the percentage of
wine content [1]. Edible fowers, consisting of diferent
proportions of sugars, acids, polyphenols, volatiles and
antioxidants, have serve as aroma and favor elevators to
enhance the favor, color, appearance, and various health
efects of the fortifed beverages and food [2]. Our previous
research indicated that the polyphenol composition of

Chardonnay wine could be successfully modulated via in-
fusion with either black or green tea, potentially amplifying
its health-enhancing properties (e.g., antioxidant activity)
[3]. However, there is currently limited research on the
addition or fortifcation of the edible fowers in grape
winemaking.

Depending on the variety of grapes, wine may age in the
bottle from a few months to years from bottling to con-
sumption. During this period of bottle aging, wine can
recovery from bottle shock, stabilize and develop new
sensory attributes. Darker color, enhanced aroma, softer
mouthfeel, and decreased astringency and bitterness are the
main perceivable changes in bottle aging of wine. Over time,
oxygen ingress triggers a cascade of intricate chemical re-
actions, leading to creation of new volatiles, polymerization
of pigments, condensation of tannins, and breakdown of
volatile compounds related to undesirable odors and favors
[4]. Te fact that wine is susceptible to oxidation in bottle
storage is mainly ascribed to its phenolic profle, and the
environmental factors such as temperature, humidity, light
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exposure and type of closure [4]. Oaked Chardonnay stands
out among white wines as one of the few varieties that beneft
from bottle aging, owing to its comparatively subdued ar-
omatic profle, although its relatively lower concentrations
of antioxidant compounds especially phenolic compounds
compared to red wines may induce oxidative deterioration
during prolonged aging [4]. In our previous study, pro-
longed bottle aging infuenced the physicochemical attri-
butes, antioxidant power, phenolic and volatile profles, as
well as the sensory characteristics of Chardonnay wine in-
fused with either green or black tea [5]. Terefore, de-
veloping fower-favored Chardonnay wine should consider
the possible efects of bottle aging on the wine quality to
refect the actual bottle aging time from bottling to
consumption.

Chrysanthemum indicum, Jasminum sambac, Lavandula
angustifolia, Sambucus nigra, Osmanthus fragrans, and
Clitoria ternatea are the representative edible fowers with an
intense foral and pleasant aroma, which commonly serve as
tea analogue or tea additive [6, 7]. Up to date, there is no
research to combine these fowers with red or white wine to
develop a new style of fower-favored wine. Terefore, this
study aimed to develop six diferent novel fower-favored
wines by macerating Chardonnay wine with the above edible
fowers, and explore the impact of maceration time, fower
concentration and bottle aging time on the physicochemical
characteristics (titratable acidity, pH), antioxidant power
and volatile composition. Further, sensory evaluations with
consumers were established to obtain further insights for the
sensory perception of the bottle-aged fower-favored wines.
Tis research is of potential signifcance to wine manufac-
turers and wine market by showing commercial opportu-
nities behind such innovative wine products.

2. Materials and Methods

2.1. Materials and Chemicals. Folin and Ciocalteu reagent
(FCR), 2,4,6-tripyridyl-s-triazine (TPTZ), 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-
diphenyl-1-picrylhydrazyl (DPPH), ferrous sulfate hepta-
hydrate (FeSO4 • 7H2O), iron (III) chloride anhydrous,
(+)-catechin hydrate, (±)-6-hydroxy-2,5,7,8-tetramethyl-
chromane-2-carboxylic acid (Trolox), 4-octanol, n-alkanes
(C8–C30), SPME fber assembly polydimethylsiloxane/
divinylbenzene (PDMS/DVB; df 65 μm, Fused Silica/SS),
and all pure standards of volatile substances were acquired
from Sigma-Aldrich (Castle Hill, NSW, Australia). Head-
space screw top clear vials (20mL) and magnetic PTFE/sil
hdsp cap were purchased from Agilent Technologies (Santa
Clara, CA, USA). All chemicals were of analytical reagent or
HPLC grade.

2.2. Samples and Preparation. Commercial Chardonnay
wine (Bowler’s Run Chardonnay; 12.5% alcohol vol.; pH 3.3;
5.9 g/L of titratable acidity) was purchased from Dan
Murphy’s (Melbourne, VIC, Australia). C. indicum was
purchased from Yuan’s Market Trading CO. (Coopers
Plains, QS, Australia). J. sambac was purchased from

Guangdong Tea Import and Export Co. Ltd (Toongabblie,
NSW, Australia). O. fragrans was purchased from Crown
Asian Supermarket (Melbourne, VIC, Australia).
L. angustifolia, S. nigra and C. ternatea were obtained from
commercial seller “Te Tea Hut” (Osborne Park, WA,
Australia). All fowers were obtained in a dried form.

2.3. Experimental Design

2.3.1. Maceration. Te maceration study employed
a 6× 2× 3 (fower× concentration×maceration time) fac-
torial design (Table 1). A certain amount of fower was
weighed and soaked in Chardonnay wine.Te concentration
of L. angustifoli was evaluated by macerating the wine (1 L)
with 5 g (0.5% w/v) and 10 g (1% w/v) of this fower, while
the concentrations of other fowers were determined by
immersing 10 g (1% w/v) and 20 g (2% w/v) of the fowers in
the same amount of wine. Te maceration process was
performed at 25°C for 1 h, 2 h and 3 h (Table 1). Control
Chardonnay wine was subjected to the same storage time
with no maceration procedure (Figure 1). Te concentration
and maceration time of the fowers used were selected based
on preexperiment, where treatments leading to too weak or
overpowered fower-derived aroma in the resultant wines
were excluded. After the maceration, all samples were fl-
tered, bottled and stored at 4°C before further analysis.

2.3.2. Aging. Flower-favored wine was frst prepared by
infusing diferent fowers into Chardonnay wine at the
fower concentration andmaceration time obtained from the
maceration study. Control Chardonnay wine was subjected
to the same treatment time with no maceration step. Ten,
the mixture underwent fltration using Whatman No.4 flter
paper. Subsequently, the fltered wines were kept in a dark
and cool environment prior to analysis. Bottling was per-
formed in December 2021 using 375mL volume wine bottles
with screw cap air-tight closure to ensure rates of consistent
oxygen transfer. Te wines were subjected to analysis after
aging for 1, 3, 6, 9, and 12months at January 2022, March
2022, June 2022, September 2022 and December 2022
(Table 1) (Figure 1).

2.4.Analysis of Physicochemical Properties, PhenolicContents,
and Antioxidant Activity. Te titratable acidity (TA) and
pH of wine samples were measured according to the
methods of the International Organization of Vine and
Wine (OIV) [8]. Te total phenolic content (TPC), total
favonoid content (TFC), DPPH radical scavenging activity,
and ferric reducing antioxidant power (FRAP) were eval-
uated based on the procedure described in previous studies
[9, 10].

2.5. Analysis of Volatile Compounds by HS-SPME-GC-MS

2.5.1. Sample Preparation and HS-SPME. Te wine volatile
substances were extracted following a previous method [11]
with slight modifcations. Te wine sample (10mL) was
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Table 1: Composition and codes of fower-macerated wines.

Wine code Flower Concentration
(%, w/v) Wine Maceration time

(hour)
Aging time
(month)

C N/A N/A Chardonnay N/A N/A
C1m N/A N/A Chardonnay N/A 1
C3m N/A N/A Chardonnay N/A 3
C6m N/A N/A Chardonnay N/A 6
C9m N/A N/A Chardonnay N/A 9
C12m N/A N/A Chardonnay N/A 12
CI1p1h Chrysanthemum indicum 1 Chardonnay 1 N/A
CI1p2h Chrysanthemum indicum 1 Chardonnay 2 N/A
CI1p3h Chrysanthemum indicum 1 Chardonnay 3 N/A
CI2p1h Chrysanthemum indicum 2 Chardonnay 1 N/A
CI2p2h Chrysanthemum indicum 2 Chardonnay 2 N/A
CI2p3h Chrysanthemum indicum 2 Chardonnay 3 N/A
CI2p3h1m Chrysanthemum indicum 2 Chardonnay 3 1
CI2p3h3m Chrysanthemum indicum 2 Chardonnay 3 3
CI2p3h6m Chrysanthemum indicum 2 Chardonnay 3 6
CI2p3h9m Chrysanthemum indicum 2 Chardonnay 3 9
CI2p3h12m Chrysanthemum indicum 2 Chardonnay 3 12
JS1p1h Jasminum sambac 1 Chardonnay 1 N/A
JS1p2h Jasminum sambac 1 Chardonnay 2 N/A
JS1p3h Jasminum sambac 1 Chardonnay 3 N/A
JS2p1h Jasminum sambac 2 Chardonnay 1 N/A
JS2p2h Jasminum sambac 2 Chardonnay 2 N/A
JS2p3h Jasminum sambac 2 Chardonnay 3 N/A
JS2p3h1m Jasminum sambac 2 Chardonnay 3 1
JS2p3h3m Jasminum sambac 2 Chardonnay 3 3
JS2p3h6m Jasminum sambac 2 Chardonnay 3 6
JS2p3h9m Jasminum sambac 2 Chardonnay 3 9
JS2p3h12m Jasminum sambac 2 Chardonnay 3 12
LA0.5p1h Lavandula angustifoli 0.5 Chardonnay 1 N/A
LA0.5p2h Lavandula angustifoli 0.5 Chardonnay 2 N/A
LA0.5p3h Lavandula angustifoli 0.5 Chardonnay 3 N/A
LA1p1h Lavandula angustifoli 1 Chardonnay 1 N/A
LA1p2h Lavandula angustifoli 1 Chardonnay 2 N/A
LA1p3h Lavandula angustifoli 1 Chardonnay 3 N/A
LA0.5p3h1m Lavandula angustifoli 0.5 Chardonnay 3 1
LA0.5p3h3m Lavandula angustifoli 0.5 Chardonnay 3 3
LA0.5p3h6m Lavandula angustifoli 0.5 Chardonnay 3 6
LA0.5p3h9m Lavandula angustifoli 0.5 Chardonnay 3 9
LA0.5p3h12m Lavandula angustifoli 0.5 Chardonnay 3 12
CT1p1h Clitoria ternatea 1 Chardonnay 1 N/A
CT1p2h Clitoria ternatea 1 Chardonnay 2 N/A
CT1p3h Clitoria ternatea 1 Chardonnay 3 N/A
CT2p1h Clitoria ternatea 2 Chardonnay 1 N/A
CT2p2h Clitoria ternatea 2 Chardonnay 2 N/A
CT2p3h Clitoria ternatea 2 Chardonnay 3 N/A
CT1p2h1m Clitoria ternatea 1 Chardonnay 2 1
CT1p2h3m Clitoria ternatea 1 Chardonnay 2 3
CT1p2h6m Clitoria ternatea 1 Chardonnay 2 6
CT1p2h9m Clitoria ternatea 1 Chardonnay 2 9
CT1p2h12m Clitoria ternatea 1 Chardonnay 2 12
OF1p1h Osmanthus fragrans 1 Chardonnay 1 N/A
OF1p2h Osmanthus fragrans 1 Chardonnay 2 N/A
OF1p3h Osmanthus fragrans 1 Chardonnay 3 N/A
OF2p1h Osmanthus fragrans 2 Chardonnay 1 N/A
OF2p2h Osmanthus fragrans 2 Chardonnay 2 N/A
OF2p3h Osmanthus fragrans 2 Chardonnay 3 N/A
OF1p3h1m Osmanthus fragrans 1 Chardonnay 3 1
OF1p3h3m Osmanthus fragrans 1 Chardonnay 3 3
OF1p3h6m Osmanthus fragrans 1 Chardonnay 3 6
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mixed with 2 g of sodium chloride and 20 μL of internal
standard 4-octanol (100mg/L in ethanol) in headspace vial.
Prior to analysis, the vial was equilibrated at 35°C for 20min.
For adsorption, a 65 μm PDMS/DVB SPME fber was in-
troduced to the headspace at 35°C for a duration of 30min.
Te fully automatic HS-SPME analysis was conducted using
a PAL 3 multipurpose automated sampler (Agilent Tech-
nologies, Santa Clara, CA, USA). Te fber was precondi-
tioned in the GC injection port at 250°C for 30min until
sample analysis.

2.5.2. GC-MS Analysis. Te GC-MS analysis was per-
formed according to a previous method [11] with slight
modifcations. A combination of an Agilent 6850 GC

system (Agilent Technologies, Santa Clara, CA, USA) and
a 5973 mass spectrometer was utilized, employing a J&W
DB-Wax ultra Inert GC column (30m × 250 μm × 0.25 μm;
Agilent Technologies). Te carry gas was helium at
a fow rate of 0.8 mL/min, and the SPME fber desorption
was conducted in splitless mode at 200°C for 10min. Te
oven temperature program was as follows: an initial
temperature at 40°C and kept for 2min, then raised to
160°C at 3°C/min, before a further increase to 230°C at
a rate of 7°C/min and kept for 8min. Te mass acquisition
range was 35–350m/z, and the mass spectrometer was in
scan mode at 70 eV. Te quadruple temperature, transfer
line, and ion source were set at 150, 240, and 230°C,
respectively.

Table 1: Continued.

Wine code Flower Concentration
(%, w/v) Wine Maceration time

(hour)
Aging time
(month)

OF1p3h9m Osmanthus fragrans 1 Chardonnay 3 9
OF1p3h12m Osmanthus fragrans 1 Chardonnay 3 12
SN1p1h Sambicus nigra 1 Chardonnay 1 N/A
SN1p2h Sambicus nigra 1 Chardonnay 2 N/A
SN1p3h Sambicus nigra 1 Chardonnay 3 N/A
SN2p1h Sambicus nigra 2 Chardonnay 1 N/A
SN2p2h Sambicus nigra 2 Chardonnay 2 N/A
SN2p3h Sambicus nigra 2 Chardonnay 3 N/A
SN2p2h1m Sambicus nigra 2 Chardonnay 2 1
SN2p2h3m Sambicus nigra 2 Chardonnay 2 3
SN2p2h6m Sambicus nigra 2 Chardonnay 2 6
SN2p2h9m Sambicus nigra 2 Chardonnay 2 9
SN2p2h12m Sambicus nigra 2 Chardonnay 2 12
N/A� not available.

Chrysanthemum indicum
(1% (w/v), 2% (w/v)

Jasminum sambac
(1% (w/v), 2% (w/v)

Lavandula angustifoli
(0.5% (w/v), 1% (w/v)

Clitoria ternatea
(1% (w/v), 2% (w/v)

Osmanthus fragrans
(1% (w/v), 2% (w/v)

Chardonnay wine

PH

Titratable acidity
TPC, TFC, DPPH, FRAP

Maceration
(1, 2, 3 h)

Aging
(1, 3, 6, 9 month)

Sensory evaluation

Sambicus nigra
(1% (w/v), 2% (w/v)

HS-SPME-GC-MS analysis of volatiles

Figure 1: Flow diagram of studies on variations in physicochemical characteristics, antioxidant activity, volatile profles and sensory
attributes of fower-favored Chardonnay wine during maceration and bottle aging.
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2.5.3. Identifcation and Quantifcation of Compound.
Te analysis of the GC-MS data was conducted using the
Agilent G1701EA MSD ChemStation software (Version
1.4.20.0).Te linear retention index (RI) for each compound
was determined employing a range of n-alkanes (C8-C30).
To generate standard curves, authentic standards were an-
alyzed after serial dilution using model wine. Based on the
NIST ChemistryWebbook [12] and NISTreference database
(NIST 11.0), the retention indices (RI) and previously re-
ported mass spectra (MS) were used for the identifcation of
each compound. Each compound was also identifed via
comparison of MS and retention times with external stan-
dards (ES). Target ions model was used to integrate the peak
areas of volatile compounds. Te calibration curve of
standard compound was used for the quantifcation of each
corresponding identifed compound with the following
equation:

Conc.
μg
mL

  �
ionpeak area of each compound
ionpeak area of internal standard

× Slope 

+ Intercept.
(1)

Standard curves of analogous compounds were utilized
to semiquantitatively assess certain identifed compounds
for which standards were unavailable, as outlined in our
prior publication [11].

Further, odor thresholds published in previous studies
[10, 13–26] were employed to ascertain the participation of
the identifed substances in the global aroma of the fower-
favored wines by computing the odor activity values
(OAVs) as follows:

OAV �
Concentration of volatile compound

Odor detection threshold
. (2)

Odor-active compounds refer to the compounds with
OAVs greater than 1 [11], and their sensorial impact is
evaluated based on the OAVs and associated odor
description.

3. Sensory Analysis

Te sensory analysis was performed according to a slightly
modifed method [27]. Approval for human ethics (No.
2022-23727-28046-4) was obtained from the Human Ethics
Committee of the University of Melbourne. A total of 63
consumers (24 males, 39 females) were served with seven
12 month-aged fower-favored Chardonnay wines (C12m,
CI2p3h12m, JS2p3h12m, LA0.5p3h12m, CT1p2h12m, OF1p3h12m, and
SN2p2h12m) in University of Melbourne to evaluate sensory
attributes using a Just About Right (JAR) scale, with
a nonstructured scale. Various quality attributes (mouthfeel/
texture, olfactive (taste/favor), olfactory (aroma), visual and
overall perception) of the wines were assessed by the par-
ticipants based on their respective intensity. Te middle of
the scale, “Just About Right,” was regarded as the ideal of
typicality for each descriptor. Each wine sample, approxi-
mately 30mL, was poured into a 3-digit-coded ISO standard

wine glass at room temperature (22–24°C). To prevent carry-
over efects, the wine samples were served monadically in
a balanced presentation order. Participants were instructed
to rinse their mouths with plain water between tasting
diferent wine samples. Te sensory properties were assessed
in the sequence outlined in Table S35.

4. Statistical Analysis

Each treatment was performed in triplicates, and the
means± standard deviations were used to report the results.
Te signifcant diference of means between each sample was
assessed by one-way ANOVA using Fisher grouping at 95%
confdence level with Minitab (Minitab 21.1.0, Sydney,
Australia). Principal component analysis (PCA), spider plot,
partial least squares-discriminant analysis (PLS-DA) and
Pearson’s correlation-signifcance matrix were created using
R packages “ggfortify,” “fmsb”, “mixOmics,” and “Hmisc,”
respectively.

5. Results and Discussions

5.1. Maceration Study

5.1.1. Physicochemical Characteristics, Total Free Phenolic,
and Flavonoid Content, Antioxidant Power. A signifcant
increase in pH (p< 0.05) was witnessed in all fower-favored
wines compared with the control, except for the wines
favored with C. indicum, and there was a corresponding
decrease in TA (Table S1). A similar trend was also seen in
pH and TA of most fower-favored wines with the in-
creasing fower concentration and maceration time. Such
changes might be ascribed to the esterifcation of organic
acids such as citric and malic acids [28], or their salifcation
with sodium, calcium, potassium and other cations [29]. It is
worth mentioning that the pH and TA of C. ternatea-treated
wines maintained unchanged throughout the maceration,
which agreed with a previous study [30] where no signifcant
diference in pH and TA of C. ternatea aqueous extracts at
diferent extraction times was reported.

Te TPC, TFC, DPPH and FRAP values of all the fower-
favored wines showed a prominent increase (p< 0.05)
compared to the control (Table S1). As the maceration time
and fower concentration increased, these values also
showed an increasing trend (p< 0.05). Te increase in TFC
and TPC with maceration time was mainly due to the fact
that the plant cell wall was softened and broken down when
steeping in wine, and soluble phytochemicals especially
phenolics were transferred into wine through osmotic and
difusion process as time increased [31]. Te FRAP and
DPPH values shared a similar increasing trend with TPC
and TFC, suggesting a vital role of the extracted favonoids
and phenolics in enhancing antioxidant activity of the
fower-favored wine.

5.1.2. Alteration of Volatile Profle by Flower Maceration.
Tere were 29, 25, 37, 25, 29 and 38 volatile compounds
identifed in C. indicum-, J. sambac-, L. angustifolia-,
C. ternatea-, O. fragrans-, and S. nigra-favored wines,
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respectively (Tables S2–S7). Compounds including p- and
m-cymene, sulcatone, chrysanthenone, camphor and ter-
pinen-4-ol, were only detected in C. indicum-favored
wine but not in the control. Among them, the concentra-
tions of p- and m-cymene, sulcatone, chrysanthenone,
camphor and terpinen-4-ol presented a two-fold increase
from CI1p1h to CI2p3h, whereas no signifcant (p> 0.05)
treatment efect was witnessed in 2-pheylethanol content.
Troughout all the treatments, there were a total of 12
detected volatiles characterized as odor-active compounds in
C. indicum-favored wines, thereinto, ethyl octanoate and
ethyl hexanoate exhibited stronger impacts on the wine
aroma than other volatiles due to their higher OAVs
(Table S8). For J. sambac-favored wine and ethyl heptanoate
were only observed in the treated wines but absent in the
control. Te concentration of linalool increased noticeably
(p< 0.05) in all six treatments compared to the control. In
contrast, the concentrations of most alcohols including
2-methyl-1-propanol, 1-octanol, 1-hexanol and 1-butanol
were reduced simultaneously. In all the treatments, 13 de-
tected volatiles were characterized as odor-active com-
pounds, in which ethyl hexanoate and ethyl octanoate
represented a crucial contribution toward the wine aroma
due to their higher OAVs (Table S9). Only 14 compounds
absent in the control were found in L. angustifolia-favored
wines, notably camphor, (R)-lavendualol, geraniol,
p-myrcene, nerol acetate, linalool oxide, and nerol oxide.
Te concentrations of these volatile compounds were pos-
itively correlated with the soaking time and fower con-
centration. A total of 16 volatiles were identifed as odor-
active compounds throughout the treatments, where ethyl
hexanoate and linalool with higher OAVs had a more sig-
nifcant efect on the wine aroma (Table S10). A total of 27
volatile substances were identifed, thereinto, 2 compounds
were detected only in the C. ternatea-favored wine, which
were 3-methylbutyl octanoate and α-terpineol. Te con-
centration of α-terpineol witnessed a two-fold increase
across the treatments, while the amount of 3-methylbutyl
octanoate showed no signifcant diference in all six treat-
ments. Tere were 11 volatiles detected as odor-active
compounds over the treatments, and ethyl hexanoate and
ethyl octanoate exhibited stronger impacts on the wine
aroma due to their higher OAVs (Table S11). Among the 29
volatile compounds detected in O. fragrans-favored wine,
only 6 compounds were found in the treated wine, including
α-terpineol, geraniol, β-ionone, β-ocimene, D-limonene and
theaspirane. Geraniol and β-ionone showed a noticeable
increase in concentrations with the increasing fower con-
centration and maceration time. Compared to the control,
the concentrations of three volatile compounds (benzalde-
hyde, ethyl nonanoate, linalool) were observed with 2 to
10-fold increases in the treated wine, whereas the content of
methyl decanoate showed a signifcantly lower value. A total
of 16 volatiles were characterized as odor-active compounds,
out of which ethyl hexanoate, ethyl octanoate and the-
aspirane contributed signifcantly to the overall wine aroma
because of their higher OAVs (Table S12). Tere were 14
volatiles found only in S. nigra-favored wine by not control,
including eucalyptol, terpinolene, ethyl heptanoate, rose

oxide, camphor, 3-methylbutyl hexanoate, 3-methylbutyl
octanoate, α-terpineol, geranyl acetate, methyl salicylate,
citronellol, D-limonene, β-ocimene, and terpinen-4-ol. Te
concentrations of eucalyptol, camphor and ethyl heptanoate
were increased by two-fold as the fower concentration and
maceration time increased. Further, the contents of terpi-
nolene, rose oxide, α-terpineol and citronellol were in-
creased by three-fold. Tere were 18 volatiles identifed as
odor-active compounds, where ethyl hexanoate, rose oxide
and ethyl octanoate with higher OAVs signifed a substantial
contribution toward the aroma properties of the wine
samples (Table S13).

To better understand this complex dataset, Pearson’s
correlation was employed to explore the association between
individual volatile compounds, antioxidant power, physi-
cochemical characteristics, and OAVs in diferent
fower-macerated Chardonnay wines (Figure 2(a))
(Tables S14–S18). FRAP value was mainly contributed by
TPC and TFC, while DPPH shared no signifcant associa-
tion. Te OAV value of “Floral odor” displayed signifcant
(p< 0.05) positive association with fatty odor (OAV),
waxy odor (OAV), 1-butanol, 2-methyl-1-propanol, ethyl
acetate, α-terpinene, β-myrcene, D-limonene, eucalyptol,
β-ocimene, p-&m-cymene, hexyl acetate, terpinolene, rose
oxide, 1-hexanol, ethyl octanoate, benzaldehyde, ethyl
nonanoate, nerol oxide, 3-methylbutyl hexanoate, linalool,
1-octanol, terpinen-4-ol, methyl decanoate, ethyl decanoate,
(R)-lavandulol, nerol acetate, geranyl acetate, methyl salic-
ylate, citronellol, geraniol and octanoic acid. Te OAV value
of “Citrus odor” was positively associated with sulcatone,
chrysanthenone, camphor, 2-phenethyl acetate and
2-phenylethanol, but displayed a negative correlation with
linalool oxide, α-terpineol and hexanoic acid. Te partial
least squares-discriminant analysis (PLS-DA) and sparse
principal component analysis (sPCA) biplots of physico-
chemical characteristics, antioxidant power and character-
istic volatile substances in Chardonnay wines favored with
six fowers were also displayed in Figure 2 and Table S19.Te
PLS-DA analysis revealed clear distinctions among the
various fower-favored wines, with noticeable separation
between them. However, there was some partial
overlap between the control Chardonnay wine and both
C. indicum- and L. angustifolia-favored Chardonnay wines
(Figure 2(b)). Methyl salicylate, 3-methylbutyl hexanoate,
citronellol α-terpineol, rose oxide, eucalyptol, ethyl non-
anoate, 3-methylbutyl octanoate, and 2-phenethyl acetate
were themain driver of the variation among diferent fower-
favored wine (Table S19). OAVs sensory profles of the
fower-favored wines were further illustrated in Figure 3.
For C. indicum-, L. angustifolia- and O. fragrans-favored
wines, less pronounced fruity odor was perceived as the
fower concentration and maceration time increased, while
the foral odor was enhanced simultaneously. A gradual
increasing trend was also seen in the citrus aroma of
C. indicum-favored wine across the treatments. For
J. sambac-favored wine, at 1% (w/v) concentration, the
intensity of foral aroma was diminished as the maceration
progressed, while the opposite trend was witnessed at 2%
(w/v). For C. ternatea- and S. nigra-favored wines, both
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foral and fruity odors were enhanced with the increasing
fower concentration.

Overall, based on the results of the total phenolic and
favonoid contents, antioxidant power and volatile contents,
2% (w/v) fower concentration and 3 hmaceration time were
determined as the optimum treatment conditions for
C. indicum- and J. sambac-favored wines, 0.5% (w/v) and
3 h were the optimal fower concentration and maceration
time for L. angustifolia-favored wine. For C. ternatea-
favored wine, 1% (w/v) fower concentration and 2 h mac-
eration time constitute the optimum treatment conditions.
For O. fragrans-favored wine, the optimal treatment con-
ditions were established as 1% (w/v) fower concentration and

3 h soaking time. Superior antioxidant power and higher
volatile content were found in the S. nigra-favored
wine treated at 2% (w/v) fower concentration and 2 h
maceration time.

5.2. Aging Study

5.2.1. Physicochemical Characteristics, Total Free Phenolic
Content, and Antioxidant Power. In Figures 4(A-I) and
4(A-II), as the aging time increased, the pH values of all
fower-favored Chardonnay wines maintained relatively
stable although with fuctuations, which was correlated with
no signifcant diference in TA at diferent aging times
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Figure 2: Pearson correlation matrix (a), partial least squares-discriminant analysis (b) and sparse principal component analysis (c) of
volatile compounds, OAVs, physicochemical properties and tested responses of diferent fower-macerated Chardonnay wines.

Journal of Food Biochemistry 7



(Table S20). Te unchanged pH aligned with a previous
study [32] reporting no signifcant change in pH value of
a commercial red wine during storage of up to 9months.
Additionally, a previous research also found a similar stable
pattern of TA inMeili Rose wine during 160-day bottle aging
[33]. Figure 4(A-III) showed a rising trend in the TPC
content of the wine samples with the increasing aging time
(Table S20), whichmight be because of the polymerization of
polyphenols caused by oxygen ingress over time [34]. In
contrast to TPC, a gradual decline was observed in the
antioxidant power (DPPH, FRAP) with the increase of aging
time (Figures 4(A-IV) and 4(A-V)) (Table S20), implying the
wine antioxidant capacity was negatively correlated with the
total phenolic content. Te unexpected decrease in DPPH
and FRAP could also be hypothetically ascribed to the
polyphenol polymerization where the phenolic compounds
present in the conjugated form have lower reactivity than
their free forms. Te polymerization process also involves
a spatial rearrangement that can elevate the steric hindrance

and thus diminish the available active sites for the radical
scavenging action [34].

5.2.2. Alteration of Volatile Profle by Aging Time. Tere
were 37 volatile compounds detected in the aged wine
samples (Table S21), which can be subdivided into six
chemical groups, including 2 acids, 8 alcohols, 16 esters, 1
benzenoid, 1 theaspirane and 9 terpenes. For all fower-
favored wines, the contents of total and individual volatile
acids kept decreasing during bottle aging, which agrees with
the autoxidation action of volatile acids into carbonyl
compounds in white wine after bottle aging for 12months in
a previous study [35]. Te levels of total and individual
volatile alcohols decreased over the course of bottle aging.
Tis reduction could be attributed to esterifcation processes
occurring between alcohols and acids in the wine during
prolonged storage [36]. Both total and individual volatile
esters undergone a negative change during bottle storage.
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Indeed, the autoxidation of volatile esters was proved to
diminish their amount in bottle storage of white wine [35].
Te total terpenes of the fower-favored wines also witnessed
a gradual decline, except for J. sambac- and C. ternatea-
favored wines. Te reduction might be ascribed to hydro-
lysis or conversion of terpenes into other aroma-active
compounds. For instance, a monoterpene conversion is
readily induced by the acid-catalyzed reactions during
prolonged wine storage [37]. On the contrary, the increase in
terpenes might be due to the hydrolysis of terpene glycosides
or the conversion of other terpenes [38]. It is worth men-
tioning that rose oxide experienced a considerable increase
during the last three months’ aging in J. sambac-favored
wine. Based on a previous study [39], the aroma of rose oxide
in wine can be masked by linalool and α-terpineol. During
aging for 6 to 9months, the linalool concentration was
decreased, along with the unchanged α-terpineol content
and enhanced rose oxide content. Te altered concentration
ratio of linalool, α-terpineol and rose oxide may explain the
surge in rose oxide concentration.

During the aging period, there were 15, 20, 22, 16, 17,
and 18 detected volatiles identifed as odor-active substances
in C. indicum-, J. sambac-, L. angustifolia-, C. ternatea-,
O. fragrans- and S. nigra-favored wines, respectively
(Tables S22–S28). Fruity aromas represent the major aroma
group because of greater diversity and higher OAV values,
while fatty, fermented, foral, waxy, herbal, terpenic, creamy,
ethereal, camphoreous, minty and spicy odors were also
responsible for the overall aroma but with inferior sensorial
impact. For C. indicum-, J. sambac- and C. ternatea-favored
wines, ethyl hexanoate and ethyl octanoate with higher
OAVs exhibited more signifcant impacts on the wine aroma
than other volatiles. Te OAVs of both ethyl hexanoate and
ethyl octanoate kept rising in bottle storage, albeit at
a fuctuating pace. Linalool and geraniol were witnessed to
constitute a signifcant contribution toward the aroma
properties of L. angustifolia-favored wines, both of which
experienced a decreasing trend in the OAVs as the wine was
aged. As the characteristic aroma compounds in lavender
fower, linalool and geraniol give a sweet, foral and fruity
scent [6]. InO. fragrans-favored wine, ethyl hexanoate, ethyl
octanoate and theaspirane had a prominent sensorial impact
due to their high OAVs. Te OAV of ethyl hexanoate was
gradually decreased during bottle storage, while the OAV of
ethyl octanoate and theaspirane experienced a sudden surge
in the frst three months before a signifcant decline. Te-
aspirane as one of the key odorants in Osmanthus absolute
gives a fresh and green odor [40]. For S. nigra-favored wine,
ethyl hexanoate, rose oxide and ethyl octanoate acted
a primary role in releasing the wine aroma, all of which
witnessed a gradual decline throughout the bottle storage.
Te occurrence of rose oxide is consistent with a previous
research stating it as one of the main volatiles for S. nigra
fower [41].

Te Pearson’s correlation was carried out to understand
the correlation between physicochemical characteristics,
antioxidant power, individual volatile compounds and
their OAVs in the aged wine samples (Figure 4(b))
(Tables S29–S32). Tere was a signifcant (p< 0.05)

association between the TPC and FRAP, whereas DPPH
demonstrated no signifcant association. Te OAV value of
“Floral odor” demonstrated signifcant (p< 0.05) positive
association with fruity odor (OAV), waxy odor (OAV),
herbal odor (OAV), linalool, rose oxide, geranyl acetate,
α-terpineol, geraniol, ethyl octanoate, ethyl hexanoate, ethyl
butanoate, ethyl acetate, D-limonene, β-ocimene, ethyl
heptanoate, eucalyptol, terpinolene, terpinen-4-ol, and
methyl salicylate, while establishing a negative correlation
with 2-methyl-1-propanol. Te OAV value of “Herbal odor”
was also found to be positively correlated to foral odor
(OAV), linalool, α-terpineol, β-ionone, ethyl nonanoate,
D-limonene, β-ocimene, eucalyptol, theaspirane, terpino-
lene and terpinen-4-ol. Figures 4(c) and 4(d) were the
PLS-DA and sPCA biplots of physicochemical characteris-
tics, antioxidant power and representative volatile sub-
stances in the bottle-aged wines at four aging times. Te
PLS-DA indicated a well separation of 1 month-aged wine
samples from 9 month-aged ones, while both of them
showed partial overlapping with 3 month- and 6 month-
aged wines (Figure 4(c)).Tis variation wasmainly driven by
2-phenethyl acetate, TA, ethyl lactate, 2-phenylethanol,
DPPH, 1-butanol, ethyl octanoate, 3-methylbutyl hexanoate,
2,3-butanediol, and TPC (Table S33). Figures 4(e) and 4(f )
and Table S34 also revealed the main odor drivers of this
variation were fatty odor, fruity odor, ethereal odor and
waxy odor. Tis implies the various efects of these aging
times on physicochemical characteristics, antioxidant power
and volatile composition of diferent types of fower-favor
wine.

5.2.3. Alteration of OAVs Sensory Profle by Aging Time.
OAVs sensory profles of fower-favor wine at diferent
aging time were displayed in Figure 5(a). For C. indicum-,
C. ternatea- andO. fragrans-favored wines, less pronounced
foral and fruity odors were detected as the aging time in-
creased, while the herbal odor remained nearly unchanged.
Less pronounced fruity odor was also found in J. sambac-
favored wine, while the foral and herbal odors kept di-
minished and unchanged in the frst 6months, respectively,
followed by a surge in the last three months. Less pro-
nounced foral, fruity and herbal odors were detected in
L. angustifoli- and S. nigra-favored wines.

5.2.4. Sensory Analysis. Figure 5(b) and Table S35 showed
the JAR scale percentages of responses classifed in fve levels
of diferent fower-favored Chardonnay wines aged at
12months. Within the C12m group, the majority of pa-
rameters received predominant scores in the JAR category,
ranging from 29% (foral smell, vegetal taste and favor) to
60% (astringency). In all the fower-favored wine groups,
lower proportions of JAR responses were found as compared
to C12m for most of the properties assessed. Most of the
consumers considered the color intensity of fower-favored
wines as “Just about right”, except for SN2p2h12m where “A
little dark” was perceived by 35% of the consumers. For
CI2p3h12m, most consumers perceived the “Strong” fruit
favor and “Weak” bitterness, whereas the most responses to
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the other attributes were “Just about right.” Te JS2p3h12m
scored the higher proportion of response “Weak” regarding
vegetal favor and smell, foral smell, odor intensity, fruit
favor, sweetness and bitterness, while astringency, sourness,
foral favor and smell, viscosity and length were mainly
perceived as “Just about right.” Te “Strong” vegetable taste
and favor was also documented for JS2p3h12m in most cases.

Most consumers thought that LA0.5p3h12m had “Weak” fruit
smell and favor, vegetable taste and favor, sweetness and
viscosity, “Just about right” vegetable smell, bitterness, as-
tringency and length, and “Strong” foral smell, odor in-
tensity, foral favor, strong sourness and length. Te mostly
reported intensity of fruit, vegetable smell and favor, foral
smell and sweetness in CT1p2h12m were “Weak,” while the
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Figure 5: Spider plots of aroma attributes in fower-macerated Chardonnay wines at diferent aging times (a). (b) Just-about-right (JAR)
scale percentages of responses grouped in fve levels of C9m (B-I), CI2p3h9m (B-II), JS2p3h9m (B-III), LA0.5p3h9m (B-IV), CT1p2h9m
(B-V), OF1p3h9m (B-VI) and SN2p2h9m (B-VII). Pearson correlation matrix (c) and principal component analysis (d) of JAR scores,
OAVs and individual volatile compounds of diferent 9 month-aged fower-macerated Chardonnay wines. Samples of C9m, CI2p3h9m,
JS2p3h9m etc. refer to Table 1.
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odor intensity, foral favor, bitterness, astringency, viscosity
and length were mainly distributed in “Just about right.”Te
sourness of CT1p2h12m was mainly determined as “Strong.”
Most consumers considered OF1p3h12m to have “Weak”
vegetable smell and favor, sweetness and length, “Just about
right” fruit favor, bitterness, sourness, astringency and
viscosity, “Strong” fruit and foral smell, odor intensity and
foral favor. For SN2p2h12m, the “Weak” fruit favor and
bitterness, “Just about right” vegetable smell and favor,
sweetness, astringency, viscosity and length, and “Strong”
foral and fruit smell, odor intensity, vegetable and foral
favor, sourness and viscosity were documented for the
majority of consumers. As displayed in Table S35, the overall
liking of CI2p3h12m and JS2p3h12m was mainly distributed in
“Neither like nor dislike,” whereas most responses to
LA0.5p3h12m and CT1p2h12m were only scored in the “Dislike
slightly” category. On the contrary, 34 of 62 consumers
displayed their likings for OF1p3h12m, where 17 consumers
“Like very much.” For SN2p2h12m, 17 of 62 consumers liked
the wine slightly. Accordingly, 30 of 63 consumers thought
that they were “likely” to buy OF1p3h12m, whereas most
consumers only had neutral purchase intentions toward
other fower-favored wines.

Te Pearson’s correlation was performed to understand
the association between individual volatile compounds,
OAVs and JAR scores (Figure 5(c)). Te JAR score of “Floral
odor” was signifcantly (p< 0.05) positively correlated with
odor intensity (JAR) and foral favor (JAR), while the JAR
score of “Vegetable odor” was positively associated with
vegetable favor (JAR) and sourness (JAR). Sweetness (JAR)
established a negative correlation with fermented odor
(OAV) and methyl decanoate, whereas bitterness (JAR) was
positively related to astringency (JAR) and ethyl decanoate.
Te purchase intention and overall liking were determined
by fruit favor (JAR), β-ionone and theaspirane, suggesting
the indispensable role of these volatiles and properties in the
consumer preference when assessing the wines. A negative
correlation was also found between them and length (JAR).
Te relationship of the purchase intention and overall liking
with diferent fower-favored wines was shown in PCA
biplot (Figure 5(d)). Te results indicated a positive cor-
relation between purchase intention and overall liking with
the cluster of OF1p3h12m to the greatest extent. Terefore,
OF1p3h12m which was the 1% (w/v) O. fragrans-infused
Chardonnay wine and bottle-aged for 12months (Table 1)
was preferred by most consumers, which manifests the
successful entry of this favored wine product into the wine
market in the future.

6. Conclusion

Edible fower has long been applied as an aroma enhancer in
a wide variety of food or beverages, unveiling its vast po-
tential as a novel wine additive. Bottle aging is a sensible and
complicated process that prominently infuences the
properties of grape wine. In this study, maceration with six
diferent edible fowers successfully modulated the physi-
cochemical characteristics, antioxidant activity and volatile
profle of Chardonnay wine. However, prolonged bottle

storage induced no variations in the physicochemical
characteristics of all the fower-favored wines, but exhibited
the contrasting impacts on the antioxidant power and total
free phenolic content. A total of 37 volatiles were identifed
in the aged fower-favored wines, including 15, 20, 22, 16, 17
and 18 odor-active compounds detected in C. indicum-,
J. sambac-, L. angustifolia-, C. ternatea-, O. fragrans-, and
S. nigra-favored wines. In all the fower-favored wines, the
aging process led to a decline in fruity and foral aromas. In
the 12 month-aged wines, OF1p3h12m was regarded as the well
perceived product because of its positive relation with pur-
chase intention and overall liking in consumer sensory study.
Tis research ofers an essential prerequisite for the future
utilization of dried edible fowers to develop novel fower-
based grape wine, and explores the time-dependent efect of
bottle storage on diferent attributes of such wine, revealing its
bright prospect as a high valued commercial wine product.
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OAVs, physicochemical properties and tested responses of
bottle-aged fower-macerated Chardonnay wines: variables
importance in projection (VIP> 1) and standardized co-
efcient (β). Table S34: PLS-DA results for OAVs, physi-
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