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In some countries, most hazelnuts are cracked using semi-industrial or hand-crafted machines and marketed as open-shell. In the
process of hazelnut cracking, because of the different sizes and shapes of hazelnuts, many hazelnuts leave the cracking machine in
the form of a cracked or closed-shell. The presence of cracked or closed-shell hazelnuts reduces the marketability of the product.
Therefore, after the cracking operation, the separation of cracked or closed-shells from whole hazelnuts has largely been
conducted by visual inspection, which is time-consuming, labor-intensive, and lacks accuracy. So, the purpose of this study was
to use the deep convolutional neural network (DCNN) algorithm to classify hazelnuts into two classes: open-shell and closed-
shell or cracked hazelnuts. To compare the proposed method with pretrained DCNN models, three models including ResNet-
50, Inception-V3, and VGG-19 were investigated. The results of the proposed model (accuracy of 98% and F1-score of 96.8)
showed that the proposed DCNN has good capability in predicting hazelnut classes. Compared with pretrained models,
because of the small size and simple architecture of the proposed model, this model can be a good substitute for a complex
and large model such as Inception-V3. Overall, the results indicate that crack on the hazelnut surface can be successfully
detected automatically, and the proposed DCNN has a high potential to facilitate the development of a hazelnut sorter based
on surface crack.

1. Introduction

Hazelnut (Corylus avellana L.), the edible seed of the hazel-
nut, has been a feature of the human diet since prehistory.
Hazelnut is mainly distributed on the coasts of the Black
Sea region of Turkey, in southern Europe, and in some areas
of the USA (Oregon and Washington). It is also cultivated in
other countries, such as New Zealand, China, Azerbaijan,
Chile, and Iran [1, 2].

The appearance of fruits and nuts is a primary criterion
in the purchasing decisions of consumers, and it plays an
important role in the design of agricultural machinery,
equipment, and facilities for proper conveying, separation,
and cracking processes [3].

In some countries, especially in the Middle East region,
most hazelnuts are cracked using semi-industrial or hand-
crafted machines and marketed as open-shell [4–6]. Separat-
ing the closed-shell or cracked hazelnuts from the open-shell
is currently based on visual inspection, which is carried out
by the workers. Nevertheless, it can be considered potentially
unhealthy, time-consuming, expensive, and inconsistent in
nature.

Shelling and cracking operations are the most important
processes in hazelnut processing. The shelling and cracking
operations lead to broken and damaged kernels due to the
mechanical forces applied to the nut. Damaging the kernels
during the shelling process dramatically reduces the market
value of hazelnuts [7]. To increase the shelling performance,
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hazelnuts were separated into different size groups by using
a cylindrical or a vibrational sizer [8].

In the process of hazelnut cracking, because of the differ-
ences in size, shell stiffness, and shape of hazelnuts, many of
them do not become open-shell and leave the cracking
machine in the form of cracked or closed-shell. Separating
closed-shell and cracked hazelnuts from open-shell increases
the marketability of the final product. Also, during posthar-
vest drying, hazelnuts experience shell cracks, which could
accelerate quality deterioration and microbial contamination
of hazelnuts during storage. Separating these cracked hazel-
nuts could reduce the waste of products in subsequent pro-
cessing operations [9].

Most of the studies on hazelnut have been focused on the
shape or quality characteristics of the closed-shell and kernel
of hazelnut, including dimension, shape, color, defects,
mechanical properties, and cultivar classification [10–15].
In the detection of underdeveloped hazelnuts from fully
developed ones, an acoustic sorter system is developed to
separate empty hazelnuts using features extracted from
wavelet transform [16] and the combined feature vector of
length 78 [17]. Menesatti et al. [15] demonstrated the poten-
tial of modern multivariate techniques using shape-based
methods to discriminate between four traditional Italian
hazelnut cultivars. Defective hazelnut kernels were identified
automatically with multivariate analysis methods in RGB
images [10]. Solak and Altinişik [18] used image processing
and the k-mean clustering technique to classify hazelnut
varieties.

Recently, deep learning neural networks gained great
popularity as an effective method for classifying images in
many areas. In agriculture, DCNN has shown high perfor-
mance in several agricultural applications such as plant iden-
tification [19], quality evaluation [20], fruit classification [21,
22], weed classification [23], disease identification [24], vari-
ety classification of hazelnuts [25–29], classification of hazel-
nut kernel with DCNN [30], and crop classification [31].

Although several researches have been carried out to
identify empty hazelnuts or classify hazelnut varieties, there
has not been much research done to separate closed-shell or
cracked hazelnuts from open-shell ones. Thus, this study is
aimed at accurately identifying and classifying hazelnuts
based on the percentages of open-shell, cracked, or closed-
shell hazelnuts using proposed and common pretrained
DCNN models.

2. Materials and Methods

2.1. Hazelnut Samples. Hazelnut samples were collected
from the local markets in Iran (Rahimabad district of Gilan).
In total, 16 kg of hazelnuts was purchased from three differ-
ent dealers whose jobs were related to the processing of this
product. Samples were then mixed and then divided into
two classes including open-shell and cracked or closed-
shell (Figure 1). Open-shell hazelnuts have a large crack on
their surface, and their shell can be easily removed by hand,
whereas cracked hazelnuts have a tiny crack, and removing
their shell by hand is very hard. The average length, width,
thickness, and geometric mean diameter of the samples were

16.25mm, 15.18mm, 12.97mm, and 14.73mm, respectively.
In the mixed sample, the average of open-shell, cracked, and
closed-shell was found to be approximately 48%, 20%, and
32%, respectively. In this study, 4680 hazelnut fruits with
an equal number of 2340 samples for each class were
selected. The dataset was then split into 70% for training,
20% for validation, and 10% for testing.

The image acquisition system had a lighting box includ-
ing a linear LED (270 lm/ft) positioned on the inner face of
the adjustable box lid, and a smartphone (Samsung Galaxy
A20s) used as a camera was positioned in the center of the
box lid (Figure 2). The images were acquired in RGB color
space with a spatial resolution of 4160 × 3120 pixels and
stored in format .jpg. The input requirements of DCNNs
are different. For VGG-19, ResNet-50, and the proposed
model, the images were resized to 224 × 224 pixels, and for
Inception-V3, the images were resized to 299 × 299 pixels.
To increase the contrast between the hazelnuts and the back-
ground, we used blue cardboard as a background. A high
contrast makes it easy for models to discern the background
and object during the recognition process accurately.

2.2. Deep Convolutional Neural Networks. Deep learning was
recently used in many research efforts offering modern tech-
niques in image processing and data analysis, with promis-
ing results and considerable potential [32]. In this study, a
powerful deep learning technique, namely, a deep convolu-
tional neural network (DCNN), was used to recognize and
classify hazelnuts. DCNNs have two major advantages over
traditional shallow neural networks, such as sparse interac-
tion and parameter sharing, which makes DCNN a superior
classifier to other machine learning classifiers [33]. To min-
imize interference and achieve high accuracy during training
and validation, some techniques, such as image augmenta-
tion, transfer learning, batch normalization, and dropout,
were used.

2.2.1. Data Augmentation. Data augmentation is a technique
that can be used to artificially expand the size of a training
set by creating modified data from the existing one. Data
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Open-shell

Close-shell

Figure 1: Samples obtained from the output of the hazelnut
cracking machine.
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augmentation is also a good way to enhance the model’s per-
formance. In this study, data augmentation was applied only
to the training set and included horizontal flipping, vertical
flipping, and contrast [33, 34]. The augmentations of hazel-
nut images are shown in Figure 3.

2.2.2. Transfer Learning. Transfer learning (TL) aims to pro-
vide a framework to utilize previously acquired knowledge to
solve new but similar problems much more quickly and
effectively [35]. Transfer learning has been illustrated to be
effective for many applications as it uses knowledge of
labeled training data from a source domain to increase a
model’s performance in a target domain, which has little tar-
get training data [33]. This technique is effective when it is
not possible to train a network from scratch due to having
a small training dataset or having a complex multi-task net-
work [36–38]. In this study, during hazelnut classification,
transfer learning was implemented by training the built
models, VGG-19, Inception-V3, and ResNet-50 on the cap-
tured hazelnut images.

2.2.3. Proposed Model. The proposed neural network model
consists of an architecture that includes the input of a fixed

size of 224 × 224 × 3 RGB images to the first convolutional
layer with 16 filters, followed by several additional convolu-
tional layers from 32 to 256 filters. Our proposed DCNN
comprises convolution layers, max-pool layers, and one fully
connected layer. The rectification linear unit (ReLU) is used
as an activation function in the CNN layers.

The DCNN pretrained models and proposed model
codes were executed in Colab (Google Colaboratory),
which used Python 3.6, the TensorFlow backend, and the
Keras library. The hazelnut images were stored on Google
Drive to be called for while executing the script. Input,
kernel, and pooling size as well as the number of convolu-
tional layers and activation function of the models are
listed in Table 1. For all models, to minimize ANN train-
ing time, just one hidden layer was used in the fully con-
nected layer. The network was trained with RMSprop
optimization, and each hidden layer was activated using
the ReLU function. The output layer used the soft-max
classifier cost function as the activation function. Soft-
max provides probabilities for each output neuron. Com-
mon detailed hyperparameters for the proposed models
were adopted as follows: batch size 32, a number of
epochs 50, learning rate 0.0001, and momentum 0.9.

Linear LED light bar

Image capture hole

Figure 2: Image capturing box.

Original image Contrast Horizontal flip Vertical flip

Figure 3: Data augmentation using contrast change, horizontal and vertical flip.

Table 1: The parameters of DCNN.

Inception-V3 VGG-19 ResNet-50 Propose model

Input size 229 × 229 224 × 224 224 × 224 224 × 224

Kernel size 1 × 1, 3 × 3, 5 × 5, 1 × 3, 3 × 1,1 × 7, and 7 × 1 3 × 3 1 × 1, 3 × 3, and 7 × 7 3 × 3

Pooling size 3 × 2, 3 × 1, and 8 × 2 2 × 2 3 × 2 and 1 × 2 2 × 2
Number of convolution layers 159 16 50 3

Activation function ReLU ReLU ReLU ReLU
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Figure 4 shows the architecture of the modified model that
was suggested in this research. It consists of three pooling
layers and three convolutional layers, with 16, 32, and 64
filters in each layer.

2.3. Statistical Analysis. To analyze and compare the perfor-
mance of DCNN models, four important metrics such as
precision, accuracy, sensitivity, and F1-score were used in
research [33, 34, 39]. The value of these measures was com-
puted using a confusion matrix for both the training and test
datasets. However, to compare the models, just the results of
the test dataset were used. In the confusion matrix (Table 2),
TO and FO are the percentages of the true and false open-
shells. TC and FC are the percentages of the true and false
cracked or closed-shell, respectively. In the following equa-
tions (1–4), precision and recall metrics are computed just
for the open-shell class. Similar relationships were used for
cracked and closed-shell classes.

Accuracy =
TO + TC

TO + FO + TC + FC
, 1

Precision open shell =
TO

TO + FO
, 2

Recall open shell =
TO

TO + FC
, 3

F1 − score =
2 × Precision × recall
Precision + recall

4

3. Results and Discussion

In this work, the performance of the different deep-learning
architectures was evaluated in the classification of hazelnut
samples. To compare models, the training process was car-
ried out using the same settings for each model. Therefore,
the input shape, the size of training, validation and test data-
sets, batch size, the learning rate, and the optimizer were the
same for VGG-19, ResNet-50, Inception-V3, and the pro-
posed models. Because the ResNet-50 showed low perfor-
mance, this model was allowed to train up to 80 epochs.

In order to investigate the models’ performance, the
training and validation dataset curves were compared
(Figures 5–8). The trend of curves in these figures showed
a good fitting of some models implemented for the classifica-
tion of hazelnut, which indicates that the number of datasets
used for training models was sufficient. All investigated
models, especially the proposed model, had good perfor-
mance in the classification of hazelnut classes. But among
these models, ResNet-50 showed high fluctuation and low
classification performance (<70%). The lower performances
of the ResNet-50 could be related to the high structural com-
plexity and the high number of parameters (36.4 million). In
other words, maybe the number of datasets for training
ResNet-50 was insufficient. There have been few studies in
the literature performing classification of hazelnut based
on its crack using deep learning models to compare with
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Figure 4: The architecture of the proposed built model used for hazelnut classification.

Table 2: The confusion matrix of the DCNN classifier for two
classes.
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Predicted

TO FC

FO TC
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our results. However, in some similar studies in the litera-
tures, such as the detection of concrete crack using deep fully
convolutional neural networks [39] and automatic crack
classification and segmentation on masonry surfaces using
convolutional neural networks and transfer learning [40],
comparable results were reported. Also, Chen et al. [41]
reported similar results in the study using deep transfer
learning for image-based plant disease identification. In
these similar studies, ResNet-50 showed low performance
and had higher fluctuation in the period of training. But
other models such as Inception-V3 and VGG-19 had high
performance similar to those we obtained in this study.

Figure 8 shows the accuracy and loss of the proposed
model. As this figure shows, the train and validation curves
are the same trend and are overlapped at the end of the

training process. This situation illustrated that the problem
of overfitting does not occur in the proposed model with
the parameters chosen during the training process. These
results show that the proposed network has a good ability
to discriminate the hazelnut images in the input well.

The number of neurons in the hidden layer is one of the
most important factors that can directly affect the neural
network performance. Excessive hidden neurons and hidden
layers can improve the accuracy of the network; on the other
hand, it also increases the computation time and the chance
of overfitting [42]. In this study, to reduce the complexity of
the network, just one hidden layer was used. The results
(Table 3) showed that all models except ResNet-50 have good
accuracy in detecting the two classes. In assessing the effect of
neuron number in the hidden layer on the accuracy of
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Figure 5: The accuracy (a) and the loss (b) of the Inception-V3 pretrain model.
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Figure 6: The accuracy (a) and the loss (b) of the VGG-19 pretrain model.
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estimation, results indicated that the performance of the
models does not seem to improve by further increasing the
neuron number. Therefore, to prevent overfitting, 64 neurons
were selected as the optimal number in the hidden layer.

Table 4 shows the effect of the number of filters at CNN
layers on the performance of the proposed network. The
results showed that the network with the structure of three
convolutional layers with 16, 32, and 64 filters had higher
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Figure 7: Trend of accuracy (a) and loss (b) for ResNet-50 pretrain model.
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Figure 8: The accuracy (a) and the loss (b) of the proposed model.

Table 3: Accuracy of DCNN models at different numbers of neurons in the hidden layer.

Number of neurons
in the hidden layer

Accuracy (%)
VGG-19 Inception-V3 ResNet-50 Proposed model

32 92.12 95.76 62.38 96.31

64 95.89 98.70 66.43 97.88

128 96.32 98.63 67.69 97.10

256 96.90 99.02 65.88 97.62

512 96.48 97.59 67.14 97.60
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performance than other structures. Also, using a dropout of
0.5 in the fully connected layers had no significant effect on
the network accuracy.

The evaluation metrics of both the validation and test
sets of the four CNN models are shown in Table 5. Here,
the results are summarized for each model. The results
showed that all three DCNN models of VGG-19, Incep-
tion-V3, and the proposed model got satisfactory results.
Inception-V3 and the proposed models showed the best per-
formance, with the highest accuracy of 98%, followed by
VGG-19 (96%). But the ResNet-50 model had the lowest
accuracy (72%). Similar trends were obtained for precision
and recall measures. Inception-V3, the proposed model,
and VGG-19 had the highest values for both precision and
recall (>96%). The ResNet-50 model had the lowest values
of precision and recall measures (73% and 71%, respec-
tively). The classification accuracy of some DCNN models
used in this study was higher than that obtained by Rahim-
zadeh and Attar [43], who used ResNet152, ResNet-50, and
VGG-16 to classify pistachios into open and closed-shell.
For these models, they reported 95%, 92%, and 90% accura-
cies, respectively. In a similar study, Omid [44] implemented
a decision tree and fuzzy logic classifier for sorting pistachio
nuts and reported 95.56% classification accuracy for the test
dataset. Also, the F1-score was defined as the harmonic
mean of precision, and recall was calculated. The F1-scores
of the Inception˗V3, VGG˗19, and the proposed model were

approximately the same (98%) and were higher than those of
the ResNet-50 (72%). The results described in Table 5 indi-
cated that the proposed model, as well as Inception˗V3 and
VGG˗19, are superior to the ResNet-50 model and can pre-
dict the two classes of hazelnuts with high accuracy regard-
ing precision, recall, and F1-score. Similar results were
obtained for the proposed model in the study to classify
the hazelnut varieties [29].

4. Conclusion

This article proposed an effective method to classify hazel-
nuts based on their surface cracks. The proposed and pre-
trained models were trained on a dataset that included the
images of two hazelnut classes: closed-shell and open-shell.
In this study, four DCNN models were investigated for
hazelnut classification into two classes based on the surface
cracks. Overall, most of the investigated models showed sat-
isfactory performance, with accuracy varying between 96.32
and 98.15%. Among pretrained models, Inception-V3 had
the highest accuracy (98.15%) and F1-score (each 97.91%),
followed by VGG-16 with an accuracy of 96.32% and F1
-score of 96.35%. The custom-built model had a high accu-
racy (97.85%) and F1-score (96.84%). The ResNet-50 model
had the least accuracy (71.92%) and F1-score (72.28%).
Results revealed that the proposed model and Inception-
V3 had the highest accuracies. However, considering the F
1˗score as the harmonic mean of precision and recall, both
Inception-V3 and the proposed model have similar perfor-
mance in the detection of cracks on the hazelnut surface.
But comparing the size and number of the models’ parame-
ters, the proposed model is recommended for real-time
detection tasks.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Additional Points

Practical Application. In some countries, most hazelnuts are
cracked using semi-industrial or handcrafted machines and
marketed as open-shells. Separating the cracked or closed-
shell nuts from the open-shell nuts leads to an increase in
the price of the final product. The process of separation is
currently based on visual inspection, which is still a labor-
intensive and noncareful process. The separation of hazel-
nuts through machine learning algorithm and DCNN based
on image processing can be extremely valuable for the rapid
and automated separation of hazelnuts on an industrial
scale.

Disclosure

The corresponding author would be the sole contact for the
editorial process.

Table 4: The effect of the number of filters at CNN layers on the
accuracy of DCNN models.

Model
Number of filters
at CNN layers

Dropout Accuracy (%)

Proposed model

16-32 — 94.08

16-32-64 — 97.76

16-32-64 0.5 97.89

16-32-64-128 — 97.32

16-32-64-128-256 — 97.40

Table 5: Classification performances of DCNN models used in this
study.

Models
Precision

(%)
Recall
(%)

Accuracy
(%)

F1˗score
(%)

Test data

ResNet-50 73.24 71.36 71.92 72.28

VGG-19 96.32 96.40 96.32 96.35

Inception-V3 97.71 98.12 98.15 97.91

Proposed
model

96.62 97.07 97.85 96.84

Validation data

ResNet-50 72.23 73.81 72.12 73.01

VGG˗19 98.21 97.85 96.78 98.03

Inception-V3 97.94 98.02 98.41 97.98

Proposed
model

97.38 97.77 98.88 97.57
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