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Objective. Reviewing oil palm fibre (OPF) utilisation in various medical sectors. Background. The OPF, especially in nanocellulose
form, is frequently used due to its exceptional mechanical attributes, considerable surface area, versatility for surface
functionalisation, biocompatibility, and nontoxicity. Method. Only articles published in the last ten years (2012-2022) and
written in English were reviewed in this study. An electronic search was conducted in Google Scholar, ScienceDirect, and
PubMed using the terms “oil palm fibres in the medical field” and “oil palm fibre.” Results. Among the 459 articles obtained,
only 24 were accessible as full text and satisfied the parameters set in this study. Conclusion. The OPF could be widely
employed in the medical domain, particularly the biomedical branch, for drug delivery, tissue engineering, wound dressing,
and antimicrobial agent transporters. The substance also demonstrated promising results and significant capacities to be
utilised and further studied.

1. Introduction

The oil palm (Figure 1) plantation industry produces palm
oil with phytochemical compounds, including tocotrienols,
carotenoids, phytosterols, squalene, coenzyme Q10, and
phospholipids. It is known to have multiple nutritional, bio-
logical, and cosmetic uses [1]. The palm oil plantation indus-
try creates a large amount of oil palm waste (OPW). Oil
palm fibre (OPF) was reported as the most prominent prod-
uct of OPW [2]. The summary of oil palm products and res-
idues is shown in Figure 2.

OPF is usually obtained from parts of the oil palm tree,
including the leaves, empty fruit bunch, frond, and trunk
[4, 5]. Its fundamental properties depend on the postproces-
sing technique and the location of the fibre harvested. OPF is

a lignocellulosic fibre comprising lignin and cellulose, with
percentages of cellulose, hemicellulose, and lignin around
30–60%, 20–40%, and 15–25%, respectively. The most com-
mon OPF component used in material development is the
fibre derived from oil palm empty fruit bunch (OPEFB)
due to its abundance and low price [4]. OPEFB is rich in cel-
lulose, hence a promising material for obtaining nanocellu-
lose and producing cellulose-derived goods. Due to its
cellulosic contents, OPEFB might be an excellent material
selection compared to other agricultural wastes. The OPEFB
fibres are obtained from oil palm fruits via retting, while oil
palm mesocarp fibres are generated from waste materials
that would be discarded postextraction.

Several reports documented utilising OPF from OPEFB
as a resource for cellulose nanofibres (CNF) and cellulose
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nanocrystal (CNC) procurement [4–7]. Nanocellulose is a
new biopolymer category applicable in various interdisci-
plinary sectors, including biomedical and pharmaceuticals,
membranes, three-dimensional (3D) printing, energy appli-
ances, and flexible electronics [6]. Nanocellulose could be
classified according to its form and sources: cellulose nano-
crystals (CNCs), nanocrystalline cellulose (NCC), cellulose
nanowhiskers (CNWs), cellulose nanofibres (CNFs) or
nanofibrillated cellulose (NFC), and bacterial nanocellulose
(BNC) [6, 7].

The directed procurement of CNCs and CNFs is per-
formed by disintegrating plant substances through chemical
or mechanical approaches. Furthermore, nanocellulose is
environmentally safe and sustainable; thus, it is an attractive
and environmentally friendly alternative for prospective
business and academic research. OPF, primarily as nanocel-
lulose, is commonly used in biomedical applications owing
to its exceptional mechanical characteristics, significant sur-
face area, versatility for surface functionalisation, biocom-
patibility, and nontoxicity [6]. Consequently, the present
review is aimed at highlighting the employment or possible
utilisations of OPF in various medical industries.

2. Method

Electronic searches in Google Scholar, ScienceDirect, and
PubMed databases were conducted using “oil palm fibres
in the medical field” and “oil palm fibre.” Only articles pub-
lished within the last ten years (2012–2022) were considered
in this study. Inclusion criteria include literature in the
English language, articles on fibres from oil palm trees, and
subjects in the medical field only.

3. Results

The electronic search conducted in this study yielded 459
articles. The papers were then manually assessed for subject
pertinence and replications. Duplicate articles were excluded
(30); 186 articles were excluded after studying the title, while
62 articles were excluded after reading the abstract, resulting
in the exclusion of 278 articles, while 132 publications were
considered irrelevant to the current study. Articles in a lan-
guage other than English were excluded (11). Articles with-
out full-text access were also excluded (14). Eventually, 24
articles were selected for full-text evaluations, which were
further discussed. The use of OPF in the medical field was
categorised into four categories based on the focus area: drug
transportation, tissue engineering, antimicrobial agent
bearer, and wound care administration (Table 1).

The focus area in the utilisation of OPF in the medical
field includes drug delivery (14), tissue engineering (7), anti-
microbial agent bearer (5), and wound care (2). Some of the
papers reported multiple focus areas concerning the use of
OPF in their study.

4. Discussion

OPF in the form of CNC has been used in the medical
industry as reported in many studies as follows.

4.1. Drug Transportation. Several publications reported on the
employment of CNCs in drug distribution utilisation to regulate
drug release rates and the number of drugs in blood circulation,
enhancing drug solubility, stability, therapeutic potency and
diminishing clearance, negative surface charge and a high spe-
cific surface area ratio, and colloidal reliability are among the
exceptional attributes of CNCs (Figure 3) [6, 7, 29].

Furthermore, the surfaces of the substance could be
functionalised due to hydroxyl groups. The beneficial
attributes allow high levels of charged or neutral medica-
tions to be stocked on CNCs, thus modulating active
ingredient release and conveying genes to determined
areas [6, 7, 11, 12].

The hydrophilic characteristics and poor drug-loading
behaviour of CNCs restrict the employment of the substance
in its pure form. Moreover, some CNC application issues are
due to its high surface energy, leading to accumulation and
phase dissociation from matrixes during production. The
polar chemical groups in CNC elements also lead to disper-
sion concerns in nonpolar media, thus restraining their
characteristics. The substance is also susceptible to absorb-
ing water and thus degrades the mechanical attributes of
the substance obtained. The diminished mechanical prop-
erties would then lower the compatibility of CNCs with
hydrophobic polymers, hindering them from uniformly
spreading in any media or matrix [7]. Consequently, the
challenges of preserving CNC post alterations must be
addressed to augment CNC-based medication transportation
approaches [7, 15].

Several studies proposed adjustments to the CNC surface
via sulfonation to improve its crystallinity. Sulfonation will
destroy its amorphous regions, enhancing hydrophobic
medicine attachments due to the reactive functional groups

Figure 1: The oil palm tree (Elaeis guineensis).

2 Journal of Food Processing and Preservation



on the backbones of CNCs [10, 30]. Drug carriers are com-
monly spherical, as this shape is the simplest to manufacture
[14]. Nevertheless, rod-shaped particles possess high body
cellular absorption and a long circulation duration, making
them effective as drug carriers and increasing the kinetics
of blood clearance [6, 14]. Rod-shaped CNCs demonstrated
a significant potential for drug delivery as they controlled
active chemical releases and allowed the loading of charged
and neutral drugs or medications, which could be trans-
ported to the selected areas owing to their negative surface
charge, adsorption ability, and high specific surface area
ratio [6, 11, 12].

The enhanced open pore structure, considerable surface
area, superior bioavailability, and capabilities of CNC-
based hydrogels to deliver a higher amount of therapeutic
drugs have attracted much interest, particularly in the bio-
medical and pharmaceutical industries [13, 16]. The
freeze-drying approach, which requires no additional treat-
ment or solvent, is employed in producing CNC aerogel
that aids the ability to load drugs and increases the bio-
availability of drugs. The unbleached cellulose of OPEFB
is used to create the CNC/CNF-mixed aerogel. The aero-
gels exhibit outstanding macroporous and lamellar struc-
tures due to the slow freezing step at 20°C before freeze-
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Figure 2: Oil palm tree parts and by-products [2, 3].
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drying, producing lightweight, highly porous, high crystal-
linity, and specific surface area products that could be
employed in drug transportation [8].

Shazali et al. [9] generated spherical CNC from OPEFB
with fluorescein isothiocyanate (FITC) to test cellular inter-
nalisation into normal murine fibroblast cells and rat glioma
for potential anticancer drug nanocarrier use. The normal
and malignant cell lines could not absorb the FITC-CNC
well. The study reported that the C6 (rat glioma cells) and
NIH3T3 (normal murine fibroblast cells) general adsorptive
endocytosis controlled the surface characteristics, morphol-
ogy, and hydrophobicity of the nanoparticles. Cell aggrega-
tion was further hampered by the electrostatic interaction
between the negatively charged CNC surface and the fibro-
blast cell membrane obtained in the study. Therefore, the
CNC could not attach to cell surfaces and initiate the

membrane-wrapping step. Studies suggested altering surface
charge properties to increase FITC-CNC cellular absorption
into malignant cells to obtain a customised nanocarrier for
transporting anticancer medications [6, 9].

A material extrusion technique employed to produce
desired hydrogels for various applications with liquid-
based materials is direct ink writing (DIW) three-
dimensional (3D) printing. Cellulose nanofibrils are the pri-
mary material utilised in fibrillated cellulose printing as they
naturally possess shear-thinning traits that allow smooth
extrusion. At moderate shear rates, cellulose nanofibrils are
highly viscous, enabling them to be 3D printed while still
maintaining their shape. Furthermore, the fibrillated cellu-
lose could adhere to the therapeutic agents and codrug car-
riers to the targets and control medication release
(antibiotics and anticancer drugs). The attribute is critical

Table 1: The summary of research conducted using OPF in the medical field (n = 24).

Focus Field Matrix or filler References

Drug transportation Pharmacology

The CNC and CNF from OPEFB [8]

The CNC from OPEFB [9]

Fibrillated CMF from OPEFB [6, 7, 10–19]

Tissue engineering Biomedical engineering
The OPEFB-derived CNC hydrogel [5]

The OPEFB cellulose [7, 20–24]

Antimicrobial agent bearer Microbiology The CNC from OPEFB [7, 14, 25, 26]

Wound care administration Dermatology and internal medicine
The CNF from oil palm biomass [27]

The OPEFB-generated cellulose acetate [28]
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Figure 3: Uses of CNC in drug transportation.
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to diminishing the adverse impacts of cytotoxic chemother-
apy on nontargeted cells and tissues [17]. A high-speed
homogenisation-manufactured fibrillated cellulose in DIW
3D printing has several advantages, including a large surface
area, aspect ratio, and fibre entanglement that contributes
superior mechanical features and could be utilised in the
approach [17, 18].

Mohan et al. [17] isolated and fibrillated cellulose microfi-
bres (CMF) from oil palm biomass to procure a sturdy and
flexible cellulose-based 3D-printed composition with intact
cellulose fibrils. They partially dissolved the CMFs in an alka-
line solvent to obtain the desired product. They also docu-
mented that CMF-printed structures such as scaffolds and
human ear cartilage produced considerable accuracy, shape
fidelity, and better mechanical properties. They also tested cal-
cium carbonate (CaCO3) as the drug transporter in the 3D-
printed CMF/CaCO3 composite. The preserved fibrillated
form of the CMFs obtained in the investigation recorded the
ability to regulate the uptake and release of 5-fluorouracil (5-
FU), a therapeutic medication. The CMF printable composite
also exhibited potential for usage in applications involving reg-
ulated drug administrations and prevented the first burst drug
release with adverse influences on healthy cells.

4.2. Tissue Engineering. Repairing damaged tissues, bones,
and cartilage reconstruction and accelerating wound healing
with minimal displeasure are the aims of tissue engineering
technology [23]. Tissue engineering technology is also
favoured for developing new therapies and repairing and
rejuvenating harmed tissues and organs [7]. Consequently,
CNC-based substances are highly desired in tissue engineer-
ing technology investigations as they fulfil conditions such as
increased cell adherence and division, better mechanical
properties, capacity to hold water, water permeability, biode-
gradability, and sustainable growth [7, 21]. The desired fea-
tures of CNC-based substances in tissue engineering
technology are as shown in Figure 4.

Some techniques involved during tissue engineering scaf-
fold synthesis include electrospinning, solvent casting, freeze-
drying, cross-linking, and 3D printing [20, 24]. Nevertheless,
3D printing is the only technique that reportedly employed
OPF to procure tissue engineering. A 3D cross-linked hydro-
philic polymer or hydrogel could absorb significant liquid or
saline solution volumes. The material also exhibited capabilities
for employment in tissue engineering due to its biocompatibil-
ity [5]. Athukoralalage et al. [23] documented using 3D bio-
printing nanocellulose hydrogels for tissue engineering. The
hydrogels in the report were successfully evaluated formamma-
lian cell viability and tissue engineering implementation. Fur-
thermore, the research results demonstrated that the 3D-
printed structures improved accuracy and resolution.

Salleh et al. [22] reported that OPF cellulose, which was
dissolved in a sodium hydroxide (NaOH)/urea solvent and
mixed with sodium carboxymethyl (NaCM), produced a
superabsorbent hydrogel. This hydrogel was documented
to exhibit maximum gel fraction, water absorption, degree
of swelling, and transparency at 10% epichlorohydrin
(ECH), which is utilisable in tissue engineering technology.
Conversely, the assessment results (gel fraction, water

absorption, and degree of swelling) were the lowest at 5%
ECH, except for moisture retention. This was reported due
to improved cross-linker concentration from high internal
osmotic pressure, which boosted the superabsorbent charac-
teristics of the hydrogel. The hydrogel’s super-absorbent and
water-holding abilities demonstrated significant potential for
further employment in tissue engineering technology.

4.3. Antimicrobial Agent Carrier. Due to resistance, antibi-
otics have been reported as less potent in treating infections.
Microorganism mutations and selection pressure from antibi-
otic treatments allowed mutant strains a competitive edge,
leading to a global spread. Selective pressure describes a natu-
rally occurring selection in which one organism obtains bene-
fits over another [25]. Some microbes are killed by particular
antimicrobial agents, while some thrive, mutate, and prolifer-
ate over time, leading to more antimicrobial-resistant
microbes [26]. Figure 5 shows the process of selective pressure
affecting the resistance of microbes to antibiotics over the year.

Bacterial strains were detected long before the first pen-
icillin antibiotic was introduced. Antibiotic usage has
resulted in selection pressure, which has led to almost all
disease-causing microorganisms developing antibiotic resis-
tance towards the antibiotics employed to treat them [25].
The antibiotic resistance evolution due to microbial muta-
tion and the reduced effectiveness of antibiotics in curing
prevalent microbial diseases prompted the manufacture of
novel antimicrobial carriers [25].

Adhering active antimicrobial agents to long-chain
polysaccharides and polymers, primarily CNCs, which act
as transporters, is becoming a common practice [7]. Cur-
cumin ((1,7-bis (hydroxyl-3-methoxyphenyl)-1,6-heptane-
3,5-dione), a fat-soluble compound with orange-yellow pig-
ment, is obtained from turmeric (Curcuma longa L.) [32]. It
is a naturally occurring polyphenol known for its exceptional
pharmacological attributes, including anti-inflammatory,
antioxidant, antibacterial, anticancer, and antimutagenic
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Figure 4: Characteristics of CNC-based substances that are highly
desired in tissue engineering technology investigations.
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[14, 32]. Curcumin was reported to have low toxicity in
humans and animals [33]. In addition to its antimicrobial
property, Foo et al. [14] effectively bonded curcumin (Cur)
to OPEFB-derived CNC altered with tannic acid (TA) and
decylamine (DA) to obtain a potent and superior green anti-
microbial drug transporter. The adjusted CNC recorded
curcumin-binding efficiencies within the 95–99% range for
every measured concentration, at least twice that of the
unmodified CNC. The extraordinary binding efficiency was
similar to commercially available wood-based CNC.

4.4. Wound Care Application. Compared to conventional graft
or allogenic skin tissue methods, wound dressings made of
plant- and animal-based natural polymers, for example, cellu-
lose, have recently received tremendous recognition in regener-
ative medicine. Cellulose possesses unique properties that can
imitate the features of extracellular matrices (ECM), causing it
to be appealing within all-natural polymers. The open market
offers a variety of materials for wound dressings, including
foams, hydrocolloids, hydrogels, and electrospun nanofibre
scaffolds. Even between them, electrospun nanofibre scaffolds
have unique benefits, several of which include high porosity

responsible for absorbing excess wound exudation and prevent-
ing microbial infiltration, outstanding results in cell adhesion,
multiplication, motility, and diversification, as well as a substan-
tial surface area for drug loading and administration, oxygen
permeability through the dressing, reaching the wound site,
and water vapour transfer to give sufficient moisture for wound
healing. Moreover, electrospun bioscaffolds have unique quali-
ties, including solid biocompatibility, promotion of epithelisa-
tion, and adequate holes for gas exchange [28].

However, even with these promising benefits, some scaf-
folds have disadvantages, namely, scarring, wound constriction,
and inadequate host cell/tissue integration. Three-dimensional
(3D) scaffolds have gained recognition in this regard for their
ability to cover wounds and establish a solid physiological
defence against infection from the outside. Although cellulose
has benefits as a wound healingmedium, the availability of elec-
trospun cellulose nanofibre scaffolds is limited due to the chal-
lenges associated with selecting reasonably priced and
ecologically suitable solvents [28]. Table 2 summarises the
advantages and disadvantages of CNC scaffolds.

Methicillin-resistant Staphylococcus aureus (MRSA) and
other bacteria could impede wound healing and cause

Microbes where exposed to
the antibiotic to treat them

Some microbes survive the
antibiotic and started to mutate

Mutation creates variation

Population of mutated microbes
that are resistance to antibiotic

increased

Mutated microbes started to
reproduce

Figure 5: Process of selective pressure affecting antibiotic resistant [31].

Table 2: Summary of advantages and disadvantages of CNC scaffolds as reported by Suteris et al. [28].

Advantages Disadvantages

1. High porosity responsible for absorbing excess wound exudation
and preventing microbial infiltration

1. Scarring

2. Outstanding results in cell adhesion, multiplication, motility,
and diversification

2. Wound constriction

3. Substantial surface area for drug loading and administration 3. Inadequate host cell/tissue integration

4. Oxygen permeability through the dressing
4. Limited due to the challenges associated with selecting
reasonably priced and ecologically suitable solvents

5. Water vapour transfer to give sufficient moisture for wound healing
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exudation. Zinc oxide (ZnO) has gained attention in nanofil-
ler studies due to its high stability, exceptional photocatalytic
performance, antibacterial activity, and nontoxicity [27].
Consequently, Supramaniam et al. [27] procured CNFs from
oil palm biomass overloaded with zinc oxide (ZnO) nano-
composites for treating wounds. The ZnO-CNF samples
recorded a 2mm inhibitory zone in the MRSA antibacterial
evaluation conducted during the investigation. The report
also suggested that oil palm biomass-derived nanocellulose
could be successfully utilised for various biological
utilisations.

Suteris et al. [28] fabricated cellulose acetate (CA)/poly-
caprolactone (PCL)/Cur nanofibre scaffolds with EFB-
generated cellulose acetate (CA) as the vital element for uti-
lisation in wound dressing. The hydrogen bonds between the
components resulted in improved hydrophilicity, which
enhanced the swelling properties of the scaffolds. The article
noted that the nanofibre scaffolds utilised in wound healing
developed more significant multiplication and actin creation
in fibroblasts than scaffolds without Cur. Furthermore, the
cell growth observed in the study proved that the drug-
loaded nanofibres were safe for the cells. The CA/PCL/Cur
nanofibre scaffolds exhibited potential application as a mate-
rial for drug conveyers in skin tissue engineering with good
physical and biological capabilities for wound healing. Nev-
ertheless, merely a few effective skin scaffolds have been
found for tissue engineering employment despite extensive
studies on producing the biomaterial.

As most of the studies reported the use of OPF in the
form of CNC in multiple areas within medical potential,
up to date, we could not find any article which reports a clin-
ical trial regarding OPF or its derivative.

4.5. Future Prospects. With the latest developments in the
medical engineering field, the use of nanocellulose from
OPF can be further explored to increase its usage. The
nature of nanocellulose that is capable of being a catalyst
for medicinal substances allows it to function as an interme-
diary to further improve function and effectiveness, espe-
cially in medical engineering technology.

5. Conclusion

The OPF has wide applications and capabilities in the med-
ical area, particularly in the biomedical and pharmaceutical
sectors. It is utilised for drug delivery, tissue engineering,
and wound dressing. The substance also exhibited promising
results and significant capacities to be exploited and further
researched. Nonetheless, hydrophobicity, poor drug-loading
characteristics, accumulation, and phase detachment from
matrixes during manufacture due to the high surface energy
area are among the limitations of OPF that require solving.
These restrictions necessitate further investigations to
acquire solutions to optimise the potential of OPF.
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