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Probiotics are effective coadjuvancy against human affections. To confer their beneficial effects to humans, probiotics adhere and
colonize the intestine. Then, they must survive the gastrointestinal conditions (~108–1010 cfu/day). However, their concentration
and the dose to produce the beneficial effect are reduced. Synbiotics are the combination of probiotics and prebiotics, and they can
increase the beneficial effect of probiotics. Microencapsulation is an efficient approach to protect synbiotics during their passage
through the intestinal tract. In this article, we thoroughly reviewed the different encapsulation techniques of synbiotics. The most
common were ionic gelation, emulsification, extrusion, spray drying, coacervation, freeze drying, and their combination in some
cases. These techniques focus on survival under gastrointestinal conditions. The aim of this work was to review the different
techniques of synbiotic encapsulation and discuss the effect of microencapsulation on viability and probiotic properties in
in vitro and in vivo models of microencapsulated synbiotics.

1. Introduction

Probiotics are defined as “live microorganisms which when
administered in adequate amounts confer a health benefit
on the host” [1]. They are commonly administered to
humans through foods [2]. However, probiotic viability
can be affected by the stress during food production and
storage [3, 4]. Factors such as presence of oxygen, high tem-
peratures, antimicrobials, and present microbiota, among
others intrinsic and extrinsic, can affect probiotic viability
[3]. There is a hostile environment in the gastrointestinal
tract (GIT) due to the low pH and the presence of salts
and enzymes [5]. Probiotics exert a beneficial effect in the
intestine when the concentration of viable cells is ~108–

1010 cfu/day (considering 100 g or 100ml of ingested food),
corresponding to ~106–108 cfu/g or ml in the product when
ingested [4, 6–10]. It must be noted that several clinical stud-
ies have proven that a mix of probiotics is better than only
one strain when improving the characteristics of the endog-
enous microbiota [5, 11, 12].

Prebiotics are defined as nondigestible food ingredients
that benefit the host by selectively stimulating growth and/
or the activity of one or more bacteria in the GIT [13]. Sup-
plementation with prebiotics can stimulate the growth of
probiotic bacteria hosted in the host’s intestine, including
administered probiotic strains [14, 15]. Carbohydrates, as
dietary fiber, are the most commonly used prebiotics to
stimulate growth and normal gut microbiota activity; they
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also provide a health benefit to the host [7]. Prebiotics
include compounds resistant to digestive enzyme hydrolysis
that are not absorbed in the upper GIT, including the small
intestine [16, 17]. These compounds have to reach the large
intestine, where the microbiota is found, and stimulate the
growth of some beneficial microorganisms [18, 19].

Oligosaccharides, often found in agroindustrial waste, are
currently the most important prebiotics [20]. Fructooligosac-
charides (FOS), xylooligosaccharides (XOS), polydextrose,
and galactooligosaccharides (GOS) are some oligosaccharides
used as prebiotics [21, 22]. As probiotics, prebiotics must be
ingested daily to guarantee a continuous effect [23]. Favorable
changes have been observed in gut microbiota with inulin
and/or FOS (4–20g/day) [23–25].

The role of probiotics and prebiotics as modulators of
gut microbiota has been widely investigated regarding dis-
ease treatment and prevention [26–28]. Synbiotics were first
defined by [29] as the mix of probiotics and prebiotics. Some
alternatives to increase the viability of probiotic bacteria
passing through the GIT have been proposed. The aim is
to obtain adequate concentrations to achieve a beneficial
effect in the host’s health. Probiotic bacteria blends mixed
with prebiotics and then microencapsulated are good candi-
dates. Microencapsulation arose as a support to improve
probiotic survival during the processing, storage, and con-
sumption [4, 30, 31].

Microencapsulation is a process through which droplets
or microscopic particles of liquid or solid materials are sur-
rounded, covered, or embedded in a continuous film of poly-
meric material, homogeneous or heterogeneous, to produce
small capsules with useful properties [32–35]. Microcapsules
are particles consisting of an internal core, mostly central,
containing the active substance and covered with a polymer
coat that constitutes the barrier or wall material of the cap-
sule [36]. The wall material of microcapsules protects the
active compound (as bacteria) from dangerous environmen-
tal conditions, such as acids, alkalinity, heat, humidity, and
even the interaction with other compounds [3, 37, 38]. The
capsule size depends on the technique used; still, it ranges
between 0.2μm and 5mm [32, 39]. The wall material is
absolutely important since it impacts encapsulation effi-
ciency and microcapsule stability [36]. There are several
microencapsulation techniques, such as spray drying, spray
freezing, fluidized bed coating, electrostatic coating, emulsi-
fication, extrusion, and coacervation [4, 40, 41]. After micro-
encapsulation, it is the key to check the probiotic viability
under simulated GIT conditions in vitro and in vivo. The
goal is to identify whether microencapsulation protects the
microorganisms against unfavorable conditions and during
their passage through the stomach. It also helps to determine
if they can exit the microcapsule and colonize the intestine.
There are thorough reviews on probiotics microencapsula-
tion [4, 10, 40–47]. Still, only few articles deal with the estab-
lished relationships between the encapsulation mechanism,
the use of prebiotics, the probiotic bacteria blends, the
encapsulating material, the viability of probiotic bacteria,
the molecular interactions in microcapsules, and the proba-
bly increased potential of their beneficial effect in the host’s
health. Therefore, the aim of this review is to discuss the

influence of synbiotic microencapsulation and its effects in
in vivo and in vitro models.

2. Microencapsulation of Synbiotic Blends and
Its Effect In Vitro

Currently, there is little information on the simulation of syn-
biotic microcapsules passing through the GIT and their use in
foods [38]. Raddatz, et al. [48] indicate that the addition of
prebiotics to probiotic microcapsules is beneficial since it pro-
duces a functional capsule. Additionally, it contributes to the
protection of probiotics against adverse events as the passage
through the GIT and different storage conditions.

Probiotics have been encapsulated with the prebiotic inu-
lin, a nondigestible carbohydrate that selectively stimulates
probiotic strains and promotes their survival and implantation
in the colon [49]. Furthermore, GOS and FOS protect probio-
tics during microencapsulation and increase their resistance
against simulated gastric conditions [8, 50–52].

Nowadays, there are several techniques to microencap-
sulate synbiotics. However, to select one, it is necessary to
consider physical aspects that affect their survival, such as
temperature, humidity, and agitation [23]. The microencap-
sulation techniques for probiotic bacteria most commonly
cited in the literature are ionic gelation, spray drying, coacer-
vation, and freeze drying (Figure 1) [3, 38, 53–60] (Figure 1).

2.1. Ionic Gelation. The production of microcapsules by
ionic gelation does not demand the use of high temperatures
nor organic solvents [43, 61, 62]. There are two gelation
techniques: external and internal. The first starts with the
diffusion of a calcium ion from a source surrounding the
hydrocolloid towards the neutral pH alginate solution [63,
64]. The particle size obtained using this technique is
400μm–1mm [65]. Internal gelation is based on the con-
trolled release of the calcium ion from an internal source
of insoluble or partially soluble calcium salt dispersed in
the sodium alginate solution. The release of the calcium
ion can occur in the presence of a calcium salt insoluble at
neutral pH but soluble at acidic pH [64, 66]. This technique
produces particles measuring 50μm approximately [65].

The combination of calcium alginate and prebiotics
offers an improved protection for probiotics in food systems
and eventually in the GIT due to a synbiotic relationship [52,
67]. This is explained by the three-dimensional microcrystal
networks, created by prebiotics, interacting with each other.
They do not harm the cell and form small aggregates that
contribute to a better probiotic protection [52, 68].

Silva et al. [38] obtained similar results when encapsulat-
ing Lactobacillus acidophilus in alginate-gelatin (AG) and
alginate-gelatin-FOS (AGF) microbeads by external ionic
gelation. The addition of FOS to the AG matrix improved
the network since FOS filled the interstitial spaces in the
matrix, leading to smaller pores and a more interconnected
network. The results showed that AG and AGF microbeads
protected the probiotics, improving their survival under
storage (4°C for 20 days) and digestibility (pH 3 to simulate
gastric fluid in vitro and pH 7 to simulate intestinal fluid at
0, 60, and 120min conditions evaluated vs. free probiotics
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(Figure 2). FOS added to microbeads also improved L. aci-
dophilus viability in yoghurt since they acted as a substrate.
They promoted the formation of an encapsulation matrix
more resistant to disintegration when subjected to gastroin-
testinal conditions (Figure 2)

Fratianni et al. [7] microencapsulated Saccharomyces
cerevisiae boulardii, a probiotic yeast, in a xanthan gum-
alginate-inulin blend. The growth capacity of the microen-
capsulated probiotic in berry juice was assessed along with
its survival after four weeks of storage at 4°C. They also eval-
uated the exposure of microencapsulated yeast to simulated
gastrointestinal conditions (gastrointestinal fluid pH 2 and
intestinal fluid simulated with pancreatin and bile salts).

Regarding the microencapsulation of the synbiotic, it
was observed that the viability of the yeasts was significantly
improved after the fermentation and storage process com-
pared to the free yeast (7.59 log cfu/ml versus 6.98 log cfu/
ml, respectively), and a protective effect was observed during
exposure to simulated gastrointestinal transit after a storage
period of four weeks. On the other hand, the free yeast
exhibited a considerable loss of viability after storage, pre-
senting a cell viability close to zero (0.23 log cfu/ml) after
exposure to simulated gastrointestinal tract conditions. The
synbiotic microcapsules exposed to the berry juice were able
to absorb a certain amount of polyphenols and anthocya-
nins. It is concluded that anthocyanins and polyphenols
could reach the intestine in their native form and be trans-

formed by the microflora into less complex molecules, pro-
viding beneficial effects on the microflora and human health.

2.2. Emulsification. Emulsification is one of the most com-
mon microencapsulation techniques [69]. It consists in the
dispersion of two immiscible liquid phases in the presence
of a stabilizing or emulsifying compound [70, 71]. When
microencapsulating probiotics using this technique, it is rec-
ommended to use a discontinuous aqueous phase consti-
tuted by the polymer-bacterial suspension blend added to a
large volume of vegetable oil (continuous phase) with agita-
tion [71]. The mix is homogenized to create a water-in-oil
(w/o) emulsion, and the aqueous phase must be insolubi-
lized by adding a reticular agent. Microparticles are formed
in the middle of the oil phase and collected by filtration
[58]. The size of the capsules obtained with this method
ranges between 25μm and 2mm, depending on the agitation
speed and the water/oil proportion [43]. This encapsulation
technique is usually used in laboratories but poses some dis-
advantages for applications in the food industry and probi-
otic cells [72]. For instance, the presence of residual oils on
the capsule surface is detrimental to the texture and sensory
properties of food products. In addition, the surfactants or
emulsifiers used can be toxic to probiotic cells [72].

Raddatz et al. [48] determined that microcapsules with
prebiotics prepared by emulsion/internal gelation efficiently
promote Lactobacillus acidophilus LA-5 viability under
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simulated GIT conditions. Resistant maize starch, inulin,
and rice bran compounds are attributed not only prebiotic
effects in microcapsules but also the increased viability of
L. acidophilus LA-5 by internal gelation, which confers a
protective effect.

It must be noted that some compounds used as coating
or wall material also show prebiotic properties, as pectins
that promote Bifidobacterium and Lactobacillus spp. growth
[9, 73]. This agrees with the findings by Raddatz et al. [48]
indicating the use of pectin in microencapsulation (emul-
sion/internal gelation) increased probiotic (L. acidophilus)
viability to obtain functional capsules. Pectin also improved
L. acidophilus protection in a model simulating adverse con-
ditions in different sections of the GIT, such as esophagus/
stomach (added pepsin, pH adjusted to 2 for 90min), duo-
denum (added pancreatin and bile salts, pH adjusted to 5
for 20min), and ileum (pH adjusted to 6.5 for 90min). Dif-
ferent storage conditions were also simulated (temperatures
of –18 ° C ± 2:7 ° C ± 2 and 25 ° C ± 2) to match freezing,
refrigeration, and room temperature conditions. The addi-
tion of the prebiotic to the capsules at 25°C and –18°C pro-
moted the viability of probiotic microorganisms.

2.3. Extrusion. Extrusion is one of the most common encap-
sulation techniques for probiotics since it demands soft con-
ditions. It allows for high cell viability rates and is a low-cost
option [74, 75]. This technique consists of several stages,
among which are hydrocolloid preparation, addition of cells
to the hydrocolloid, and extrusion of the mixture (hydrocol-
loid-probiotic) through a nozzle to promote the formation of
droplets on the gelling solution and hardening of the mix-
ture [76–79].

It should be noted that, although prebiotics in microcap-
sules (obtained by any technique) seek to stimulate probiotic
activity in the intestine, some prebiotics protect probiotic
bacteria in the microcapsule. For example, Ergİnkaya et al.
[77] microencapsulated a blend of L. rhamnosus with inulin
or FOS by extrusion. They observed that the viability of L.
rhamnosus microencapsulated with inulin was higher than
those of L. rhamnosus microencapsulated with FOS and L.
rhamnosus microencapsulated without any prebiotic. On

the other hand, Atia et al. [53] evaluated several formula-
tions containing 2% w/v alginate and different inulin con-
centrations (0, 5, 10, 15, and 20% w/v) to encapsulate
Pediococcus acidilactici UL5, Lactobacillus reuteri ATCC
53608, and Lactobacillus salivarius, using extrusion/ionotro-
pic gelation. When 15% w/v inulin was used to form the cap-
sules, a greater amount of inulin was captured in the matrix.
Additionally, the capsules made with 5% w/v inulin pro-
vided bacteria a more efficient protection against bile salts.
Krasaekoopt and Watcharapoka, [8] studied the effect of
GOS and inulin in Lactobacillus acidophilus 5 and Lactoba-
cillus casei 01 microcapsules using 2% w/v alginate and chi-
tosan in the coating. The prebiotic concentrations used in
the formulation of the microcapsules were 0%, 0.5%, 1.0%,
and 1.5%. The GOS concentration (1.5%) provided a better
protection; after the treatment under simulated conditions
of gastric fluid (pH 1.55), followed by intestinal simulation
of 0.6% bile salts, there was a reduction of only 3.1 and 2.9
log cfu/g in L. acidophilus 5 and L. casei 01, respectively.
The microencapsulates were then added to yoghurt with
fruit. The treatment with 1.5% GOS provided a better pro-
tection and improved the growth of microencapsulated pro-
biotics in the yoghurt and during storage at 4°C for four
weeks. The number of probiotic bacteria with GOS in
yoghurt was higher than that without GOS in approximately
1.1 and 0.4 log cfu/g of L. acidophilus 5 and L. casei 01,
respectively. The concentration was above the minimum
therapeutic level (107 cfu/g or ml of the product).

Iyer and Kailasapathy [80] encapsulated L. acidophilus
CSCC 2400 or CSCC 2409 in a blend with three different
prebiotics separately, Hi-maize® starch, Raftiline®, or Rafti-
lose®, by extrusion/ionic gelation. They determined the
in vitro viability of probiotic bacteria encapsulated at pH 2.
The highest probiotic survival or viability was found in
microcapsules containing Hi-maize® after 3 h of contact
with a solution (pH 2) vs. microcapsules containing Rafti-
line® or Raftilose®. Furthermore, the probiotic concentra-
tion was significantly higher (p < 0:05) when Hi-maize®
was used at 1.0% w/v than at higher concentrations. In the
same study, the researchers evaluated the effect of three dif-
ferent polymers used as wall material (chitosan, L-
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Figure 2: Optical micrographies of free L. acidophilus (LL) and microbeads of L. acidophilus in alginate-gelatin (LAG) and alginate-gelatin-
fructooligosaccharide (LAGF) during simulated digestion in vitro of simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) [38].
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polylysine, and alginate) in the survival of encapsulated pro-
biotics when subjected to contact with a pH 2 solution. They
also evaluated the effect of bile salts at concentrations of 0.5–
1.0%. The Hi-maize® (1.0% w/v) and chitosan blend signifi-
cantly (p < 0:05) increased the survival of encapsulated pro-
biotic bacteria under acidic conditions with bile salts in vitro
as well as in yoghurt stored for six weeks. They compared
these against microencapsulated probiotics with the other
two polymers.

2.4. Emulsion/Extrusion. Peredo et al. [81] evaluated the sur-
vival of Lactobacillus casei Shirota (Lc) and two strains of
Lactobacillus plantarum (Lp33 and Lp17) in microcapsules
obtained by emulsion/extrusion containing three different
prebiotics: papaya starch (PS), Plantago psyllium (PSY),
and inulin (INU). The authors obtained a greater encapsula-
tion yield when using PSY (94% in Lp17) and INU (78% in
Lp33). In addition, the survival of the three probiotic bacte-
ria at 4°C during storage for 30 days was higher (8:37 ± 0:50
log cfu/ml) in microcapsules containing PSY. The same
microcapsules showed better probiotic survival when they
were in contact with simulated gastric fluid (pH 2) and sim-
ulated intestinal fluid (pH 7) containing pancreatin and bile
salts. The concentrations exhibited were higher than 6 log
cfu/ml, as recommended by FAO (Food and Agriculture
Organization of the United Nations). The authors concluded
that the addition of prebiotics to probiotic bacteria micro-
capsules promotes probiotic survival. This would allow for
the addition of the microcapsules to different food products
without affecting their viability or the physicochemical char-
acteristics of the foods.

Valero-Cases and Frutos, [82] compared the survival of
L. plantarum in microcapsules obtained by extrusion or
internal emulsion and containing inulin (0.1% and 2%).
The microcapsules were stored at 4°C for 0, 15, and 30 days
and were subjected to simulated gastrointestinal digestion.
The authors found that L. plantarum survived better in both
types of microcapsules containing 2% inulin. There was a
reduction of only 0.71 and 0.47 log cfu/g in the probiotic
in microcapsules obtained by extrusion and emulsion,
respectively. From day 15 of storage, the internal emulsion
microcapsules did not maintain their structure. At the end
of the simulated gastrointestinal conditions (30 days), the
number of cells was 7.40 and 6.53 log cfu/g in microencap-
sulation by extrusion and emulsion, respectively. In both
microencapsulation methods, L. plantarum showed a sur-
vival greater than 106 cfu/g. However, during extended
periods of storage (30 days), the method that best conserves
the viability of L. plantarum during gastrointestinal diges-
tion was microencapsulation by extrusion (Figure 3).

2.5. Spray Drying. The microencapsulation by spray drying
consists in elaborating a suspension, containing microorgan-
isms and coating agents, atomized with hot air or nitrogen
[83, 84]. This technique is convenient in terms of energy
demand and operational costs; it leads to a high yield of
the process and is often used to microencapsulate probiotics
[57, 84, 85]. The microcapsules obtained by this technique
can protect probiotics against the effect of hydrochloric acid

in the stomach, which considerably reduces the damage of
probiotic cells [86, 87]. As in any other microencapsulation
technique, the material used as coating must not show cyto-
toxicity or antimicrobial activity [88]. The microencapsu-
lated probiotic must also maintain the viability of the
product and its release in the intestine must be controlled
[37]. It is worth mentioning that the high temperatures used
in the process of spray drying can stress probiotic cells,
reducing their viability [67, 89].

In microencapsulation by spray drying, some prebiotics
(as inulin) have been widely used as coating or wall material
to protect probiotic cells during spray drying [90]. Inulin is
thermally stable and little soluble due to its high degree of
polymerization [91, 92].

Nunes et al. [56] microencapsulated L. acidophilus La-5
with inulin, trehalose, or Hi-maize® by spray drying. The
highest encapsulation percentages of the probiotic were
obtained with inulin and Hi-maize® (93.12% and 94.26%,
respectively). The microparticles were subjected to different
thermal treatments (63°C/30min and 72°C/15 s) to identify
the protective effect of the different encapsulating matrices
on the viability of Lactobacillus acidophilus LA-5. The
matrix with trehalose (Figure 4) provided the greatest pro-
tection for this microorganism at concentrations of 9.43
and 10.33 log cfu/g after treatments of 63°C/30min and
72°C/15 s, respectively. L. acidophilus LA-5 survived best in
microcapsules produced with Hi-maize® when these micro-
capsules were the subject of simulated gastrointestinal con-
ditions corresponding to the different GIT sections:
esophagus/stomach (contact with pH 2 pepsin for 90min),
duodenum (contact with pancreatin and bile salts at pH 5
for 20min), and ileum (pH 7.5 fluid for 90min) (Figure 4).

In a different study, Pinto et al. [93] microencapsulated
Bifidobacterium BB-12 with sweet whey and two different
prebiotics (inulin and polydextrose). The study evaluated
the probiotic survival during spray drying and after micro-
capsule exposure to simulated gastrointestinal conditions.
To do so, they used several enzymes and different pH values,
contact times, and agitation intensity. The authors also eval-
uated the effect of different thermal treatments (60, 65, and
70°C for 5, 10, and 15min) on the viability of the microen-
capsulated probiotic. They found that the highest survival
of Bifidobacterium BB-12 after spray drying was obtained
in microcapsules produced only with sweet whey (9.54 log
cfu/g). Sweet whey also produced the best yield in microen-
capsulation (95.43%) of the probiotic. On the other hand, the
researchers observed that microcapsules prepared only with
sweet whey and those produced with a sweet whey-inulin
blend provided a better viability of bifidobacteria vs. free cells;
the reduction was 0.49 and 0.97 log cfu/g, respectively. The
authors concluded it is better to use only sweet whey to micro-
encapsulate Bifidobacterium BB-12 since the viability of a wide
number of probiotic bacteria is maintained after spray drying.
It is even maintained after exposure to simulated gastrointes-
tinal conditions and thermal treatments. Therefore, the per-
formance is better than when it is used in a blend with
prebiotics like inulin in encapsulation.

Rosolen et al. [94] microencapsulated Lactococcus lactis
subsp. lactis R7 (L. lactis R7) with whey and inulin by spray
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drying. They evaluated the survival of the microencapsulated
probiotic as it passes through simulated gastric degradation,
thermal treatments, and storage (6 months) at –20 ± 1 ° C,
4 ± 1 ° C, and 25 ± 1 ° C. L. lactis R7 microencapsulated with
inulin and whey was recovered in high concentrations (13.0
log cfu/g) after microencapsulation, and the yield of the
microencapsulation was also high (94.61%). In time-
dependent survival studies, the concentration of the micro-
encapsulated probiotic was relatively high (>8.0 log cfu/g)
at the three storage temperatures and at least at month 6
of study. In addition, the microcapsule protected L. lactis
R7 during its passage through simulated GIT (gastric fluid
with pepsin at pH 2, 2.5, and 3 and intestinal fluid with pan-
creatin at pH 8). It conferred resistance against thermal
treatments (60, 65, and 70°C for 0, 5, 10, 15, and 30min),
while there were reductions of 1.36, 0.77, and 2.34 logarith-
mic cycles at pH 2, 2.5, and 3, respectively.

2.6. Coacervation. Coacervation consists in the precipitation
of a polymer (simple coacervation) or several (complex
coacervation) induced by phase separation. In simple coac-
ervation, proteins are used as encapsulating material and
their precipitation can be induced by a change in pH or ionic
strength [95–97]. Complex coacervation is carried out by
mixing two polymers with opposite charges and the same
pH [98]. The polymer crosslink and precipitation is carried
out by adjusting the pH and cooling of the blend. After using
this encapsulation method, drying is usually necessary to
provide stability to the capsules [98].

Interesting coacervation systems are those between pro-
teins and ionic polysaccharides of opposite charge. For
instance, pectin is a popular anionic polysaccharide for com-
plex coacervation with β-lactoglobulin [99–101]. Once
formed, coacervates look like dynamic, adaptable structures
capable of responding to environmental changes (pH, ionic
strength, and temperature). They can reorganize to create
an adequate charge distribution when the environment is
not ideal [102]. Structural reorganizations can also occur
during coacervate storage, and such modifications can be
relatively slow [103]. Coacervation is a promising encapsula-
tion technology due to its high charge capacity and effective
release of encapsulants by mechanical stress, temperature,
and pH alterations [95].

Kaewnopparat et al. [96] used complex coacervation to
encapsulate L. rhamnosus GG in a blend of Bambara
groundnut protein isolate (BGPI), alginate, and inulin. The
optimal model included BGPI/alginate solution at a 1 : 1
weight ratio to obtain a 2.14% w/v solution with 3.23% w/v
inulin. The microcapsules prepared under optimal condi-
tions showed excellent protection since they improved cell
survival rate of cell in simulated gastric liquid (pH 2 pepsin
for 2 h and simulated intestinal juice with pH 7 pancreatin)
in ~4.88 log cfu/ml after 3 h vs. free cells. They demonstrated
cell release of 8.53 log cfu/ml in 4 h and under storage con-
ditions at 4 and 30°C for 6 months; the survival rate was
7.82 log cfu/ml and 8.0 log cfu/ml, respectively. It was higher
than that of free cells under the same conditions (4.10 log
cfu/ml and <1.0 log cfu/ml, respectively). Microcapsules also

2,00 mm

(a)

500 𝜇m

(b)

500 m

(c)

2,00 mm

(d)

Figure 3: Stereoscopic microscope images: (a) microcapsules obtained by extrusion before gastric digestion in vitro (GDInV), (b)
microcapsules obtained by internal emulsion before GDInV, (c) microcapsules obtained by extrusion after GDInV, and (d)
microcapsules obtained by internal emulsion after GDInV [82].
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efficiently released lactic acid bacteria (LAB) in the simu-
lated intestinal fluid.

2.7. Freeze Drying. Freeze drying is an adequate technique to
encapsulate thermosensitive microorganisms [104, 105]. In
general, it consists of freezing microorganisms at –70°C
under a vacuum. Water is eliminated by sublimation during
the process, and the result is a dry paste where the bacteria
remains stable along time [106, 107]. The technique pro-
duces microcapsules of stable biological materials as the
effect of temperature and chemical reactions is reduced dur-
ing storage [59, 108].

Several ecological factors determine microbial survival
during and after freeze drying, among which are the bacte-
rial species, the physiological state of microorganisms, cell
density, the effect of encapsulating or wall materials [109,
110], freezing rates, and rehydration, among others
[109–111]. The effect of these parameters or factors can
cause cell damage and reduction in microbial viability and
activity at different degrees [112]. Some authors report that
the use of prebiotics as resistant starch, inulin, and FOS in
wall material blends confers protection to microencapsu-
lated bacteria [105, 110, 113], additionally, to increase probi-
otic viability during encapsulation by freeze drying, storage,
and the subsequent passage through the GIT, cryoprotective
agents (saccharides and polyols), and other compatible sol-
utes [105, 106, 110].

Barona et al. [50] evaluated the effect of the prebiotics
inulin and FOS (25% w/v) in the freeze-drying microencap-
sulation and storage of L. casei ATCC-393 and Lactobacillus
rhamnosus ATCC-9469. They also evaluated changes in the
physicochemical properties of the powders and the viability
of the microencapsulated bacteria. They observed a high
hygroscopicity and wettability in the presence of prebiotic
agents. They also found an increased viability (>93.94%) of
probiotic bacteria encapsulated with inulin and FOS as com-
pared vs. the treatment without prebiotic (89.79% viability)
in L. casei. Still, the characteristics of the encapsulates ham-
per the application of powders to a food matrix with low
water activity and possible hydration at the moment of con-
sumption. This is because hygroscopicity and wettability are
increased in the presence of prebiotic material. The behavior
is closely related to the chemical and structural characteris-
tics and the number of free sugars and degree of polymeriza-
tion. In hydrated matrices, microcapsule solubility could risk
microorganism survival and food stability given that probio-
tics might deteriorate and decompose the food.

Estilarte et al. [113] microencapsulated Enterococcus
durans (LM01C01, LM05C01 and EP1) by freeze drying
using sucrose, lactulose, or maltodextrin as prebiotics. Lactu-
lose provided the best protection for all three strains of E.
durans after freeze drying and storage at 4 and 25°C for 92
days. However, strain LM01C01 showed the highest survival.
They observed that the freeze dried LM01C01 with lactulose

(a) (b)

(c) (d)

Figure 4: Scanning electron microscopy micrographs of Lactobacillus acidophilus microcapsules obtained by spray drying with an initial
solution containing 8 g of trehalose [56].
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was more resistant at low pH (2.5) and in the presence of
bile (3 and 50 g/L), as the probiotic was able to grow.

2.8. Refractance Window Drying. The refractance window
drying (RW) encapsulation technique is a nonthermal
method that does not require high operating pressures
[114]. RW drying is a technique used to concentrate viscous
solutions and suspensions, obtaining a product in the form
of flakes or film at reasonable costs [115]. The RW drying
method consists of uniformly placing the viscous solution
or suspension on a thin transparent material (such as Pyrex
glass or a polyethylene film known as Mylar®) in the infra-
red, which is in contact with hot water (95–98°C) [116,
117]. The thin transparent film or material creates a “win-
dow” that allows the transport of heat and infrared energy
from the hot water to the wet feedstock [118]. The radiation
allows the product to settle quickly because the film has low
resistance to thermal conductivity [116]. The product tem-
perature is below the hot water temperature, eliminating
the effects of excessive drying [119]. The previously men-
tioned characteristics before RW drying are alternatives for
thermosensitive products such as probiotics.

There is little research using the RW drying technique
for synbiotics encapsulation. Aragon-Rojas et al. [116]
encapsulated L. fermentum K73 by RW drying, using malto-
dextrin and sweet whey (0.6 : 0.4) as an encapsulation matrix
using three water temperatures (59.85, 69.85, and 79.85°C).
The survival of the microorganisms and the drying kinetics
was studied using mathematical models (modified Gom-
pertz and Midilli). They found that the most favorable con-
ditions, according to modeling, were a drying time of
41min, a temperature of 79.85°C with concentrations of
9.1 log cfu/g and a final humidity of 10%. On the other hand,
Yoha et al. [120] encapsulated a synbiotic consisting of L.
plantarum (NCIM 2083) in combination with FOS, whey
protein (WP), and/or maltodextrin (MD). The best viability
of the probiotic was found at 40°C with the mixture of pre-
biotics FOS:WP:MD (2 : 0.5 : 0.5). The moisture content for
the different mixtures ranged between 5.25% and 6.51%
and the encapsulation efficiency between 88.05 and
93.29%. Regarding the survival of L. plantarum (NCIM
2083) under simulated GIT conditions, the results showed
that, under oral conditions, there was no significant decrease
in cell viability. RW-encapsulated synbiotics showed a
decrease in cell viability under gastric conditions. However,
these changes were not significant. Under intestinal condi-
tions, there was a reduction in cell viability of the synbiotics
(~6 log cfu/g). Prebiotic-encapsulated probiotics were less
susceptible to loss of viability compared to cell free. This is
because prebiotics protects probiotics. Later, this same group
of researchers [121] incorporated the different synbiotic
encapsulations into 3D-printed foods.

According to the findings in the different investigations,
the refractance window drying encapsulation technique
could be a technically viable technology for encapsulating
probiotics derived at low cost, short drying time, and accept-
able characteristics in the encapsulates. It is important to
note that this method considers a nonthermal drying
approach, ideal for heat-sensitive foods and ingredients.

2.9. Combination of Encapsulation Techniques Applied to
Synbiotics. Ribeiro et al. [101] microencapsulated Lactobacil-
lus acidophilus LA-5 using whey protein and pectin as wall
material and prebiotic, respectively. The microencapsulation
included two processes: ionic gelation and complex coacer-
vation. Figure 5 shows the size and shape of the microcap-
sules obtained, which were added to yoghurt to evaluate
the survival of microencapsulated bacteria and changes in
microcapsule characteristics. The study also evaluated the
survival of probiotics subjected to simulated GIT conditions
and sensory acceptance of yoghurt after 35 days of refriger-
ated storage (5°C). The yoghurt containing encapsulated L.
acidophilus LA-5 showed a lower acidification and better
probiotic survival (62%) as compared against the yoghurt
containing free L. acidophilus LA-5 cells (10%) after 35 days
of refrigerated storage. Additionally, the survival of encapsu-
lated L. acidophilus LA-5 was higher than that of the free
microorganism in studies on the effect of simulated gastroin-
testinal conditions (gastric juice simulated at pH 3, intestinal
juice simulated at pH 7, and 1% w/v bile solution). After 35
days of storage, there were no significant differences
(p < 0:05) in appearance, smell, taste, and overall impression
of both samples (Figure 5).

Cook et al. [122] microencapsulated Bifidobacterium
breve with Bimuno™ (GOS), an alginate-chitosan blend,
and a double emulsion before freeze drying. They observed
the cell survival of B. breve encapsulated in multiparticles
was 8:0 ± 0:3 log cfu/ml under acidic conditions (pH 2 for
60min), an improvement vs. microencapsulation with
alginate-chitosan (1.4 log cfu/ml).

Chávarri et al. [42] produced alginate microspheres
coated with chitosan to encapsulate Lactobacillus gasseri
(L) and Bifidobacterium bifidum (B) as probiotics and pre-
biotic quercetin (Q), using extrusion and freeze drying
technique. The encapsulation yield of viable cells in alginate
microspheres coated with chitosan-quercetin was low:
3:90 ± 0:86 log cfu/g in L+Q and 2:99 ± 0:97 log cfu/g in
B+Q. These results, along with the study on probiotic
survival in microspheres with quercetin during storage
at 4°C, proved that probiotic bacteria microencapsulated
with quercetin did not survive. Therefore, quercetin and L.
gasseri or B. bifidum were microencapsulated separately.
Microencapsulated L. gasseri and B. bifidum were resistant
to simulated gastric conditions (pH 2, 2 h) and bile solu-
tion (3%, 2 h); this resulted in 95% and 94% of survival
in alginate microspheres coated with chitosan, respectively.
The elevated survival of probiotics encapsulated with algi-
nate and chitosan after being exposed to simulated gastric
conditions proves that this complex protects the bacterial
cell. It reduces the porosity of alginate capsules, which
reduces the leakage of the encapsulated probiotic, stable
at wide pH ranges.

Raddatz et al. [58] evaluated the effect resistant starch
of maize, inulin, and rice brain as prebiotics on L. aci-
dophilus LA-5 viability in pectin microparticles obtained
by emulsion/internal gelation, followed by freeze drying.
The encapsulation matrix pectin+inulin showed the high-
est encapsulation efficiency (68.1%) as compared against
the other treatments. The microparticle size went from
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166 ± 2 μm (pectin+Resistant maize starch) to 345 ± 9 μm
(pectin+inulin). Generally, the microparticles with added
prebiotics presented higher levels of microorganisms. In
addition, bacterial survival in microcapsules with prebi-
otics was higher in gastrointestinal simulation studies
across sections as esophagus/stomach (added pepsin, pH
adjusted to 2 for 90min), duodenum (added pancreatin
and bile salts, pH adjusted to 5 for 20min), and ileum
(pH adjusted to 6.5 for 90min). Similarly, during storage
at 25 and –18°C, a greater survival of probiotic microor-
ganisms (above 6.0 log cfu/g) was observed in microparti-
cles containing resistant starch maize, inulin, and rice
bran. Probiotics in microcapsules containing pectin+rice
bran survived at least 120 days at 7°C.

It has been demonstrated that microencapsulation pro-
tects probiotics from adverse conditions during food pro-
cessing and passage through the digestive system in
conditions in vitro when combined with prebiotics. Table 1
presents studies on synbiotic encapsulation [7, 8, 38, 42,
45, 48, 53, 56–58, 60, 77, 79–82, 93, 94, 96, 101, 122–124].

2.10. Antimicrobial Effect of Synbiotic Microencapsulates on
Pathogens. Gut microbiota is a complex ecosystem [125],
and introducing new organisms to this highly competitive
environment is difficult [126]. Therefore, microorganisms
that can create a product to inhibit the growth or displace
the existing microorganisms in the gut are at a distinctive
disadvantage [46]. LAB are a group of bacteria that can
potentially establish in the intestine and displace part of
the gut microbiota by producing bactericide compounds
[127]. These compounds can also affect the viability of path-
ogen bacteria [128]. Several Lactobacillus spp strains inhibit
different pathogen bacteria, both Gram positive and negative
[129–131]. This is because of the production of antimicro-
bial compounds as bacteriocins, hydrogen peroxide, and
organic acids [128, 131]. Different LAB are probiotic bacte-
ria [132–134]. The ability of probiotic LAB to establish in
the GIT is reinforced by their capacity to eliminate their
competitors [46]. The microcapsules containing antimicro-
bial compounds provide a controlled release, ensuring the
stability of the compound [135]. Table 2 describes some
works on the antimicrobial effect of some microencapsulated
synbiotics.

2.11. Emerging Technologies: 3D Food Printing. Three-
dimensional (3D) food printing technology offers personal-
ized products with complex geometries and designed inter-
nal structures, controlled composition, and personalized
textures tailored to meet each person’s taste preferences
and specific dietary needs [136–138]. The main 3D food
applications are based on extrusion technology and refer to
natively printable materials, such as cereal derivatives, choc-
olate, doughs, and pasta [136, 137]. According to the nutri-
tional requirements of the current population, a new range
of healthy food products has been developed through 3D
printing of foods added with nutraceuticals and functional
food ingredients [119, 139, 140]. For example, Liu et al.
[141] incorporated probiotics (Bifidobacterium animalis
subsp. lactis BB-12) into 3D-printed mashed potatoes. This
puree was stored for 12 days, after which the count of viable
microorganisms was above (9.77 log cfu/g) the recom-
mended dose. This research suggests that attractive 3D foods
can be made with probiotic microorganisms. In 2018, Zhang
et al. printed 3D food structures based on cereals containing
probiotics. Two types of structures with different surface-to-
volume ratios were printed, that is, 9.20 cm2/cm3 for the
“honeycomb” design and 7.25 cm2/cm3 for the “concentric”
design, finding that the increase in the surface-to-volume
ratio of the structure accelerated its firing process. Thus,
the viable counts of probiotics in the “honeycomb” structure
exceeded 106 cfu/g, concluding that the survival of probiotics
could be improved by increasing the surface-to-volume ratio
of the structure.

On the other hand, [121] combined the encapsulation
(synbiotic) and the 3D printing process on the viability of
probiotics by making food based on flour rich in fiber and
protein. The stability of the probiotics during storage in
two different temperature conditions (4°C and room tem-
perature) was evaluated. No significant loss of probiotic via-
bility was observed during the 3D printing process. In
addition, the encapsulation by lyophilization followed by
the lyophilization postprocessing method presented the best
viability of probiotics (8.18 log cfu/g); the best survival rates
of 6.43 log cfu/ml and 7.98 log cfu/g were also obtained
under static conditions of in vitro digestion and during 35
days of storage, respectively. 98-99% survival was obtained
for all encapsulated probiotics after the 3D printing process,

(a) (b)

Figure 5: Scanning electron microscopy (SEM) of microcapsules obtained by ionic gelation and complex coacervation with L. acidophilus
LA-5. (a) Microcapsules at a magnification of 900x and bar of 10μm. (b) L. acidophilus LA-5 cells (marked with arrows) are randomnly
distributed within microcapsules at a magnification of 4000x and bar of 1μm [101].
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proving that the 3D printing process does not have a nega-
tive impact on the viability of encapsulated probiotics. In
this way, it is concluded that the incorporation of encapsu-
lated synbiotic powders in 3D foods can significantly
improve the stability of probiotic cells. On the other hand,
the incorporation of encapsulated synbiotics into 3D foods
could be less complex since, in these foods, the surface-to-
volume ratio can be controlled, offering benefits for the sur-
vival of probiotic microorganisms.

3. Effect of Microencapsulated Synbiotics in
Animal Models

There are currently limited studies on the effect of microen-
capsulated synbiotics in animal models. Only four studies
are found in literature regarding synbiotics encapsulated
using different techniques and their effect in animal models.
This represents an area of opportunity in scientific research
related to the effectiveness of microencapsulated synbiotics
and their real effect in a living organism.

Bhatia et al. [142] studied the hypoglycemic potential of
microencapsulated prebiotics (lactulose) with a probiotic (L.
casei subsp. casei 17 at a concentration of 109 cfu/ml) in vivo.
The microencapsulation was carried out using sodium algi-
nate (3.5%) and calcium chloride (75mM). The synbiotic
capsules obtained were administered to diabetic albino mice,
and the researchers investigated their effect in the reduction
of glucose levels as compared against the nonmicroencapsu-
lated synbiotic and glibenclamide. The results showed that
synbiotic microcapsules reduced glucose levels in blood by
54% in diabetic mice. This decrease was sharper than that
obtained with the nonencapsulated synbiotic (51%) and
glibenclamide (46%). Wang et al. [143] microencapsulated
L. plantarum and FOS by emulsion. The synbiotic microcap-
sules were administered to weaned piglets, and their effect

was identified in the growth of the animals, immune
response, and gut microbiota. The piglets administered with
the synbiotic showed a greater weight gain and food intake
as well as a lower rate of diarrhea (p < 0:05) vs. piglets that
did not receive the synbiotic. Additionally, piglets given the
microencapsulated synbiotic showed higher plasma concen-
trations of immunoglobulin A (IgA) and G (IgG) (p < 0:05)
of LAB in colon as compared against the group that did not
receive the synbiotic.

Wang et al. [144] used the emulsion technique to micro-
encapsulate E. faecium (108 cfu/g), L. plantarum (108 cfu/g),
and B. subtilis (109 cfu/g) with prebiotics β-mannose
(250U/g) and FOS (250mg/g). The microencapsulated syn-
biotic was administered to male broiler chickens aged 1 day,
and its effect was assessed in growth, immune response, anti-
oxidant capacity, and fecal Lactobacillus concentration. The
study included chickens administered with an antibiotic
instead of the synbiotic and those that were not adminis-
tered with synbiotic nor antibiotic. The average daily weight
gain, serum levels of immunoglobulin M, and total serum
antioxidant capacity (T-AOC) increased significantly
(p < 0:05) in chickens given the synbiotic and the antibiotic
vs. those that did not receive any treatment. Furthermore,
the chickens administered with the synbiotic showed the
highest levels of serum T-AOC, IgA, serum interleukin-2
(IL-2) and IL-6, and fecal Lactobacillus concentration.

da Silva et al. [145] microencapsulated the probiotic Lac-
tobacillus casei 01 (11–12 log cfu/ml) alone, in a blend with
inulin enriched with oligofructose (Synergy 1), and as syn-
biotic microparticle (L. casei 01+Synergy 1). They used a
blend of chitosan, calcium, and alginate as wall material to
obtain the microcapsules by spray drying. The anti-
inflammatory effect of the microencapsulated bacteria was
evaluated in a trinitro benzenesulfonic (TNBS) acid model
of rat colitis. The animals given probiotics/synbiotics (8.5–

Table 2: Antimicrobial effect of microencapsulated synbiotics against pathogens.

Probiotic Prebiotic
Encapsulation
technique

Inhibited
microorganisms

Main findings References

Lactobacillus
rhamnosus

Inulin and FOS Extrusion
Enterococcus faecalis

E. faecium

The culture with added prebiotic
showed an inhibitory effect on

Enterococcus faecalis growth. The
survival rate of probiotic culture
cells depends on the prebiotic.
Inulin was more efficient in

L. rhamnosus cell viability than FOS

Ergİnkaya
et al. [77]

Pediococcus
acidilactici
Lactobacillus reuteri
Lactobacillus
salivarius.

0, 5, 10, 15, and
20% inulin

Extrusion/ionotropic
gelation

Salmonella Montevideo
Escherichia faecalis

Staphylococcus aureus
Listeria monocytogenes

LSD 530
L. innocua

E. coli MC4100

Antimicrobial capacity was
significantly lower (p < 0:05)
in bacteria encapsulated
in beads vs. free bacteria

Atia et al.
[53]

Lactobacillus reuteri
DPC16

Chitosan Emulsion
E. coli O157:H7
S. typhimurium

No attenuated antimicrobial
effect was observed in immobilized
Lactobacillus reuteri DPC16 vs. free
cells. Microencapsulation provided
improved protection in probiotics

added

Chen et al.
[161]
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8.9 log cfu/mlL. casei 01 and 1.5% Synergy 1) showed a
reduction in colon damage and increased levels of lactoba-
cilli in feces vs. rats with colitis that received not treatment.
Additionally, rats given synbiotic microcapsules presented
the highest anti-inflammatory effect and fewer colon lesions,
linked to a significant decrease in myeloperoxidase activity.

4. Polymers Used as Wall Material

An important step in the microencapsulation process is the
selection of appropriate encapsulation materials [47]. The
materials must be chemically compatible and nonreactive
with the material to be microencapsulated and provide the
desired coating properties such as resistance, flexibility,
impermeability, and stability [146, 147].

The materials commonly used to make microcapsules
are typically biopolymers, such as alginate, starch, alginate,
carrageenan, gelatin, and protein, which generally have good
thermal stability, high biocompatibility, low toxicity, and low
cost [4]. However, in recent years, new encapsulating biomate-
rials have emerged, such as gums, mucilages, prebiotic com-
pounds, and microbial exopolysaccharides, which improve
the protection and survival of encapsulated microorganisms,
allowing their incorporation into dairy and nondairy food
products [75]. On the other hand, these biomaterials provide
potential health benefits.

Gums and mucilages are polysaccharides that are
obtained from plants through natural exudation produced
by injury or are extracted from different tissues using extrac-
tion processes [148]. The hydrophilic nature of these com-
pounds makes them easy to extract by soaking the seeds or
shells in water [149]. The encapsulation of probiotic micro-
organisms using gums and mucilages as wall material has
shown improvement in the viability of the encapsulated cells
during storage and their passage through GIT [79].

Psyllium mucilage is extracted from the shells of Plan-
tago ovata Forssk seeds with gelling capacity, swelling capac-
ity, and water absorption properties, properties attributed to
the presence of arabinoxylans in its structure [150]. The
polysaccharides present natural antioxidant and purifying
activity [151]. Peredo et al. [81] encapsulated L. casei Shirota
and two strains of L. plantarum (Lp33 and Lp17) with
potato starch, Plantago psyllium, and inulin, finding that
probiotic bacteria coencapsulated with Plantago psyllium
and inulin showed the highest viability (p < 0:05) after of
bowel simulation.

Guazuma ulmifolia Lam (Malvaceae), commonly known
as mutamba, has a black fruit with dry skin and seeds
inserted in a mucilaginous pulp [152]. The seeds present in
the fruit, if soaked in water, release copious amounts of
mucilage, forming “gelatinous capsules” [75]. In a mature
state, the fruit represents a source of fibers, proteins, vita-
mins, minerals, and phenolic compounds [153]. Mutamba
has structural characteristics that indicate that it could be
used as an emerging biopolymer in food and pharmaceutical
applications [153]. However, so far, there is no scientific evi-
dence of the use of mutamba mucilage to encapsulate probi-
otic microorganisms.

Microbial exopolysaccharides such as xanthan gum pro-
duced by Xanthomonas campestris are considered nontoxic,
presenting hydrosolubility in hot and cold water [75].
Xanthan gum, in combination with another polysaccharide,
improves the encapsulating properties. For example, Fra-
tianni et al. [7] microencapsulated a probiotic yeast, Saccha-
romyces cerevisiae boulardii, in a xanthan gum-alginate-
inulin mixture, improving yeast survival during storage
and under simulated gastric fluids.

On the other hand, prebiotics has been gaining popular-
ity among the biomaterials used to encapsulate probiotics
due to the fact that they function as a substrate for microor-
ganisms. Such is the case of inulin, which, being made up of
fructose monomers linked by β-glucosidic bonds, makes it
resistant to hydrolysis in the digestive system [154]. The
use of inulin-trehalose-Hi-maize® to encapsulate L. acidoph-
ilus provided protection for bacteria under simulated gastric
and intestinal juices [56].

Importantly, the functional performance of microcap-
sules can be improved when multiple layers or shells are
formed on the microcapsule with the same or different bio-
polymer. Chitosan is one of the most used polysaccharides
for this purpose since, due to its positive charge, it can be
combined with negatively charged polysaccharides [155]. It
has been proposed that the microcapsules formed by layers
of alginate-chitosan have good potential since they can resist
the conditions of the gastrointestinal tract until they reach
the colon, where both the chitosan and the alginate are
degraded by the colonic microbiota, thus releasing probio-
tics [156].

5. Synbiotic Encapsulation Patents

It is important to note that research can sometimes lead to a
new product, process, or service that can be applied or used
immediately to solve a problem or need in the food industry.
Furthermore, these new inventions can generate economic
resources for the inventors and/or for the owners. New
inventions can be legally protected as industrial property
or intellectual property, for example, in the form of patents.

In the case of microencapsulates, even though there are
numerous articles published on the different types of micro-
encapsulation of probiotic bacteria and synbiotics, as well as
the different wall materials and on the incorporation of
encapsulates containing probiotics or synbiotics to a food
matrix, compared to this, there are few patents or patent
applications on probiotics or microencapsulated synbiotics
[157–160]. It is necessary to increase the number of patents
or applications for new patents throughout the world, as this
increases the probability that a new discovery can be used
immediately to solve problems or needs in the food industry.

6. Conclusions

This review provides evidence on the microencapsulation of
synbiotics using different techniques, such as ionic gelation,
emulsification, extrusion, spray drying, coacervation, freeze
drying, and their combination in some cases. They confer pro-
biotics protection as they pass through the gastrointestinal
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tract, both in simulated conditions and animal models. This
work also demonstrates that microencapsulation helps to
reach an adequate concentration of prebiotics and probiotics
in the microcapsule to exert a beneficial effect in the host’s
health. In addition, the available evidence proves that synbio-
tics are more beneficial when administered in microcapsules
than in their free form. On the other hand, microencapsula-
tion allows for the controlled release of antimicrobial com-
pounds that produce most of the probiotic bacteria, ensuring
their stability through the gastrointestinal tract. Several works
have proven the effectiveness of encapsulated synbioticmodels
in vivo and revealed the synergy between probiotic, prebiotic,
and capsule to counter chronic, degenerative diseases in some
cases. Still, further research is necessary both in animals and
humans regarding the beneficial effect in health after microen-
capsulated synbiotics are administered given that the existing
studies suggest their use might have a beneficial impact in
the consumer’s health.
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