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“Xiaobai” apricot is one of the most popular fruits in China. However, during postharvest storage, fruit aroma loss occurs easily. In this
study, factors affecting the aroma changes in different ripening stages of “Xiaobai” apricot during postharvest storage were searched.
Immature and mature “Xiaobai” apricot samples were collected and monitored for sensory changes during postharvest storage. After
25 days of storage, the aromatic ester and alcohol abundance in mature showed a decrease, related to the loss of characteristic aroma.
Immature fruit still tasted sour with an indistinct characteristic aroma, as a result of decreased alcohol and increased acid abundance.
The ATT, ADH, PDC, and LOX genes were identified, and their expression levels were detected at different ripening stages during
storage. The correlation analysis showed that the expression of LOX and ATT was positively correlated with the variation of
aromatic ester (P < 0:05), a key factor affecting the apricot aroma during postharvest storage.

1. Introduction

Apricot (Prunus armeniaca L.) is a popular fruit produced in
temperate countries; it possesses many health-promoting
effects, including the protection of the liver and heart, anti-
oxidant, and anti-inflammatory [1, 2]. “Xiaobai” apricot is
a unique variety of grown in Xinjiang Province. It is mainly
planted in Kuqa and Luntai counties in the south of Xinjiang
Province [3]. Compared to other varieties, the size of
“Xiaobai” fruit is small but the nutritional value is very high [4].

The aroma is an important sensorial factor indicating fruit
quality, which also affects the purchasing behavior of con-
sumers and fruit sales [5]. Since the “Xiaobai” apricot’s mature
stage is concentrated in June [3], special attention must be paid
to the retention of characteristic aroma during the process of
fruit storage and transportation. However, since the “Xiaobai”
apricot is a climacteric fruit, aroma loss occurs easily during

storage, even at low temperatures [6], causing severe economic
loss. Therefore, it is essential to explore factors affecting aroma
during postharvest storage, which may help in developing a
strategy to protect the aroma. Volatile compounds in various
fruits have been identified by combining headspace solid-
phase microextraction with gas chromatography-tandem mass
spectrometry (HS-SPME-GC-MS) [7, 8]. Such volatile com-
pounds, including esters, alcohols, aldehydes, ketones, and
acids, mainly contribute to the fruit’s aroma [7, 9]. Esters and
alcohol are important compounds contributing to the aroma
of many fruits. For example, esters are associated with the “fruit
candy” aroma [10, 11], while aldehydes are responsible for the
bitter almond aroma of apricot [12, 13].

Complex biochemical pathways are involved in the for-
mation of volatile compounds in fruit [14]. The lipoxygenase
(LOX) pathway is an important pathway for volatile com-
pound synthesis [15]. In this pathway, fatty acids are firstly
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catabolized into hydroperoxides by LOX and then into alde-
hyde by pyruvate decarboxylase (PDC); alcohol dehydroge-
nase (ADH) removes hydrogen and converts aldehydes to
alcohol. Finally, alcohol acyltransferase (AAT) is responsible
for the synthesis of various esters via combining alcohols
and acyl-CoAs [16]. These genes are considered the key
genes associated with the synthesis of volatile compounds
in various fruits [17, 18]. For instance, in “Shine Muscat”
grape, LOX and ADH genes were the limiting factors for
the synthesis of the volatile compounds [19], and in jujube,
the LOX gene was related to the accumulation of (E)-2-hex-
enal [20]. Also, the high expression of the LOX gene was
shown to enhance the synthesis of flavoring compounds in
tomatoes [21]. LOX activity was also shown to affect the for-
mation of the main volatile compound in Arbutus unedo L.
[22], while ADH activity was associated with alterations in
the abundance of various aldehydes and alcohols in toma-
toes. Therefore, identifying the key enzymes in the LOX
pathway is essential to understand molecular mechanisms
of volatile compound synthesis in “Xiaobai” apricot, which
may serve to develop strategies for the extension of the
aroma retention. However, the relationship between these
genes and volatile compound synthesis during postharvest
storage in “Xiaobai” apricot remains unclear.

In this study, we collected immature and mature “Xiao-
bai” apricot fruit from Luntai City, Xinjiang Province,
China. The changes in the sensory and volatile compound
profiles during postharvest storage of both immature and
mature apricots were analyzed using HS-SPME-GC-MS
technology. Furthermore, we identified LOX, PDC, ADH,
and AAT genes and determined their transcription levels.

2. Materials and Methods

2.1. Sample Collection. Immature and mature “Xiaobai”
apricot samples were harvested in Luntai City, Xinjiang
Province, China. The sugar degree of “Xiaobai” apricot sam-
ples in immature and mature stages were 7:3 ± 0:18 and
10:8 ± 0:22 brix. The firmness of apricot samples in immature
and mature stages was 21:5 ± 0:21N and 17:5 ± 0:31N,
respectively. All samples were precooled for 24h at 4°C and
then stored at 2°C, 90 ± 5 rh%. During storage, the sensory
changes of “Xiaobai” apricot were determined every 5 days.
Fifteen fruits were collected after 0, 5, 10, 15, 20, and 25 days
of storage, snap-frozen with liquid nitrogen, and stored at
-80°C.

2.2. Sensory Evaluation. The acidity, sourness, and skin-flesh
separation of “Xiaobai” apricot during storage were assessed
by the sensory evaluation method. Sensory evaluation was
carried out by an untrained panel (fifty volunteers from
Xinjiang Institute of Technology, Xinjiang, China), briefly
introducing the evaluation criteria of the sample indicators
and giving a score of 9 points, of which 9 points represent
the sample’s strong aroma, obvious sweetness, heavy sour-
ness, and fruit being very soft, and a score of 1 which means
almost no aroma, sweetness, and sourness and high hard-
ness. Before and after the evaluation of one sample, partici-
pants were asked to clean their mouths with water [23].

2.3. Volatile Compound Analysis. Volatile compounds were
analyzed by grounding the fruit into a fine powder using
liquid nitrogen; five grams of this powder was mixed with
5mL of saturated NaCl solution and placed into a 15mL
headspace vial. The internal standards included acetalde-
hyde, 2-hexenal, benzaldehyde, and γ-decalactone. Volatile
compounds were detected using HS-SPME-GC-MS. The
mixed sample was equilibrated for 5min at 50°C. Fiber
(PDMS 100μm, SUPELCO, USA) was used to adsorb the
headspace volatile compounds. The microextraction was
performed at 40°C for 30min. GC-MS analysis was per-
formed using an HP-5 column (30m × 0:1mm inner diam-
eter, 0.33μm film thickness: Agilent, Santa Clara, CA) on a
Thermo TRACE GC100 system equipped with an FID
detector. The oven temperature was maintained at 50°C for
2min, then increased to 250°C at a rate of 4°C/min, and held
for 10min. The electron impact energy used was 70 eV, the
ion source temperature was set at 200°C, and the scans were
performed in the range of 29–540m/z. The mass spectra of
the compounds were compared to those available in the
NIST2000 database.

2.4. Determination of LOX, ADH, AAT, and PDC
Enzyme Activities

2.4.1. LOX Enzyme Activity. Four milliliters of phosphate-
buffered saline (50mM, pH = 7:2, 4°C) was added to 1.5 g
of finely grinded flesh samples; the samples were then ultra-
sonically treated at 0°C for 30min and centrifuged at 4°C for
15min at 15000 × g. Later, the supernatant was collected and
used for further analysis.

The reaction mixture included a total volume of 3mL,
including 25μL sodium linoleate solution (0.1M), 2.775mL
acetic acid buffer (100mM, pH = 5:5), and 0.2mL supernatant
(thick enzyme fluid). After 15 s of enzyme addition, the change
in the OD value was recorded within 1min while the enzyme
activity was expressed as OD234 g−1 FW min−1. The LOX
enzyme activity was determined at 234nm at 30°C.

2.4.2. ADH Enzyme Activity. Three milliliters of extraction
buffer (100mM MES-TRIS buffer, 2mM MDTT, 1% PVP,

Table 1: PCR primers used in this study.

Gene Primer sequence
Production

size

LOX
ATTCCCAGTGCCTCAAGTGA (5′-3′)

559
CACAAACGGTTCAATCACTGC (3′-5′)

PDC
CTGTAACTTGGCTGGGATTCC (5′-3′)

533
GAGCAGTGTTGTTGTGGTTGA (3′-5′)

ADH
GTGGAAAGCGTAGGTGAGG (5′-3′)

809
TCCAGCTCCTTATTCATGTACAT (3′-5′)

AAT
GGAAGGACCCAACAGAAAGC (5′-3′)

683
CATTGCCGTAGAATCCCGAG (3′-5′)

LOX, PDC, ADH, and AAT represent lipoxygenase, pyruvate decarboxylase,
alcohol dehydrogenase, and alcohol acyltransferase genes, respectively.
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pH = 6:5, 4°C) were added to 1.5 g of finely grinded flesh
samples; the samples were ultrasonically treated at 0°C for
30min and centrifuged at 4°C for 30min at 15000 × g. The
supernatant was collected and used for further analysis.

The reaction mixture included a total volume of 3mL,
including 2.4mL MES-TRIS buffer (pH = 6:5), 0.15mL
1.5mM NADH, 0.15mL 80mM acetaldehyde, and 0.3mL
supernatant. After 15 s of enzyme addition, the change in
OD value was recorded within 1min while the enzyme activ-
ity was expressed as OD340 g

−1 FW min−1. The ADH enzyme
activity was determined at 340nm at 30°C.

2.4.3. AAT Enzyme Activity. Sixteen milliliters of extraction
buffer (100mM K3PO4, 2.5 g PVPP, pH = 6:5, 4°C) was
added to 8 g of finely grinded flesh samples; the samples
were ultrasonically treated at 0°C for 30min and centrifuged
at 4°C for 30min at 15000 × g. The supernatant was col-
lected and used for further analysis.

The reaction mixture included a total volume of 3mL,
including 2.25mL 100mM K3PO4, 0.3mL 10mM LDTNB,
0.03mL 1M MgCl2, 0.06mL 20mM isopentanol, 0.06mL
50mM acetyl-CoA, and 0.3mL supernatant. The change in
OD value was recorded within 1min while the enzyme activ-
ity was expressed as OD234 g

−1 FW min−1. The AAT enzyme
activity was determined at 340nm at 30°C.

2.4.4. PDC Enzyme Activity. Five milliliters of extraction
buffer (2mM DTT, 4% PVPP (w/v), pH = 6:5, 4°C) was

added to 5 g of finely grinded flesh samples; the samples
were ultrasonically treated at 0°C for 30min and centrifuged
at 4°C for 30min at 15000 × g. The supernatant was col-
lected and used for further analysis.

The reaction mixture included a total volume of 2.6mL,
including 1.5mL 100mM MES, 0.2mL 5mM thiamine
pyrophosphate, 0.2mL 50mM MgCl2, 100μL 1.6mM
NADH, 0.2mL ethanol dehydrogenase, 200μL 50mM pyru-
vic acid, and 0.2mL supernatant. After 15 s of enzyme addi-
tion, the change in OD value was recorded within 5min
while the enzyme activity was expressed as OD340 g−1 FW
min−1. The PDC enzyme activity was determined at
340 nm at 30°C.

2.5. RNA Extraction and cDNA Synthesis. The total RNA was
extracted from 1g of sample by the Plant Total RNA Isola-
tion Kit (Sangon Biotech, Shanghai, China) following the
manufacturer’s protocol. The RNA was reversely transcribed
into cDNA using PrimeScript RT reagent kit (Takara,
Dalian, China) following the manufacturer’s protocol. The
cDNA was used as the template for PCR and real-time quan-
titative PCR (RT-qPCR) analysis. PCR was performed using
the “Xiaobai” apricot cDNA as the PCR template.

2.6. Identifying and Sequencing LOX, PDC, ADH, and AAT
Genes. The primers used to amplify the target gene fragment
are shown in Table 1. The PCR reaction volume was 25μL
containing 12.5μL Taq PCR Master Mix (Sangon Biotech,

Table 2: RT-PCR primers used in this study.

Gene Primer sequence (5′-3′) Production size (bp)

LOX
ATGGGGATCAAACAAGTCAAATAAC (5′-3′)

210
GGCTTCAAAGTCCCATCATTTTCT (3′-5′)

PDC
TTCTTGAACAAGGCAGTGAAAC (5′-3′)

214
GACTCCACAATCTCAGCACAA (3′-5′)

ADH
GGGAGTGGATAGGAGTGTTGA (5′-3′)

202
TACAACTGGCTCACACACTGC (3′-5′)

AAT
GGAAGGACCCAACAGAAAGC (5′-3′)

226
ATCCAAAGATGAAGCCTCCACA (3′-5′)

Actin
CATTCTTCGTCTGGACCTTGC (5′-3′)

275
TTGTAGGTAGTCTCATGAATTCC (3′-5′)

LOX, PDC, ADH, and AAT represent lipoxygenase, pyruvate decarboxylase, alcohol dehydrogenase, and alcohol acyltransferase genes, respectively.

Im
m

at
ur

e
M

at
ur

e

0 d 5 d 10 d 15 d 20 d 25 d

Figure 1: Changes in the appearance of immature and mature “Xiaobai” apricot during postharvest storage.
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Shanghai, China), 0.5μL primers, 1μL extracted cDNA
(10ng), and 10.5μL ddH2O. The amplification conditions
were as follows: 5min at 94°C, followed by 30 cycles for
30min at 94°C, 30 s at 52°C, and 1min at 72°C. The PCR
production was performed using the Sanger sequencing.
The neighbor-joining phylogenetic tree was computed by
MEGA X.

2.7. Determination of Gene Transcription Level by RT-PCR.
The primers used in RT-PCR are shown in Table 2. RT-
PCR was performed on LightCycler®96 RT-PCR equipment
(Roche, Basel, Switzerland). Each RT-PCR was performed in
a total volume of 25.0μL containing 12.5μL SYBR Green
Supermix (SYBR Premix ExTaq II, Takara, Dalian, China),
0.4μL primers, 1.0μL cDNA template, and 13.2μL ddH2O.
The conditions for amplification and calibration curve con-
struction were as follows: preheating at 95°C for 10min; 45
cycles of 95°C for 10 s, 52°C for 10 s, and then 72°C for
10 s; and an increase of 4.4°C every 10 s from 65°C to 95°C
for melting curve analysis to confirm the specificity of the
amplification. The relative expression levels of target genes
were quantified by the 2-ΔΔCT method using Actin gene as
an internal control.

2.8. Statistical Analysis. Statistical analyses were performed
by SPSS Statistics 20 (IBM, Armonk, NY). Independent sam-
ple T test was used to calculate the significance of difference.
Linear regression analysis was used to calculate the Pearson
correlation coefficients (R). The statistical significance was
evaluated by P value. P < 0:05 represents the statistical sig-
nificance. The Pearson correlation network was performed
by Gephi (version 0.9.2).

3. Results and Discussion

3.1. The Sensory Changes in “Xiaobai” Apricot during
Postharvest Storage. The immature “Xiaobai” apricot sample
appeared completely green in color, which turned yellow-
green after 10 days of storage and yellow and white after
25 days of storage (Figure 1). The color of the mature apricot

sample was yellow-green, which was close to that of the
immature apricot after 20 days of storage. After 25 days of
storage, it changed color to light yellow, with parts of the
samples starting to brown.

The immature apricot showed a sour taste, with a light
aroma (Table 3). After 10 days of storage, the apricot tasted
sweet and the aroma is not obvious. After 25 days, the sweet-
ness was enhanced. However, the sour taste was still there,
with a light aroma. Mature fruit showed a distinct sweetness
and almost no sourness; they also possessed a strong aroma.
Sweetness and aroma intensity decreased significantly dur-
ing storage. The immature apricots were very firm, and the
flesh could not be separated easily. However, after 10 days
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Figure 2: Volatile compound profiles of mature and immature
“Xiaobai” apricot after 0, 12, and 25 days of postharvest storage.
Volatile compounds with an abundance of less than 1% are
combined and shown as “others.”

Table 3: Sensory score of “Xiaobai” apricot during storage.

Ripening stage Storage day Aroma (M ± SD) Sweetness (M ± SD) Sourness (M ± SD) Firmness (M ± SD)

Immature sample

0 1.1± 0.3 1.5± 0.1 8.2± 0.2 2.2± 0.2
5 2.0± 0.2a 1.8± 0.3a 8.0± 0.1a 2.5± 0.3a

10 2.2± 0.1a 2.6± 0.6b 7.8± 0.2a 4.8± 0.4b

15 3.8± 0.6b 3.7± 0.1c 5.7± 0.5b 5.7± 0.1c

20 4.8± 0.5c 4.1± 0.2c 5.1± 0.1c 6.0± 0.3c

25 5.4± 0.4d 6.0± 0.2d 3.6± 0.5d 7.1± 0.2d

Mature sample

0 8.5± 0.6 7.8± 0.2 1.8± 0.4 6.2± 0.3
5 7.0± 0.2a 7.5± 0.4a 1.6± 0.3a 6.5± 0.5a

10 5.6± 0.5b 6.2± 0.3b 1.4± 0.6a 6.9± 0.3b

15 3.3± 0.4c 5.8± 0.1bc 1.9± 0.2b 7.1± 0.1b

20 1.6± 0.1d 2.3± 0.4d 1.8± 0.4ab 7.8± 0.4c

25 1.5± 0.3d 2.1± 0.3d 1.7± 0.5ab 8.5± 0.4d

M ± SD: mean ± standard deviation, n = 3. a,b,c,dDifferent treatment effects (same storage time) for P < 0:05.
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of storage, the flesh and stone could be separated easily,
while after 25 days of storage, the fruit became soft.

3.2. Volatile Compound Analysis in “Xiaobai” Apricot during
Postharvest Storage. In immature “Xiaobai” apricot, a total
of 42 volatile compounds were identified, which
increased to 49 after 25 days of storage. In the mature
“Xiaobai” apricot, 40 volatile compounds were identified,
which decreased to 33 after 25 days of storage. Ester,
alcohol, aldehyde, ketone, acid, and hydrocarbon were
the dominant volatile compounds (average relative
abundance > 1%) in both immature and mature “Xiao-
bai” apricots. The volatile compound profile showed
noticeable changes during storage (Figure 2). The alcohol
content of immature apricot increased from 4.8% to
33.4%, while the aldehyde content decreased from
71.7% to 45.9% after 12 days, which might have contrib-
uted to the light aroma after 12 days. However, after 25
days, the alcohol content decreased to 2.6% while acid
and aldehyde contents increased to 8.1% and 76.6%,
respectively. Meanwhile, the ester content decreased to
less than 10%, which was associated with the sour taste
and inconspicuous aroma.

During storage, the alcohol content of mature apricot
decreased from 21.2% to 3.9%, while the acid content
decreased from 4.0% to 0.6%, which was not good for
aroma retention. Also, the content of esters decreased
(17.6% to 4.9%) after 12 days of storage. However, after
25 days, the ester content increased to 36.6%, including
35.3% of methyl salicylate, accounting for 96.4% of the
total ester content, which is described to have an odor of
wintergreen or mint [24]. The increase of methyl salicylate
may be one of the key factors for the unpleasant odor of
“Xiaobai” apricot after 25 days of storage. During the
entire postharvest storage, a decrease in aromatic esters
was observed, which along the decrease in alcohols may
have caused fading of the mature apricot aroma during
postharvest storage.

3.3. Enzymatic Activities of LOX, ADH, AAT, and PDC
Enzymes during Postharvest Storage. During the earlier
stages of storage (0–10 days), LOX activity showed the same
pattern in both mature and immature apricots (Figure 3(a)).
It slowly increased between 0 and 5 days and stabilized
between 5 and 10 days. After 10 days, the dynamics of
LOX enzyme activity reversed between mature and
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Figure 3: Determination of LOX (a), ADH (b), AAT (c), and PDC (d) enzyme activities during the storage of “Xiaobai” apricot harvested at
different stages. LOX, PDC, ADH, and AAT represent lipoxygenase, pyruvate decarboxylase, alcohol dehydrogenase, and alcohol
acyltransferase genes, respectively. ∗ represent P < 0:05.
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immature apricots. It increased from 0:84 ± 0:03 to 1:10 ±
0:06OD234 g−1 FW min−1 during postharvest of immature
apricot, while in mature apricot, it decreased from 0:56 ±
0:08 to 0:29 ± 0:01OD234 g

−1 FW min−1. During the whole
storage time, the LOX activity in the immature apricot
remained higher than that of the mature apricot (P < 0:05).

The ADH enzyme activity of mature apricot was higher
than immature apricot except on day 0 and day 25
(Figure 3(b)). During the earlier stages of storage (0–10
days), the ADH enzyme activity showed a decrease
(0:15 ± 0:03 to 0:09 ± 0:05OD340 g

−1 FW min−1) in imma-
ture fruit but an increase (0:07 ± 0:02 to 0:22 ± 0:03OD340
g−1 FW min−1) in mature fruit. During the later stages
of storage (10–25 days), ADH enzyme activity significantly
increased from 0:09 ± 0:05 to 0:57 ± 0:06OD340 g−1 FW
min−1 in immature fruit. After 20 days, the ADH enzyme
activity in mature fruit gradually increased and peaked at
0:37 ± 0:03OD340 g−1 FW min−1, followed by a decrease
to 0:18 ± 0:05OD340 g−1 FW min−1. These results sug-
gested that ADH was most active during the later stages
of ripening that was consistent with the previous study
reporting [25]. Previous studies have shown that LOX
activity is critical to the synthesis of lipids in apples [26].

In peach, the PpAAT1, PpLOX1, and PpLOX3 are coinci-
dentally closely associated with ester and lactone synthesis
[27], which may be a potential factor for the increased
ester content of immature “Xiaobai” apricot after 25 days
of storage.

The AAT enzyme activity increased during earlier stages
of storage (0–10 days) and decreased in 10–25 days in both
mature and immature “Xiaobai” apricots (Figure 3(c)).
Notably, the AAT enzyme activity of the immature fruit
was higher than that of mature ones during the whole
storage process (P < 0:05). The PDC enzyme activity
increased in 0–15 days in both mature and immature fruits
(Figure 3(d)). Meanwhile, the PDC enzyme activity was not
significant between mature and immature fruits. After 15
days, the PDC enzyme activity decreased in both mature
and immature fruits. The decreased extent in storage of
mature fruit was higher than that of immature fruit
(P < 0:05). The PDC enzymes were found to play an impor-
tant role in the accumulation of acetaldehyde and alcohol at
ripening and postharvest in persimmon, a key factor
involved in removing the astringency of persimmons [28],
while the correlation between ADH enzyme activity and
the accumulation of acetaldehyde and alcohol was weak
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Figure 4: Sequence analysis of genes related to volatile compound biosynthesis. (a) PCR result of LOX, PDC, ADH, and AAT genes. The
target PCR products are shown in red boxes. (b) Phylogenetic trees of LOX, PDC, ADH, and AAT genes. MAGE X was used to infer
phylogenetic trees based on default parameters. LOX, PDC, ADH, and AAT represent lipoxygenase, pyruvate decarboxylase, alcohol
dehydrogenase, and alcohol acyltransferase genes, respectively.
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[29]. The increase in DkPDC level of persimmon fruit can
promote the accumulation of acetaldehyde, which is condu-
cive to fruit deacidification [30].

3.4. Sequence Analysis of Genes Related to the Biosynthesis of
Volatile Compounds. In the LOX pathway, LOX, PDC, ADH,
and AAT genes were reported to be related to volatile com-
pound synthesis [15]. The DNA fragments were successfully
and specifically amplified, and the results are shown in
Figure 4(a). Furthermore, the four fragments were sequenced.
The size of the LOX, PDC, ADH, and AAT genes were 559,
533, 809, and 683bp, respectively.

A phylogenetic analysis was performed (Figure 4(b)),
and the LOX, PDC, ADH, and AAT genes were aligned with
EU439430.1 (LOX, Prunus armeniaca L.), EU395434.1
(PDC, Prunus armeniaca L.), HM240511.2 (ADH, Prunus
cerasifera Her.), and AY534530.1 (AAT, Pyrus communis
L.) and found similarities of 95%, 99%, 98%, and 99%,
respectively, suggesting that these isolated gene fragments
corresponded to the target genes.

3.5. Expression Levels of LOX, AAT, PDC, and ADH Genes
during Postharvest Storage. The expression levels of LOX,
AAT, PDC, and ADH during storage of “Xiaobai” apricot
harvested at different stages are shown in Figure 5. Overall,
the expression of these genes was upregulated in the imma-
ture apricot (average relative expression level > 1) and
downregulated in mature stage apricot (average relative
expression level < 1), except for specific days. For example,
at 10 days, the expression levels of AAT were downregulated
(0:24 ± 0:15) in mature apricot.

LOX and ADH showed a significant correlation (R > 0:7,
P < 0:05). These results suggested that the dynamic changes
in the gene expression levels were in line with the activities
of corresponding enzymes (P < 0:05), indicating that these
enzyme activities were controlled by the expression of the
identified genes.

Correlation analysis is a useful method to reveal the
potential relationship between genes and volatile com-
pounds [31]. The Pearson correlation analysis between gene
expression level and the variations in the relative abundance
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Figure 5: The expression patterns of LOX (a), PDC (b), ADH (c), and AAT (d) genes during the storage of “Xiaobai” apricot harvested at
different stages. LOX, PDC, ADH, and AAT represent lipoxygenase, pyruvate decarboxylase, alcohol dehydrogenase, and alcohol
acyltransferase genes, respectively. ∗ represents P < 0:05.
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of volatile compounds (compared to 0 days) during posthar-
vest storage (Figure 6) showed that LOX was positively cor-
related with AAT (R = 0:99, P < 0:05) and AAT (R = 0:96,
P < 0:05), which suggested a coexpression pattern. PDC
showed a significant correlation to acids (R = 0:98, P < 0:05)
and hydrocarbons (R = –0:99, P < 0:05). Meanwhile, AAT
and LOX were positively correlated with aromatic esters
(R > 0:9, P < 0:05) but negatively with ketones (R < –0:9,
P < 0:05). Previous studies reported that AAT and LOX
played roles in the synthesis of volatile compounds in other
fruits. For example, LOX affected the accumulation of multiple
straight-chain esters in melons [18], while the AAT gene was
involved in the final enzymatic step of the biosynthesis of all
esters [32]. Hence, these enzymes are proven to be related to
ester compound biosynthesis [33, 34]. Overall, our results
indicated that AAT and LOX genes were related to the
synthesis of aromatic esters during the postharvest storage of
“Xiaobai” apricot.

4. Conclusion

The sensory changes in different stages of “Xiaobai” apricot
during postharvest storage were characterized. The loss of
aroma after 25 days was related to the decrease of aromatic
esters. In the immature “Xiaobai” apricot, the sour taste
and inconspicuous aroma during late storage could be
attributed to the decrease in alcohols and increase in acid
abundance. Based on the correlation network analysis
between gene expression level and variation in the volatile
abundance, LOX and ATT genes were believed to play a

key role in affecting the synthesis of aromatic esters. In con-
clusion, the factors affecting aroma in apricot of different
ripening stages were found at the gene expression level,
shedding light into the mechanism of apricot flavor forma-
tion during postharvest storage.

Data Availability

Data will be made available on request.
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genes affecting the synthesis of the volatile compounds.
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