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In this manuscript, polysaccharide (TMSP) was isolated from Trichosanthes kirilowii Maxim. seed shell. The homogeneous
polysaccharide (TMSP-1; molecular weight: 690.239 kDa) was purified by column chromatography (DEAE-cellulose-52 and
Sephadex G-150). The result of monosaccharide composition showed that TMSP-1 consisted of D-mannose, D-glucose, D-
galactose, and glucuronic acid in a molar ratio of 2.01 : 1.98 : 1.87 : 1. Methylation analysis showed that TMSP-1 was made up
of →3)-D-Galp-(1→, D-Glcp-(1→, →4)-D-Manp-(1→, →6)-D-Galp-(1→, →4)-D-Galp-(1→, and →4,6)-D-Manp-(1→. The
microscopic conformation of TMSP-1 showed a regular flake-like structure that was inlaid with small holes. The α-glucosidase
inhibitory rate of TMSP-1 reached 52.23% when the concentration of TMSP-1 was 8mg/mL, which confirmed the potential
hypoglycemic activity of TMSP-1 in vitro. In vivo results showed that type 2 diabetes causes a significant increase in organ
index and TMSP-1 recovered the organ index in mice (P < 0:05). Furthermore, TMSP-1 reversed the increase of liver and
kidney weight and the indicators of abnormality. This research lays a foundation for research on the polysaccharides of
Trichosanthes kirilowii Maxim. seed shell in hypoglycemia.

1. Introduction

Trichosanthes kirilowii Maxim., a traditional Chinese herbal
medicine, has received much attention from scholars
because of its significant medicinal value [1]. Extracts from
T. kirilowii are known to improve cardiovascular system
function, can be used as a cough expectorant, and have anti-
tumor and anti-inflammatory activities [2–4]. The seeds of
Trichosanthes kirilowii Maxim. are edible and are rich in
nutrients such as protein and oil. Research has shown that
seeds are rarely classified as everyday consumer goods. But
all kinds of plant seeds contain rich nutrients, such as poly-
phenols, flavonoids, and alkaloids. Therefore, more and
more attention should be paid to plant seed nutrition and
efficacy [5–8]. Modern medical studies have confirmed that
Trichosanthes kirilowii Maxim. seeds contain unsaturated
fatty acids, protein, amino acids, triterpene saponins, and
16 trace elements [5, 6]. Therefore, Trichosanthes kirilowii
Maxim. seeds are also known as “drug homologous food,”

because they are widely used to treat cough and asthma,
reduce phlegm, and treat other conditions [7, 8]. To date,
the research on Trichosanthes kirilowii Maxim. seeds has
mainly focused on their contents of flavonoids, essential oils,
and protein [9–12]. Therefore, knowledge of the chemical
constituents of Trichosanthes kirilowii Maxim. seeds is not
yet comprehensive.

Polysaccharides are chains of sugars linked by glycosidic
bonds and are generally composed of at least ten monosac-
charide units [13]. It is well known that polysaccharides
are widely distributed in nature because of their important
physiological functions [14]. On the one hand, polysaccha-
ride may exist as components of animal tissue and plant cell
walls, such as peptidoglycan and cellulose [15]. On the other
hand, polysaccharides have particular biological activities,
such as hypoglycemic, antioxidation, antitumor, and anti-
bacterial activities [16].

Diabetes mellitus (DM) is a clinical syndrome caused by
the interaction of genetic and environmental factors [17].
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Because of an absolute deficiency of insulin secretion, a
series of metabolic disorders can occur involving imbalances
in sugars, protein, fat, water, and electrolyte. DM can be
divided into type 1 or type 2 diabetes [18]. Type 1 diabetes
mostly occurs in young people and requires the administra-
tion of insulin to maintain life, whereas type 2 diabetes
(T2DM) can occur at any age and can be controlled by oral
hypoglycemic drugs. DM can cause many complications,
such as nephropyelitis, urocystitis, and atherosclerotic car-
diovascular disease [19]. Among them, diabetic nephropathy
is one of the most common diseases. It is caused by hyper-
glycemia and is the main symptom of impaired renal struc-
ture and function. Clinical diabetic nephropathy is often
associated with diabetic retinopathy, and almost all patients
with diabetic nephrotic syndrome exhibit diabetic retinopa-
thy. In addition, diabetes can also cause liver lesions, mainly
manifested as cirrhosis [20].

Current studies of Trichosanthes kirilowii Maxim. seed
have focused on the active components, such as flavonoids,
proteins, and essential oils, while little research has been
done on the polysaccharide of the seed. This study is aimed
at exploring the structural character and hypoglycemic activ-
ity of polysaccharide isolated from T. kirilowii seed shell.
The fine structure of polysaccharide was described, and its
hypoglycemic activity on T2DM mice was evaluated. This
study promotes a compelling reason to research on the poly-
saccharides of Trichosanthes kirilowii Maxim. seed shell in
hypoglycemia.

2. Materials and Methods

2.1. Materials. Trichosanthes kirilowii Maxim. was provided
by Anyang Institute of Technology. The Sephadex G-150
and DEAE-cellulose-52 were bought from Sigma Chemical
Co. (USA). The standards of monosaccharides, such as D-
glucose (D-Glc), D-xylose (D-Xyl), D-galactose (D-Gal), L-
rhamnose (L-Rha), D-mannose (D-Man), and L-arabinose
(L-Ara) were obtained from Solarbio (Beijing, China). The
reagents used in HPGPC and GC-MS were of chromato-
graphic grade. All other chemicals used in this study were
of analytical grade.

Healthy male C57BL/6J mice (2-3 weeks, 20 ± 2 g) were
purchased from Sibeifu Biotechnology Co., Ltd. (Beijing,
China). Animal welfare and experimental procedures were
carried out following the relevant laws and the Guide for
the Care and Use of Laboratory Animals (Ministry of Sci-
ence and Technology of China, 2006). None of the experi-
ments involved human subjects.

2.2. Preparation of Polysaccharide. Polysaccharide was
obtained by water extraction and alcohol precipitation
[21]. Trichosanthes kirilowii seed shell was dried, ground to
powder, and extracted with distilled water (1 : 60, w/v)
[22]. The ethanol was added to aqueous supernatant to pre-
cipitate the crude polysaccharide (TMSP). Residual protein
in the TMSP was removed with Sevag reagent. To obtain
homogeneous polysaccharide (TMSP-1), the TMSP was
purified by using DEAE-cellulose-52 and Sephadex G-150
(1:6 × 40 cm) [23].

2.3. Structural Analysis of TMSP-1

2.3.1. Molecular Weight (MW) Analysis of TMSP-1. The
MW of TMSP-1 was determined by the method of Zhang
et al. [24]. TMSP-1 and T-series dextrans (1mg/mL) were
analyzed by HPLC to calculate the MW of TMSP-1.

2.3.2. Fourier Transform Infrared (FT-IR) Analysis of TMSP-
1. The analysis of FT-IR was operated according to the
method of Zhang et al. [25]. The mixture of sample and
dried KBr was prepared according to the literature. The
FT-IR analysis of TMSP-1 was performed with FT-IR spec-
trophotometer (Perkin Elmer Corp., USA).

2.3.3. Monosaccharide Composition Analysis of TMSP-1. The
degradation of TMSP-1 structure was referred to Song and
Kong’s method [26]. After the mixture of TMSP-1 solution
(1mL, 0.1mg/mL) and trifluoroacetic acid (0.5mL, 4mol/
L) was heated at 120°C for 2 h, PMP methanol solution
(0.5mL, 0.5mol/L) and NaOH solution (0.5mL, 0.3mol/L)
were added and heated in a water bath at 70°C for 30min.
After cooling to room temperature, the sample was neutral-
ized with HCl solution (0.5mL, 0.3mol/L), and chloroform
was used to remove organic impurities. The aqueous layer
was filtered with a 0.22μm membrane [27].

2.3.4. Methylation and Gas Chromatography-Mass
Spectrometry of TMSP-1. The methylation of TMSP-1 was
operated according to Heiss et al.’s method [28]. A mixture
of dried TMSP-1 (20mg) and NaH (100mg) was added into
anhydrous dimethyl sulfoxide (3mL), heated at 28°C for
30min. After the dropwise addition of CH3I, the product
was dialyzed and concentrated to dryness.

Trifluoroacetic acid solution (2mL, 2mol/L) was added
to the methylated sample, which was then degraded for
3 h. The mixture was dried under N2 to obtain the degrada-
tion products of fully methylated samples. Then, 25mg of
NaBH4 was added to the degradation product for reducing
at room temperature in darkness. After the reaction, the
methanol (3mL) and acetic acid were added into the sample,
and the mixture was evaporated to dryness. This process was
repeated five times. After that, pyridine (1mL) and acetic
anhydride (1mL) were added to the above-treated samples
for acetylation. After the reaction, 1mL of methanol was
used to obtain the acetylated product. The acetylated prod-
uct was dissolved in 2mL of dichloromethane and then con-
centrated to about 1mL with N2 gas for analysis by gas
chromatography-mass spectrometry.

2.3.5. Nuclear Magnetic Resonance (NMR) Spectroscopy of
TMSP-1. Take 20mg of polysaccharide sample, dissolve it
in 0.5ml of heavy water, load it into the NMR tube, and con-
duct detection using Bruker NMR spectrometer (400MHz)
[29].

2.3.6. Scanning Electron Microscopy (SEM) Analysis of
TMSP-1. The fully dried polysaccharide sample was attached
onto the sample stage using specialized double-sided tape,
ensuring that the sample does not move or detach. Next,
an ion sputtering coating machine was used to spray gold
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onto the sample surface. Finally, the gold-coated sample was
placed into a scanning electron microscope and observe the
morphology and structure of the sample at magnifications of
200-1000x [30].

2.4. α-Glucosidase Inhibitory Activity of TMSP-1. A 96-well
microplate was used as a reaction carrier. In the sample
group, α-glucosidase (yeast source, 40U/mL) and TMSP-1
were added to each well. In the control group, an equal
amount of TMSP-1 and phosphate buffer (0.1mol/L,
pH6.8) was added to each well. In the blank group, equal
amounts of α-glucosidase and phosphate buffer were added
to each well. After the samples were incubated at 37°C for
10min, 20μL of p-nitrophenyl glucopyranoside (7.5mmol/
L) was added and the sample was incubated for a further
30min. Na2CO3 solution (100μL, 0.1mol/L) was added into
the sample to terminate the reaction. The inhibition rate was
calculated as follows [12]:

Inhibition rate = A1 − A2
A1 − A3 × 100, ð1Þ

where A1 is the control group absorbance at 405nm, A2 is
the sample group absorbance at 405nm, and A3 is the blank
group absorbance at 405nm.

2.5. Hypoglycemic Activity of TMSP-1 In Vivo

2.5.1. Design of Mouse Experiment. After 7 d of normal feed-
ing, 10 C57BL/6J mice were randomly selected as the normal
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Figure 1: Elution results of DEAE-52 (a) and Sephadex G-150 (b) columns and the liquid chromatogram (c) of TMSP-1.
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Figure 2: The calibration curve of T-series dextrans.
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Figure 3: FT-IR spectrum of TMSP-1.
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group (NG) and continued to be fed normally. After being
fed a high-fat and sugar fodder for 4 weeks, the rest were
injected with streptozotocin (STZ, intraperitoneal, 30mg/
kg) on day 3, after which feeding on high-fat and sugar fod-
der continued [28]. The NG group mice were injected with
the same amount of saline solution and were fed basal fod-
der. Each mouse was fasted for 2 h after injection to ensure
successful construction of the model. Three days after injec-
tion, blood samples were taken from the tail tip to measure
blood glucose. The blood glucose range of 11.1–30mmol/L
indicated successful modeling. Otherwise, STZ was injected
again at a dose of 25–40mg/kg on the day after fasting until
the modeling was successful [29].

The mice were randomly divided into the model group
(MG) and the high- (H-TMSP-1), middle- (M-TMSP-1),
and low-dose (L-TMSP-1) groups. Acarbose was used in
the positive control group (PG). The mice in the NG group
and MG group were fed with 0.9% saline solution (0.2mL/
10 g). The mice in the sample groups were fed with 100,
200, and 300mg/kg bw of TMSP-1.

During feeding, the mice had free access to basic feed
and water. The mice’s fasting blood glucose (FBG) was
recorded every 7 days. After 26 days of administration, the
mice were fasted for 12h. Each group of mice was given glu-
cose (2.0 g/kg), and the blood glucose was measured at 0, 0.5,
1.0, 1.5, and 2.0 h. At 28 days after administration, serum
was collected by eyeball extirpation. The liver and kidney
were collected after dissection, and the organ index was
measured [30].

2.5.2. Determination of Liver and Kidney Functional Indexes.
Blood samples of the mice were collected before the mice
were killed. Serum was obtained by centrifugation at
2000 rpm at 4°C for 20min. The levels of aspartate amino-

transferase (AST), albumin (ALB), blood urea nitrogen
(BUN), and creatinine (CRE) were recorded using an auto-
mated biochemical analyzer. Insulin ELISA kit was used to
detect serum insulin levels in each group.

2.5.3. Oxidative Stress Analysis. Mice’s serum and organs
were collected after the mice were killed. The activities of
glutathione peroxidase (GSH-Px) and superoxide dismutase
(SOD) and the content of malondialdehyde (MDA) were
measured by insulin enzyme-linked immunosorbent assay.

2.6. Statistical Analysis. All samples were analyzed in tripli-
cate and averaged; data were expressed as mean ± standard
deviation (SD). Excel 2010 and Origin 2018 software were
used for data processing and graphing.

14

1 2
3

4

5
6

4 5 6

7

0

1

2

3

4

0

1

2

3

4

5 (a)

(b)

15 16 17 18 Minutes

Figure 4: Monosaccharide composition analysis of (a) TMSP-1 and (b) 7 standard monosaccharides (1: L-rhamnose, 2: D-arabinose, 3: D-
xylose, 4: D-mannose, 5: D-glucose, 6: D-galactose, and 7: glucuronic acid).

70

60
65

45
50
55

40
35
30

4000 3500 3000

T

2500 2000 1500 5001000

b

a

Figure 5: Infrared spectrum of TMSP-1 after methylation reaction:
(a) infrared spectrum of TMSP-1 before methylation and (b)
infrared spectrum of TMSP-1 after methylation.

4 Journal of Food Processing and Preservation



3. Results

3.1. Isolation and Purification of Polysaccharides. After iso-
lating crude polysaccharide, the homogeneous polysaccha-
ride (TMSP-1) was obtained by column chromatography
of the crude polysaccharide. The elution results of DEAE-
52 and Sephadex G-150 columns and the liquid chromato-
gram of TMSP-1 are shown in Figure 1. As shown in
Figure 1, there was a single symmetrical peak in the liquid
chromatogram of TMSP-1, indicating that TMSP-1 was a
single component [31]. In addition, the total sugar content
of TMSP-1 was 98.67%, which suggested that TMSP-1 could
be used for subsequent experiments.

3.2. Determination of MW of TMSP-1. The calibration curve
of T-series dextrans (Figure 2) was established as follows:
y = −0:3652x + 8:962 and R2 = 0:9928 (y is the logMw and
x is the retention time). From the retention time of TMSP-
1 (7.32min) (Figure 1(c)), the MW of TMSP-1 was calcu-
lated to be 690.239 kDa.

3.3. FT-IR Analysis of TMSP-1. The FT-IR spectrum of
TMSP-1 (Figure 3) featured a strong absorption at
3437.7 cm−1, indicating the presence of multiple -OH groups
[32]. The C-H stretching vibration peak was located at
2928.5 cm−1 [33], that at 1613.4 cm−1 was assigned to the
presence of C=H [34], and the three peaks at 1248.6,
1020.4, and 1081.4 cm−1 suggested the presence of pyranose
[35]. After that, the peak at 1721.34 cm−1 was attributed the
presence of alduronic acid. Moreover, the signal at
831.09 cm−1 indicated that α-glycosidic linkages was present
in TMSP-1 [36].

3.4. Monosaccharide Composition Analysis of TMSP-1. As
shown in Figure 4, the result of monosaccharide composi-
tion suggested that TMSP-1 was formed by D-mannose,
D-glucose, D-galactose, and glucuronic acid in a molar ratio
of 2.01 : 1.98 : 1.87 : 1.

3.5. Methylation Analysis of TMSP-1. The methylation reac-
tion targets the free hydroxyl groups in the various mono-
saccharide residues, and the remaining hydroxyl groups
indicate the junction position of the original monosaccha-
ride residues [37]. Absorption peaks around 3500 cm−1

were usually detected by infrared spectroscopy to determine
whether the methylated polysaccharide contains free
hydroxyl group (-OH) [38]. As shown in Figure 5, the

weakened peak at 3500 cm−1 illustrated that TMSP-1 was
completely methylated [39].

The results of the methylation analysis of TMSP-1
showed that TMSP-1 was composed of →3)-D-Galp-(1→,
D-Glcp-(1→, →4)-D-Manp-(1→, →6)-D-Galp-(1→, →4)-
D-Galp-(1→, and →4,6)-D-Manp-(1→ (Table 1), which
were in accord with the results of monosaccharide composi-
tion analysis.

3.6. NMR Analysis of TMSP-1. As shown in Figure 6(a), the
six different anomeric protons (5.56, 5.33, 5.29, 5.10, 4.97,
and 4.86 ppm) in 1H NMR spectrum of TMSP-1 con-
firmed that TMSP-1 was made up of six different types
of glycosidic bond [40]. Furthermore, there also were six
anomeric carbons (109.3, 106.05, 103.63, 102.83, 99.43,
and 95.51 ppm) in 13C NMR spectrum, which was in con-
formity with the interpretation of the 1H NMR spectrum
[41]. Moreover, the presence of a carbon resonance at
176.32 ppm showed that TMSP-1 was an acid polysaccha-
ride [42], which was in conformity with the results of
monosaccharide composition analysis. The signals at
δ13.05/4.86 ppm confirmed the presence of →3)-D-Galp-
(1→ units [43], whereas those at δ101.69/4.69 ppm were
attributed to the linkage of →4)-D-Manp-(1→ [44]. The
signals at δ95.77/4.51 ppm and δ91.35/5.10 ppm were
ascribed to D-Gclp-(1→ and →6)-D-Galp-(1→, respec-
tively [45], and those at δ94.64/4.28ppm and δ101.98/
4.32 ppm were assigned to →4)-D-Galp-(1→ and →4,6)-
D-Manp-(1→, respectively [46]. All of the conclusions
drawn from the NMR spectra were consistent with the
results of methylation analysis.

3.7. Scanning Electron Microscopy (SEM) Analysis of TMSP-
1. The surface morphology of TMSP-1 is shown in Figure 7.
The surface of the sample had an irregular flake-like struc-
ture and was inlaid with small holes. These structural fea-
tures would be expected to provide a high surface area,
thereby enhancing its biological activity.

3.8. α-Glucosidase Inhibitory Activity of TMSP-1. The α-glu-
cosidase inhibitory activity of TMSP-1 is illustrated in
Figure 8. Different concentrations of TMSP-1 exhibited
different α-glucosidase inhibitory activities, indicating a
dose-dependent inhibition. As the TMSP-1 concentration
increased, the α-glucosidase inhibitory rate continued to
increase. When the concentration of TMSP-1 reached
8mg/mL, the inhibitory rate reached 52.23%. Therefore,

Table 1: Results of the methylation analysis of TMSP-1.

Methylation sugar residues Linkage types Major mass fragments (m/z)

a 2,4,6-Tri-O-Me3-D-Gal →3)-D-Galp-(1→ 43, 59, 87, 101, 113, 129, 142, 173, 187, and 205

b 2,3,4,6-Tetra-O-Me4-D-Glu D-Glcp-(1→ 43, 45, 87, 101, 117, 131, 145, 159, and 205

c 2,3,6-Tera-O-Me4-D-Man →4)-D-Manp-(1→ 43, 58, 87, 101, 117, 127, 143, 161, 201, 217, and 233

d 2,3,4-Tri-O-Me3-D-Gal →6)-D-Galp-(1→ 43, 87, 101, 113, 118, 129, 161, 173, 187, and 205

e 2,3,6-Tri-O-Me3-D-Gal →4)-D-Galp-(1→ 43, 45, 99, 103, 129, 161, 189, and 233

f 2,3-Di-O-Me2-D-Man →4,6)-D-Manp-(1→ 43, 45, 117, 127, 201, and 261
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TMSP-1 has the potential for hypoglycemic activity
in vitro. This is because TMSP-1 could prevent blood
sugar from rising too quickly by inhibiting α-glucosidase
activity, which slowed the digestion and absorption of car-
bohydrates and fats [47].

3.9. Organ Index Analysis. As presented in Table 2, the liver
and kidney indexes in the MG group were significantly lower
than those in the NG group (P < 0:05). Compared with the
NG group, the liver and kidney indexes in the MG group
were decreased by 39.9% and 68.2%, respectively, which

(c)

(d)

Figure 6: NMR analysis of TMSP-1: (a) 1H NMR spectrum; (b) 13C NMR spectrum; (c) COSY spectrum; (d) HSQC spectrum.

7Journal of Food Processing and Preservation



indicated the organ lesions in diabetic rats. After 4 weeks of
TMSP-1 intervention, the liver and kidney indexes were
apparently increased (P < 0:05).

In addition, the liver and kidney organ indexes in the H-
TMSP-1 group were significantly different from those in the
MG group (P < 0:05). The organ index was also observed to
increase with increased dose of TMSP-1. The kidney index
in the treatment groups showed no significant difference
from the PG group (P > 0:05). Furthermore, we found a sig-
nificant difference of liver index between the treatment
groups and MG group (P < 0:05), except for the L-TMSP-1
group. In conclusion, this suggests that TMSP-1 could effec-
tively improve organ health in T2DM mice.

3.10. Glycemic Index Analysis. The FBG levels of mice in
each group were measured after fasting overnight. During
the entire administration period, the FBG level of the NG
group was maintained at 5mmol/L. However, at the begin-
ning of the experiment (0 week), the FBG level of the other
groups was significantly higher than that in the NG group
(P < 0:01), which indicated that STZ successfully induced
and simulated a hyperglycemic model of diabetes in mice
(Table 3). After 1st week and 2nd week of oral administra-
tions of TMSP-1, we found that the FBG level decreased
compared with the MG group, but the difference was not
statistically significant (P > 0:05). However, after 3 weeks of
administration, FBG level in the MG group was significantly
higher than that in the PG group (P < 0:01). Compared with
the MG group, FBG level in each administration group was
significantly decreased (P < 0:01). In addition, after 3 weeks
of administration, the FBG level in the M-TMSP-1 and H-
TMSP-1 groups decreased by 25.34% and 42.31%, respec-
tively (P < 0:01), which showed that TMSP-1 could control
FBG level in T2DM mice.

3.11. Biochemical Assays of Serum. As we know, chronic high
blood sugar can lead to diabetic kidney disease, such as
nephrotic syndrome, which can lead to kidney failure or ure-
mia in severe cases. As shown in Figures 9(a) and 9(b), the
levels of CRE and BUN in the MG group were markedly
higher than that in the NG group (P < 0:01), which showed
that the kidney function of mice was obviously damaged.
After 4 weeks of oral administrations of TMSP-1, the level
of CRE and BUN in the TMSP-1 treatment groups was evi-
dently and dose dependently reduced than that in the MG
group (P < 0:05). These results indicated that TMSP-1 could
ameliorate impaired kidney function by reducing the level of
CRE and BUN.

As shown in Figures 9(c) and 9(d), the level of AST and
ALB in the MG group was markedly higher than that in the
NG group (P < 0:01). After 4 weeks of oral administrations
of TMSP-1, the level of AST and ALB gradually approaches
the NG group. Meanwhile, as the dose of TMSP-1 increased,
the levels of AST and ALB showed decreasing trends, which
suggested the relaxation effect of TMSP-1 by reducing the
level of AST and ALB in serum.

3.12. Oxidative Stress Analysis. In the present study, the
GSH-PX and SOD activities and MDA content in the liver
and kidney were investigated to elevate the relationship
between the occurrence of DM and oxidative stress. The
obtained results (Figures 10(a) and 10(b)) showed that the
activities of GSH-PX and SOD in the liver and kidney were
significantly decreased, but MDA content increased
compared with the NG group (P < 0:01), which suggested
that DM could cause oxidative stress disorder in mice. After
4 weeks of oral administrations of TMSP-1, activities of
GSH-PX and SOD in the liver and kidney were significantly
increased with increased dose of TMSP-1. However, an
opposing trend was observed for MDA content
(Figure 10(c)), which indicated that TMSP-1 could attenuate
oxidative stress by increasing antioxidant enzyme activity
and inhibiting lipid peroxidation.
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Figure 8: α-Glucosidase inhibitory activity of TMSP-1.

Figure 7: SEM analysis of TMSP-1.
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Table 2: The effect of TMSP-1 on liver and kidney organ indexes.

Index NG group MG group PG group L-TMSP-1 M-TMSP-1 H-TMSP-1

Liver 5:26 ± 0:36# 3:16 ± 1:36∗ 4:68 ± 0:22# 3:25 ± 0:43∗ 4:25 ± 1:02# 4:52 ± 0:36#

Kidney 1:95 ± 0:46# 0:62 ± 0:08∗ 1:16 ± 0:15# 0:88 ± 0:31 0:94 ± 0:06 1:06 ± 0:05#
∗Significantly different from the PG group (P < 0:05); #significantly different from the MG group (P < 0:05).

Table 3: Effect of TMSP-1 on blood glucose of T2DM mice.

Group
FBG (mmol/L)

0 days 7 days 14 days 21 days 28 days

NG group 5:36 ± 1:35∗∗## 5:46 ± 1:34∗∗## 5:56 ± 0:47∗∗## 5:25 ± 1:13∗∗## 5:56 ± 0:34∗∗##

MG group 26:48 ± 1:46 25:56 ± 1:24∗∗ 24:24 ± 3:24∗∗ 25:24 ± 4:23∗∗ 25:34 ± 1:42∗∗

PG group 25:17 ± 1:63 19:35 ± 3:56## 16:24 ± 4:34## 15:32 ± 4:24## 14:35 ± 4:24##

L-TMSP-1 25:98 ± 0:68 23:34 ± 6:3∗∗ 21:34 ± 5:34∗∗ 20:13 ± 2:35∗∗## 18:14 ± 2:45∗∗##

M-TMSP-1 25:34 ± 1:05 22:35 ± 3:53∗∗ 19:93 ± 5:32∗∗ 17:04 ± 2:53∗∗## 16:82 ± 2:56∗∗##

H-TMSP-1 26:15 ± 1:35 21:42 ± 4:35∗∗ 18:34 ± 5:24∗∗ 16:84 ± 3:21∗∗## 15:98 ± 2:35∗∗##
∗Significantly different from the PG group (P < 0:05); ∗∗extremely significantly different from the PG group (P < 0:01); #significantly different from the MG
group (P < 0:05); ##extremely significantly different from the MG group (P < 0:01).
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Figure 9: Effects of TMSP-1 on biochemical indices of serum: (a) CRE, (b) BUN, (c) AST, and (d) ALB; ∗: significantly different from the
PG group (P < 0:05); ∗∗: extremely significantly different from the PG group (P < 0:01); #: significantly different from the MG group
(P < 0:05); ##: extremely significantly different from the MG group (P < 0:01).
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4. Discussion

DM is a metabolic disease characterized by hyperglycemia.
With the improvement of living standards, the human life-
style and dietary structure have also changed [48]. In recent
years, diabetes has seriously endangered human health. At
the same time, the treatment of diabetes proceeds mainly
through insulin injection, oral hypoglycemic drugs, and diet
therapy. However, prolonged use of these drugs causes inev-
itable toxic side effects to human health, which may easily
lead to adverse reactions such as hypoglycemia, vomiting,
and diarrhea [49].

Polysaccharides are natural macromolecules and one of
the largest families of natural compounds. However, the
analysis of polysaccharide structure is more complicated
than the analysis of protein structure [50]. One factor con-
tributing to such complexity is the abundance of monosac-
charide types that make up polysaccharides (>200 known
monosaccharides at present); the other factor relates to the
branching structures of polysaccharides (proteins do not

have branches). As a result, polysaccharide structures can
be highly complex and difficult to characterize [51]. As we
all know, polysaccharide is a kind of natural macromolecular
compound with various biological activities, which has been
proved to ameliorate the damage of the liver and kidney in
diabetes mellitus.

In this study, we characterized the polysaccharide
structure isolated from the seeds of Trichosanthes kirilowii
Maxim. The result showed that TMSP-1 was composed of
D-mannose, D-glucose, D-galactose, and glucuronic acid
in a molar ratio of 2.01 : 1.98 : 1.87 : 1, which is consistent
with the result of Sun et al. [52]. Analysis by methylation
and NMR spectroscopy indicated that TMSP-1 was com-
posed of →3)-D-Galp-(1→, D-Glcp-(1→, →4)-D-Manp-
(1→, →6)-D-Galp-(1→, →4)-D-Galp-(1→, and →4,6)-D-
Manp-(1→.

The efficacy activity results suggested that TMSP-1 has
hypoglycemic potential in vitro. In addition, there were sig-
nificant decreases (P < 0:05) in the liver and kidney indexes
in the MG group, which was consistent with the result of
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Figure 10: Effects of TMSP-1 on activities of SOD and GSH-Px and the concentrations of MDA in the liver and kidney: (a) GSH-Px, (b)
SOD, and (c) MDA; ∗: significantly different from the control group (P < 0:05); #: significantly different from the model group (P < 0:05).
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Yang et al. [53]. Significant differences in organ index were
observed among the MG group and treatment groups, which
was consistent with the result of Jia et al. [54]. The loss of
organ weight was caused by malnutrition brought about by
insulin secretion [55]. Hyperglycemia has a complex rela-
tionship with oxidative stress. In addition, hyperglycemia
induces the production of free radicals through a variety of
molecular pathways [56]. As a kind of natural antioxidant,
polysaccharide can reduce the damage caused by oxidative
stress by improving the activity of antioxidant enzymes
and removing free radicals in the body and ultimately
improve the damage of diabetic liver and kidney. In this
study, there were significant differences in GSH-PX and
SOD activities and serum MDA between the MG group
and treatment groups. Furthermore, increased doses of
TMSP-1 pushed the activities of GSH-PX and SOD and
MDA content closer to the respective values for the NG
group, which was similar to the result of Liu et al. [57]. At
the same time, patients with diabetes are often accompanied
by dyslipidemia, such as elevated cholesterol and triglyceride
levels. Polysaccharides can regulate lipid metabolism path-
way, such as inhibiting cholesterol absorption and promot-
ing fat decomposition, and maintain blood lipid generation
in the body. Physicochemical indexes (AST, ALB, BUN,
and CRE) are often used to measure the degree of organ
damage caused by hyperglycemia. Previous studies have
shown that hyperglycemia can cause liver and kidney injury
[58]. Our study confirmed that TMSP-1 decreased the level
of AST and ALB and increased the levels of BUN and
CRE. This result was consistent with a previous study that
showed that the polysaccharides from Agrocybe cylindracea
could relieve the levels of physicochemical indexes [59].
Taken together, the results of the present study suggest that
T. kirilowii can be used as a reference source for diabetes
drug preparations.

5. Conclusion

In conclusion, a polysaccharide was obtained from Tricho-
santhes kirilowii Maxim. seed shell. The structure of poly-
saccharide was characterized with a variety of methods.
The hypoglycemic activity of the polysaccharide was also
performed in vitro and in vivo. All the results revealed
that the polysaccharide was made up of →3)-D-Galp-
(1→, D-Glcp-(1→, →4)-D-Manp-(1→, →6)-D-Galp-(1→,
→4)-D-Galp-(1→, and →4,6)-D-Manp-(1→. At the same
time, the polysaccharide has significant hypoglycemic
activity. It provided the experimental basis and scientific
support for the pharmacological application of Tricho-
santhes kirilowii Maxim.
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