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Bioactive compounds of natural matrices are of interest because of their application in the food and pharmaceutical industries.
One important source of bioactives is propolis, a resinous biomass that bees make from the plants surrounding the hive.
Regarding Colombian propolis, studies have mostly been directed towards identifying flavonoids and their biological activity
in vitro. There are no works on the oil extract of propolis and its chemical composition and bioactivity through metabolomic
analysis. In this sense, this work studied the volatile composition of propolis oil extract samples from Colombia, following a
metabolomic approach; in this work, the oily Colombian propolis extracts (OECP) obtained by an ultrasound assisted extraction
(UAE) with different solvents were studied using spectroscopy and physicochemical analysis. A strong correlation was observed
between the antioxidant activity and their concentrations of polyphenols, terpenoids, and carotenoids. Simultaneously, it was
possible to expand the number of compounds identified by applying FTIR spectroscopy to the sample analysis, relating infrared
bands to specific compounds. Besides, it was also possible to discriminate the samples according to their geographical origin.
Colombian propolis oil extracts have characteristics as bioactive compounds such as the sesquiterpenes bisabolol, α-zingiberene, β-
bisabolene, and α-trans-bergamotene and the monoterpenes α-pinene, linalool, and p-cymene.

1. Introduction

Propolis is a resinous substance produced by Apis mellifera
and other species of bees from plant exudates. Its function is
to protect the hive against health damage. The composition
of propolis is variable depending on its geographical origin,
the bee species, and the surrounding flora, for instance [1].
Its effectiveness against pathogenic organisms is mainly due

to the wide variety of bioactive compounds present in its
chemical composition. In general terms, 50% of the propolis’
composition is given by resins and balsams, between 7 and
30% is constituted by waxes, 10% correspond to pollen grains,
and the remaining 10% refers to essential oils [2, 3].

Most studies on the antimicrobial capacity of propolis
are based on hydroalcoholic extracts [4, 5], as studies on
oil extracts and propolis essential oil are scarce ([6, 7]).
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Propolis oil extracts are products of special importance that
are characterized by their high bioactivity, which in some
cases exceeds antibiotics, plant essential oils, and hydroalco-
holic extracts of marine products [1].

The chemical composition of the oil extracts depends,
among other factors, on phylogenetic variables, climate,
and extraction methods [8]. Following extraction, the meta-
bolomic analysis of oil extracts might allow one to detect
bioactive compounds and the correlation of their content
with biological activities of interest [9]. Currently, there is
a need to identify biomarker metabolites that would enable
a targeted metabolomic analysis to differentiate Colombian
propolis from other samples of tropical origin and detect
compounds with antimicrobial activity, for instance [10].

In most cases, metabolomic studies have focused mainly
on obtaining information from hydroalcoholic extracts of
propolis samples. For example, Huang et al. [11], Patti
et al. [12] Bittencourt et al. [13], Andelkovic et al. [14],
and Saftić et al. [15] have performed metabolomic analysis
for the identification of polyphenols and volatile compounds
in Brazilian propolis and from temperate zones of Europe.
The results revealed the existence of typical compounds
regarding the geographical origin of the propolis samples,
as well as allowed identifying which metabolites inhibited
the growth of Gram-positive and Gram-negative bacteria.
According to these studies, it has been possible to relate
the antibacterial activity to phenolic compounds such as
quercetin and p-coumaric acid, as well as the synergism
between aldehydes and low molecular weight esters [16,
17]. It has also been established that according to the poly-
phenol profiles of Brazilian propolis samples, they could be
discriminated against in temperate zones. Additionally, the
presence of specific volatile compounds such as caryophyl-
lene and hexadecanal allowed the classification and discrim-
ination of Brazilian propolis samples.

One of the few studies aimed to study nonpolar com-
pounds in propolis has discovered that terpenoids constitute
between 16 and 20% of the bee product composition; still,
the proportion of the different types of propolis will be
determined according to different factors like the botanic
origins or the bee species [18]. A big part of the metabolomic
studies have been related to the impact of the propolis in
conjunction with pharmaceutical like the doxorubicin
(DOX) against cancer cells with high effectiveness against
cancer cells [19]; in terms of antioxidant activity, it has been
seen that the propolis has antioxidant activity and that com-
pounds like flavonoids, stilbenes, triterpenes, diterpenes,
acid derivatives (e.g., quinic, coumaric, cinnamic, hydroxy-
cinnamic, and hydroxy-benzoic), and lignans are among
the key markers for the scavenging radical activity and
reducing power of the samples [20].

Most of the reports in the literature are concerned with
the chemical profile determination of propolis hydroalco-
holic extracts, and very little is known about its oil extracts
[21, 22]. Besides, studies have not been carried out yet to
identify biomarkers present in propolis oil extracts, as well
as the eventual relation between such compounds and their
antioxidant and antimicrobial activities. Therefore, this
study is aimed at carrying out physicochemical and metabo-

lomic analyses of propolis oil extracts for identification of
biomarkers that will enable discriminating propolis samples
from 4 nuclei of apicultural production in Colombia. At the
end, it was intended to identify the extract with superior
antioxidant activity and to discover the compounds with
more significant impact on radical scavenging activity and
reducing power. In this research, we expect to find that the
oily Colombian propolis extracts (OECPs) show a high
activity against free radicals and a considerable reducing
power due to the presence of various terpenoids with indi-
vidual bioactivity and synergism that are enhanced due to
the chemical diversity present in the isoprene derivate
metabolites.

2. Materials and Methods

2.1. Propolis Collection. The analysis of propolis oil extracts
from 4 productive beekeeping nuclei in Colombia was car-
ried out by collecting 12 samples from each nucleus.

Between September and December 2018, samples were
collected from 4 productive cores and classified according
to their geographical origin, altitude, and ecosystem charac-
teristics (Table 1 and Figure 1). Propolis samples were stored
in darkness at -20°C until analysis.

2.2. Preparation of Propolis Nonpolar Extracts by Liquid-
Liquid Biphasic Fractionation. In order to obtain the nonpo-
lar fraction of Colombian propolis, a mixture of apolar and
polar solvents was used, which allowed an effective extrac-
tion of total lipids. For that, 75mL of a dichlorometha-
ne : ethanol : water (1 : 1 : 1, v/v/v) solution was added to
25 g propolis. The mixture was shaken for 15min at
400 rpm, and three cycles of ultrasound were applied at
60 kW for 15min. The mixture was submitted to the centri-
fuge for 10min at 1008 g, and the lower phase containing the
oil extract was recovered. Finally, the organic solvents were
removed under vacuum in a Büchi Rotavapor R-100 at
40°C [7, 23].

2.3. Analytical Methods Applied to Analyze the Profile of
Propolis Oil Extracts

2.3.1. UV-VIS Spectrophotometry. To obtain the UV-VIS
spectra of the compounds for a preliminary identification,
firstly, a 0.25mL of the propolis extracts was diluted with
dichloromethane to the final volume of 1mL. Once the dilu-
tion was prepared, 300μL was used for recording UV-Vis
spectra with a wavelength range from 200 to 750nm in a
SpectraMax 190 Microplate Reader. The primary purpose
was to identify peaks that could give evidence of the pres-
ence of aromatic rings and double bonds found in volatile
compounds and other apolar substances [24, 25].

2.3.2. Attenuated Total Reflectance Fourier Transform Mid
Infrared Vibrational Spectroscopy (FT-IR). To identify func-
tional groups of compounds present in propolis samples,
mid infrared spectroscopy was used. For this purpose, 0.1 g
of each previously ground sample was weighed, and the
spectra (n = 3/sample) were recorded on a FTIR-4700 spec-
trometer (JASCO). Baseline corrections were made to omit
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outlier values and eliminate the bands for CO2 and H2O.
Sixteen scans were taken in triplicate for each sample sweep-
ing the spectral window from 4000 to 400 cm-1.

2.3.3. Near-Infrared Spectroscopy (NIR). For this analysis, a
Bruker MPA FT-NIR spectrometer (BRUKER OPTIK
GmbH, Rudolf Plank Str. 27, D-76275 Ettlingen) was used.
Three samples of four productive cores were evaluated, and
the test was performed both on untreated solid propolis
samples and propolis oil extracts. Three readings for each
sample were done over a 4000-12500 cm-1 spectral window,
with a resolution of 16 cm-1 [26].

2.3.4. Gas Chromatography Coupled to FID and MS
Detectors (GC-FID and GC-MS). The propolis oil extract
samples were analyzed by gas chromatography coupled with
both FID (GC-FID) and mass (GC-MS) detectors. The GC-
FID analysis was performed on a Shimadzu GC-17A chro-
matograph, equipped with a DB-5 dimethylpolysiloxane
apolar column (30m × 0:25mm × 0:10 μm), using hydrogen
as the carrier gas at 1mL/min (30 psi). The detector and
injector temperatures were set up at 250°C, with a 1 : 30 flow
rate split and a 0.2μL injection volume. The chromato-
graphic column was thermostatized as follows: a first tem-
perature ramp between 35°C and 180°C, with the speed at
4°C/min, followed by a second ramp until 280°C at 17°C/
min. Finally, the system was kept at this temperature for
10min. Under the same experimental conditions, a mixture
of typical C8 to C32 paraffin analytical standards (Sigma-
Aldrich) was injected to calculate the relative retention rates
for each analyte (Kovats rates). For the purpose of analyzed
compound quantification, the results were expressed as a
percentage of the peak areas in respect to the total area of
the chromatogram obtained by GC-FID, without consider-
ing the response factors for each constituent [27–29]. GC-
MS analyses were performed on a Hewlett-Packard series
6890 gas chromatograph linked to a HP-5973 mass selective
detector with a fused capillary column; the conditions were
similar to the ones employed during the GC-FID process.
Compounds were identified using NIST libraries, and then,
the identity of most of them was confirmed by the compar-

ison of spectra and the Kovats retention index found in the
literature [30].

2.4. Total Phenol Content of Propolis Extracts. For the Folin-
Ciocalteu protocol, a standard curve was first prepared from
a gallic acid stock solution (1mg/mL) in methanol; the cali-
bration curve was calculated according to the following
equation:

y = 0,008x − 0,012 r2 = 0,986
� �� �

, ð1Þ

where the following concentrations were used 5, 10, 25, 50,
75, 100, 200, 300, and 500μM. Once the standard curve
was built, mixtures of 100μL blank or diluted extract,
75μL Folin-Ciocalteu solution, and 825μL 2% sodium car-
bonate solution were made and vortexed for 1min. After
that, aliquots (300μL) of each sample were transferred to
microplate wells (n = 3) and stored in darkness, followed
by recording the absorbances at 760 nm in a SpectraMax
190 Microplate Reader [31].

2.5. Antiradical Activity of Propolis Oil Extracts by the 1,1-
Diphenyl-2-picrylhydrazine (DPPH) Method. The DPPH
protocol was used to measure the antiradical activity of
propolis oil extracts. The initial step was to prepare a mix-
ture of 0.0079 g DPPH in 2.5mL methanol and its subse-
quent agitation in an amber flask. Subsequently, 500μL of
this solution was added and diluted with 50mL 80% ethanol.
Afterwards, aliquots (300μL/sample, n = 3) were collected
and the absorbance recorded at 517nm in a SpectraMax
190 Microplate Reader, to check whether the absorbance
values were between 0.5 and 0.6. Subsequently, 290μL
DPPH solution was mixed with 10μL propolis extract, the
samples’ absorbance was read, and the antiradical potential
of the samples was calculated according to the following for-
mula ([32, 33]):

%DPPH = Solvent absorbance − Sample absorbance
Solvent absorbance × 100:

ð2Þ

Table 1: Classification of propolis samples collected for the research framework with its indication on Colombian territory.

Production
nucleus

Ecosystem
Altitude above

sea level
Geographical coordinates

Average
temperature

Common flora

Zone 1 (Z1)
Andean Tropical
Forest (Risaralda)

1200-1500masl
Latitude: 4.81321

Longitude: -75.6946, 4° 48′ 48″
north, 75° 41′ 41″ west

24–27°C
Coffea arabica

Araucaria angustifolia
Solanum pseudoquina

Zone 2 (Z2)
Premontane rainforest

(Valle del Cauca)
1000–2000masl

Latitude: 4.33323
Longitude: -75.8283, 4° 19′ 60″

north, 75° 49′ 42″ west
18–24°C

Saccharum officinarum
Pseudolmedia oxyphillaria

Clarisia racemosa

Zone 3 (Z3)
High Andean forest

(Boyacá)
2800-3200masl

Latitude: 5.74615
Longitude: -73.0011, 5° 44′ 46″

north, 73° 0′ 4″ west
9–12°C

Tibouchina andreana
Oreopanax discolor
Solanum phureja

Zone 4 (Z4)
Tropical dry forest

(Huila)
400-2000masl

Latitude: 2,783
Longitude: -75,267, 2° 46′ 59″

north, 75° 16′ 1″ west
25–30°C

Astronium graveolens
Sorocea sprucei

Ampelocera macphersonii
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2.6. Ferric Reduction Antioxidant Power Assay (FRAP). This
test was carried out on the oily extracts of propolis to deter-
mine the reducing power of the samples. First, the calibra-
tion curve was calculated according to the following
equation:

y = 5, 34 ∗ 10−4x + 0,023 r2 = 0,958
� �� �

, ð3Þ

which was made with a standard of ferrous sulfate diluted in
water, over a concentration range of 500, 1000, 1500, and
2000μM. The propolis extracts were diluted in ethanol
(1 : 4, v/v), and in a dark environment, 90μL of each dilution
was added 270μL distilled water and 2.7mL 10mM TPTZ

solution. The mixtures were then heated (water bath, 37°C,
30min) and then allowed to cool, finally reading the absor-
bance at 595nm. The tests were carried out in triplicate,
and the values of the reducing power of the samples,
expressed in μM ferrous sulfate, were calculated using the
following equation:

Reducing power μmol/g propolisð Þ
= 5, 34 ∗ 10−4 ∗ sample absorbance + 0,023:

ð4Þ

2.7. Measure of the β-Carotene Content. To measure β-caro-
tene, a calibration curve was prepared from a stock solution
made with a β-carotene standard (Sigma-Aldrich®) whose

Figure 1: Location of the propolis collection zones within the Colombian territory.
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concentration was 1mg β-carotene/mL of solvent. Subse-
quently, 250μL of the OECP and MOECP samples diluted
was read at 470nm in a SpectraMax 190 Microplate Reader®
according to the method proposed by Nair and Meliani [34].

2.8. Statistical Analysis. For each variable, mean values and
standard deviations were obtained. ANOVA and the post
hoc Tukey test were applied to the metabolomic dataset.
Besides, principal component analysis (PCA) was also per-
formed to investigate sample grouping and similarities and
to identify which variables more effectively influenced the
classification of the propolis oil extracts. Algorithms for sta-
tistical analysis were developed using the MATLAB program
(version 7.12.0.635) for calculations [35].

3. Results

Figure 2 presents the spectral profiles obtained by the UV-
VIS analysis. Absorbances spread over a 250–700 nm spec-
tral window, with the presence of prominent peaks between
300 and 450 nm, suggesting the occurrence of phenolic com-
pounds in high amounts. Interestingly, high Andean forest
(Z3) samples showed a sharp absorbance decrease just after
400nm, differing from the other propolis extracts. Besides,
peaks detected between 200 and 280 nm were assigned to
double bonds and aromatic rings of phenolic compounds
in propolis oil extract, between the wavelengths 280 nm
and 360nm; the presence of a specific type of phenolic com-
pounds has been reported, around 280nm; the presence of
hydroxybenzoic acids has been attributed, around 320nm;
the emissions could signal the existence of hydroxycinnamic

acids within the sample, and for 360nm, we can establish the
possible presence of flavonols as propolis biomarkers [36].

Figure 3 shows the results of the analysis of propolis by
FT-IR. According to the FT-IR spectra profiles, bands at
3200 and 3400 cm-1, 2900 cm-1, 1700 cm-1, and 1050 cm-1,
corresponding to C-O and O-H bonds, vinyl bonds, and
hydrocarbon chain vibrations, were detected, giving indica-
tions that propolis extracts are composed of a wide range
of secondary metabolites; the presence of C-O bands around
1239 cm-1 indicates the presence of phenolic compounds
and is an indication that the antioxidant polyphenols are
one of the biomarkers of the propolis extract.

In a follow-up set of experiments, NIR spectroscopy
was applied to the propolis samples, expanding the spectral
window in analysis for better chemically profiling that bio-
mass. Nonpolar propolis extracts presented prominent
bands over the region between 4000 and 7000 cm-1, as
shown in Figure 4. In a second set of experiments, propolis
oil samples were analyzed by chromatographic techniques,
i.e., GC-FID and GC-MS. The peak data and the location
of the main metabolites on the GC-FID chromatograms
of the 4 propolis samples are shown in Figure 5, according
to the geographical zones studied. A larger number of peaks
can be visualized at retention times higher than 20min in
all samples. These findings indicate that the donor plants
of exudates for propolis production are rich sources of ses-
quiterpenes compounds.

The proportions of the majoritarian constituents in sam-
ples of the 4 productive nuclei are presented in Table 2. The
bioactive compounds identified in the propolis oil extract
samples reveal a vast diversity of constituents with
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Figure 2: UV-VIS spectra of the nonpolar propolis extracts from 250 to 750 nm FT-IR spectroscopy.
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numerous functional groups. Among the most common
compounds found are the sesquiterpenes α-bisabolol, α-zin-
giberene, β-bisabolene, ar-curcumene, and α-trans-berga-
motene. In addition, monoterpenes and monoterpenoids
such as α-pinene, linalool, p-cymene, limonene, and γ-terpi-
nene were also detected.

Figure 5 presents the percentage composition of second-
ary metabolites found in the oil extract samples investi-
gated. Interestingly, the geographical origin of the propolis
samples showed a marked impact on the chemical profiles
of their oil extracts. Additionally, it was possible to note that
the sesquiterpene compounds constitute over 50% of the
sample profiles from the tropical rainforests and premon-
tane rainforest oil extracts (i.e., Z1, Z2, and Z4) investigated,
as determined by GC-FID analysis (Figure 6). Finally, other
low molecular weight volatile compounds, except esters,
accounted for 5% of the composition of the oily extracts
of propolis.

Following the chemical characterization of the propolis
oil extracts, a series of experiments was performed focusing
on the determination of their total contents of phenolic
compounds and antioxidant activity (Table 3). All the sam-
ples in study presented relevant contents of phenolic com-
pounds, with values expressed as gallic acid equivalents
higher than 100mg/g of propolis. Besides, there seems to
exist a proportional relationship between the amounts of
phenolic compounds in the oil extracts and their reducing
capacity, the same happens with the radical scavenging
activity.

A final approach considered applying multivariate statis-
tical techniques to the metabolomic dataset of the Colom-
bian propolis investigated. Figure 7 shows the score scatter
plots of propolis samples and the principal components
(PC1 and PC2) calculated from the concentration of poly-
phenols and carotenoids, antioxidant activities, and volatile
biomarkers. The metabolomic and chemometric analyses

performed revealed that the propolis samples from distinct
ecological regions of Colombia present marked differences
in their chemical signatures.

4. Discussion

The propolis bands detected in samples for the 4 zones
showed to be similar in their FT-IR spectra and present var-
iations in intensity, particularly in the region between
1700 cm-1 and 1050 cm-1. In this region, the bands between
1400 cm-1 and 1700 cm-1 were assigned to aliphatic chains,
double bonds, hydroxyl, and oxygenated groups, which are
present in volatile compounds. Besides, high molecular
weight lipids and polyphenolic derivatives were also found,
revealing the richness of the chemical composition among
the matrices in study regarding their different ecosystems
of production. The propolis samples from the colder zones
2 (premontane rainforest) and 3 (high Andean forest)
shared a more similar FTIR profile, as the other propolis
samples revealed to be more discrepant in their composition
due to the vast amount of differences between the environ-
mental factors present in the Colombian production zones
analyzed. Phenols were seen due to the presence of (O-H)
bands (3200-3600 cm-1) and C-O bands (1239 cm-1), and
here, differences of the C-O band compared to the alcohols
which had a band between (1050-1200 cm-1) were seen.
The band was located in a higher wavelength.

In the NIR assays, the bands between 6000 cm-1 and
7000 cm-1 were attributed to the vibrations of the O-H and
C=O linked to organic compounds such as to alcohols, phe-
nols, ketones, aldehydes, and carboxylic acids. Additionally,
the spectra showed bands at 4000-4500 cm-1 assigned to
nitrogen, carbon, and oxygen functional groups linked
amine, hydrocarbons, alcohols, and aromatic compounds,
the most intense being the signal corresponding to the group
O-H, eventually associated to the alcohols and phenolic
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Figure 3: FTIR-ATR spectra of nonpolar extracts of Colombian propolis.
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compounds in the samples. The raw propolis samples’ bands
were less intense than the oil extracts that revealed promi-
nent bands located at 6800 cm-1 and 5300-1 because of their
richness in polyphenols and oxygenated compounds.

It is seen that the oil propolis extracts have a vast num-
ber of biomarkers with potential bioactivity; some of them
have not been found in other propolis samples yet, while
others are common biomarkers in tropical propolis. Com-

pounds such as α-bisabolol, α-pinene, linalool, and β-bisa-
bolene have been reported to exist in propolis originated
from tropical areas [37–41]. These compounds have been
found in plant species ranging from conifers to angiosperms
of different geographical origins. Compounds such as α-
bisabolol have been frequently found in propolis from
higher mountainous areas, being the principal constituent
in samples produced in tropical Andean forests and high
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Figure 4: (a) NIR spectra of Colombian propolis oil extracts: fuchsia (Z1), blue (Z2), purple (Z3), and green (Z4). (b) NIR spectra of
Colombian propolis in solid state: red (Z1), fuchsia (Z2), blue (Z3), and brown (Z4).
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Andean zones [42, 43]. It was found that α-bisabolol is pres-
ent in propolis originated from zones with a wide range of
air humidity conditions. Besides, such sesquiterpene is
found in several plant species belonging to the Myrtaceae
family present in Colombian ecosystems of the Andean
region. On the other hand, many gymnosperms and even
the plant Cuminum cyminum contain α-pinene, and plant
species such as Mentha × piperita, Origanum vulgare, and
Salvia rosmarinus have a significant fraction of linalool.

However, sesquiterpenes such as zingiberene, p-cymene,
limonene, ar-curcumin, and α-trans-bergamotene and the
monoterpene γ-terpinene have not been found in propolis
extracts from other countries [37, 44, 45]. Thus, these bioac-
tive substances allow differentiating Colombian propolis
from other tropical ones.

It is clear that the sesquiterpenes are the most common
volatile compounds in the Andean Colombian propolis.
Such findings result from being the sesquiterpenes and the
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Figure 5: Chromatograms of the propolis oil extracts from (a) Z1, (b) Z2, (c) Z3, and (d) Z4.
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sesquiterpenoids more stable than the monoterpenes, or
because those compounds have a high concentration in the
resinous biomasses produced by the plant species surround-
ing the apiary. The monoterpenes in Colombian propolis
represent less than 20% of the propolis’ total composition.
This phenomenon happens because such secondary metabo-
lites are susceptible to decomposition, polymerization, or
reorganization reactions that form other compounds with
high molecular weight [46]. Despite some common patrons,
the GC-FID and GC-MS analysis showed that the oil prop-
olis extracts present significant differences in their chemical
composition.

Propolis from tropical rainforests and premontane rain-
forests (120-280mg gallic acid/g propolis) showed phenolic
contents somewhat similar to propolis from the northern
hemisphere, which oscillate between 200 and 400mg gallic
acid/g propolis. On the other hand, Colombian propolis
extracts presented superior polyphenol amounts in respect
to samples collected in tropical production zones such as
Brazil and India, which usually contain phenolic content in
the range from 60 to 110mg gallic acid/g (or GAE/g—gallic
acid equivalents). Among other factors, the contents of phe-
nolic compounds in propolis depend on the botanical
sources that provide exudates for its production by the hive,
where high amounts of anthocyanins, flavonoids, phenolic
acids, and other derivatives are found in plant exudates
and superior amounts of those secondary metabolites are
expected to appear in propolis samples [47, 48]. The radical
activity showed to be equal or lower comparatively to that
observed in propolis produced in both subtropical and trop-
ical areas in Turkey and Brazil [49, 50].

As for the FRAP tests, almost all the Colombian propolis
have lower reducing power values (between 30 and
151μmol/g sample) in comparison to synthetic antioxidants
such as BHT, with a reducing power of 500μmol/g. Besides,
the oily propolis extracts from the zones 1 and 3 from the
Andean tropical forests exhibited lower reducing activity,
compared to propolis originated from tropical regions of
Brazil, which have shown values between 89 and 124μmol/
g [51]. However, the propolis oil extracts from the zone 2
(premontane rainforest) have twice the reductive power in
comparison to the Brazilian propolis and a higher reducing
capacity compared to synthetic samples, which can be linked
to higher concentrations of carotenoids and polyphenols,
which have an individual action as reductor agents and
which present a synergism that enhance the antioxidant
power of both metabolites ([52] [53]).

The most surprising results concerning the propolis
samples originated from the Colombian tropical rainforests
(Z1), where despite the high content of polyphenols found
(i.e., 255.67mg gallic acid/g propolis), a low reducing activity
against iron was detected. In fact, it has been reported that a
high concentration of polyphenols does not translate neces-
sarily into a high antioxidant activity of propolis extracts
[54]. On the other hand, the extracts from the premontane
rainforest, like the Z2 samples, presented a high polyphenol
concentration, also containing a vast amount of carotenoids
and terpenic compounds with high bioactivity, which trans-
lates their higher antioxidant power [55]. Besides, it can be
speculated that those samples showed a better reducing
capacity compared to other samples on natural extracts
and essential oils due to the synergism that occurs between

Table 2: Volatile constituents of propolis oil extract samples.

No. Compound GO(Ex) GO(T) % Z1 % Z2 % Z3 % Z4

1 p-Cymene 1040 1025 1:32 ± 0:39a 1:78 ± 0:23a 1:96 ± 0:48a 1:19 ± 0:02b

2 Linalool 1115 1097 0:45 ± 0:01a 1:05 ± 0:10b 2:66 ± 0:51c 5:33 ± 0:42d

3 Limonene 1044 1029 N/A N/A 1:73 ± 0:52a 0:52 ± 0:28b

4 Camphene 954 954 0:50 ± 0:08a 0:24 ± 0:03a 0:23 ± 0:03a 0:76 ± 0:12a

5 γ-Terpinene 1100 1089 0:33 ± 0:09a 0:18 ± 0:09a 0:07 ± 0:01b 0:6 ± 0:08b

6 Terpinen-4-ol 1206 1177 0:33 ± 0:02a 0:54 ± 0:09b 1:9 ± 0:10c 0:62 ± 0:11b

7 α-Zingiberene 1521 1494 12:98 ± 0:14a N/A 14:71 ± 1:23a 9:2 ± 0:58b

8 β-Bisabolene 1533 1506 8:75 ± 0:13a N/A N/A 6:55 ± 0:74a

9 Ar-curcumene 1503 1481 6:89 ± 0:19a N/A N/A N/A

10 α-Trans-bergamotene 1446 1435 5:35 ± 0:11a N/A N/A N/A

11 α-Pinene 939 939 N/A N/A N/A 21:48 ± 1:78a

12 Copaene 1742 1686 N/A N/A 21:94 ± 0:10a N/A

13 β-Acoradiane 1496 1471 N/A N/A 14:71 ± 0:53a N/A

14 Dihydroeudesmol 1637 1629 N/A N/A 11:16 ± 0:72a N/A

15 α-Cadinol 1658 1669 N/A N/A 8:41 ± 1:04a N/A

16 β-Caryophyllene 1542 1547 N/A 27:77 ± 0:67a 7:3 ± 0:87b N/A

17 γ-Cadinene 1503 1527 N/A 14:07 ± 0:96a N/A N/A

18 D-Germacrene 1493 1476 N/A 12:06 ± 0:83a N/A N/A

19 β-Elemene 1412 1397 N/A 9:87 ± 0:27a N/A N/A

20 α-Bisabolol 1699 1686 35:93 ± 0:23a 18:77 ± 0:79b N/A 5:62 ± 0:21c

N/A: did not appear. Values with similar letters do not present significant differences according to Tukey’s test (p < 0:05).
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caryophyllene and D-germacrene, having a stronger reduc-
ing effect together on ions with a higher oxidation number
[56, 57].

In turn, the loading plot (Figure 6), the variables of the
FRAP and DPPH are located in the right side of the bottom
of the graph, besides those results we see such as the vari-
ables like the presence of terpinene, bisabolene, and cam-
phene, which shows that the antioxidant activity depends
on the concentration of polyphenols and oxygenated terpe-
noids in propolis samples. It is also possible to note that
propolis with higher concentrations of carotenoids, polyphe-
nols, terpenoids, and some nonoxygenated terpenes such as
α-zingiberene presented greater antiradical capacity due to
the fact that the Z2 and the Z4 samples are located in the
same place than the antioxidant variables. This effect has
been reported in other studies where the objective was to

study the antioxidant effect of ginger [58, 59], beet [60, 61]
and other plants such as parsley, garlic, myrtle, and fennel
[62]. Such plant species and the propolis samples herein
studied are rich sources of both polyphenols and terpenic
metabolites, e.g., zingiberene, ar-curcumene, linalool,
pinene, p-cymene, and limonene. The presence and contents
of such volatiles and phenolic compounds enhance the free
radical scavenging capacity and the reduction of oxidant
substances and enzymes [63, 64].

Previous studies have shown that Colombian propolis
from the high Andean forest shows as distinctive substances
such as the bicyclic sesquiterpenes caryophyllene and ger-
macrene [43]. A synergism between these two compounds
confers them an augmented reductive potential. In this
work, it has been possible to identify new 3 nonoxygenated
terpenes, e.g., bisabolene, terpinene, and camphene, in the
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Figure 6: Proportion of different types of volatile compounds in the propolis samples.

Table 3: Antioxidant activity and total phenolic content of the propolis extracts.

Sample % inactivation (DPPH) mg gallic acid/g propolis (folin) μg/g (β-carotene) FRAP (μmol/g propolis)

Z1 62:16 ± 2:40b 255:67 ± 8:51b 6:55 ± 0:06a 30:25 ± 5:01a

Z2 75:94 ± 3:47c 280:99 ± 4:18b 9:93 ± 0:19b 571:88 ± 21:67c

Z3 76:67 ± 3:73c 120:63 ± 15:09a 9:21 ± 0:53b 35:05 ± 4:35a

Z4 33:5 ± 4:60a 124:52 ± 5:43a 5:95 ± 0:23a 151:72 ± 19:89b

N/A: did not appear. Values with similar letters do not present significant differences according to Tukey’s test (p < 0:05).
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Colombian propolis samples, which can be visualized in a
band located at 5770 cm-1 in the NIR spectra. In previous
works, it has been determined that propolis oils produced
in dry tropical regions are rich in compounds such as cadi-
nol, verbenol, 4-terpineol, and cymenol [65]. Finally, the
propolis samples originated from the Colombian humid
tropical forests showed α-bisabolol and α-trans-bergamo-
tene as candidates to biomarkers regarding the propolis pro-
duction zones, whose presence can be attributed to the
bands in the NIR spectra detected between 4000 and
4500 cm-1, being also confirmed by the chromatographic
analysis performed.

The results show that the multivariate analysis allowed
correlating the chemical profiles of the Colombian propolis
with their antioxidant activity. It was also possible to associ-
ate the bands of the NIR spectra with biomarkers of the
propolis oil extracts, showing the efficiency of the multivar-
iate analysis when correlating variables and facilitating the
discrimination of the samples [66].

It is possible to affirm that propolis from the premontane
rainforest (Z2) presents a higher concentration of oxygen-
ated bioactive compounds, an essential characteristic for
the extracts with high antioxidant activity, compared to the
remaining samples investigated. Finally, it is possible to
speculate that α-bisabolol is the most common biomarker
for Colombian propolis; 3 out of the 4 regions studied
showed high amounts of this metabolite. As a recommenda-
tion to extend this study, one could compare the propolis’
chemical profiles with those of plants surrounding the hives,
allowing to correlate the origin of the exudates as to the
donor plant species and the propolis composition.

5. Conclusions

The propolis from tropical forests, high Andean forest, and
premontane rainforest present marked differences in their
chemical profiles. It is notable for the high amounts of poly-
phenols, carotenoids, and volatile substances observed. The
findings herein shown reveal that Colombian propolis has
higher antioxidant activity than propolis produced in tropi-
cal areas, highlighting its exceptionally high scavenging rad-
ical capacity.

The metabolomic tests allowed correlating physicochem-
ical variables of the Colombian propolis with their spectro-
scopic profiles and the identification of a certain number
of specific metabolites according to the propolis’ geographi-
cal origin. Simultaneously, it was also possible to discrimi-
nate the studied samples according to their ecological
regions of production belonging with relatively similar and
constant variable environmental conditions throughout the
year. The analysis of the metabolome not only helped to deter-
mine the reason of the samples bioactivity but also allowed to
identify new biochemical markers, in this case, zingiberene, p-
cymene, limonene, ar-curcumene, α-trans-bergamotene, and
γ-terpinene. It is recommended to carry out more exhaustive
metabolomic studies in order to know the type and concentra-
tions of substances such as carotenoids, polyphenols, and fatty
acids, which can help to explain a more significant number of
bioactivity profiles in Colombian propolis.
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