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The study is aimed at determining how the quality of Antarctic krill (Euphausia superba) sauce (AkS) changed over time,
including changes in color, moisture content, acid value (AV), peroxide value (POV), thiobarbituric acid reactive substance
(TBARS), aerobic plate count, and sensory score. Quality variations and shelf life of AkS were estimated using kinetic model
and back propagation (BP) neural network model. The results showed that sensory score, moisture content, and a ∗ values of
AkS declined as storage temperature increased at 4, 25, and 37°C. In addition, the L ∗ values, b ∗ values, AV, POV, and
TBARS of AkS increased as storage duration increased, indicating that high storage temperature of the samples accelerated
quality degradation. The primary reason for AkS degradation was the oxidation of proteins and lipids. The POV, TBARS, and
total sensory evaluation rating exhibited a highly significant correlation, and therefore, POV and TBARS were selected as the
indicators for the two models. The BP neural network outperformed the kinetic model in predicting quality changes over the
whole storage period, with relative errors of less than 10%. In terms of shelf-life prediction, the BP neural network’s relative
errors were 11.76% and 13.39% in POV and TBARS, respectively. POV and TBARS had experimental shelf lengths of 119 and
142 d, respectively. Compared with the kinetic model, the BP neural network model predicted the quality changes and shelf life
of AkS with greater accuracy and stability. The findings offer fundamental insights and innovative concepts for the production
of high-value Antarctic krill products, as well as the exploitation of Antarctic krill resources.

1. Introduction

Antarctic krill (Euphausia superba) is a shrimp-like creature
found in the Antarctic Ocean [1]. Its biomass is estimated to
be 400–1550 million metric tons, which serves as the most
important animal protein resource for both marine animals
and humans [2]. Antarctic krill proteins contain all of the
essential amino acids [3]. They meet Food and Agriculture
Organization/World Health Organization human consump-
tion requirements and have a high biological value [4]. Ant-
arctic krill lipids are abundant in omega-3 polyunsaturated
fatty acids, such as eicosapentaenoic acid, docosahexaenoic
acid, phospholipids, and astaxanthin [5]. Bioactive peptides,
on the other hand, such as Ca-chelating peptides, antioxi-

dant peptides, and antihypertensive peptides from Antarctic
krill, also have been produced [6–9]. Thus, its widespread
availability and high nutritional value have the potential to
ease the scarcity of marine resources. The number of Antarc-
tic krill products on the market has increased, and they are
primarily used in aquaculture, medication, and healthcare
[7]. Although most Antarctic krill is used to make aquatic
feed, which has low economic value, humans consume
approximately 12% of the total Antarctic krill via backward
processing [8]. Therefore, the creation of high-value com-
mercial products is desperately needed. Many methodologi-
cal investigations are being conducted in order to promote
the consumption and usage of Antarctic krill as a high-
value component of human meals.
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The abundant Antarctic krill resources could be used to
produce significant quantities of Antarctic krill sauce (AkS)
[10]. AkS is a flavorful, ready-to-eat aquatic product with
high nutritional value, which outweighs the disadvantage
of inconvenient storage. Because of the abundance of sea-
food, the AkS spoils fast owing to high quantities of protein
and unsaturated fatty acids. During storage, AkS is suscepti-
ble to lipid oxidation, protein denaturation, the Maillard
reaction, and astaxanthin degradation [11–13]. These ele-
ments lead to loose texture, poor color, off-flavor develop-
ment, and rancidity, all of which have a direct influence on
shelf life. As a result, the product is susceptible to gradual
degradation during storage.

The spoilage of AkS during storage prevents Antarctic
krill resources from being used efficiently. To maintain food
safety and quality, the food sector must predict quality
changes during storage [14]. It is critical to identify the key
signs and develop a shelf-life prediction model. The Arrhe-
nius equation is a typical chemical kinetic model that can
predict the changes in food quality changes at various stor-
age temperatures [15]. Many studies on the kinetic model
based on the Arrhenius equation have been conducted to
predict the shelf life of foods such as rabbit meat [16], beef
[17], and pork sausage [18]. Most previously investigated
kinetic models have been applied to relatively simple meals.
However, owing to the complicated composition of AkS, the
quality variations of AkS during storage are diversified. The
Arrhenius equation is often applicable only to a narrow tem-
perature range [19], and the kinetic model contains certain
flaws. The prediction of AkS quality variations during stor-
age necessitates a model with greater generalization ability
and improved prediction accuracy. Back propagation (BP)
neural network model is a new food quality prediction meth-
odology [20]. BP neural network is currently widely
employed in the food industry for the categorization of food
species and quality, element content detection, and risk
management [21]. To date, single kinetic models or BP neu-
ral networks have been used to estimate the shelf life of
foods. Few studies have compared the prediction accuracy
of kinetic models with that of BP neural network models.
Fu et al. [22] used the BP neural network approach to
develop a Tricholoma matsutake prediction model to quan-
tify the association between quality indices and remaining
shelf life. Based on protein degradation, Zhu et al. [23] dis-
covered that the BP neural network has tremendous promise
in forecasting the quality of dry-cured ham. These studies
showed that utilizing a BP neural network to forecast the
quality change and shelf life of AkS is feasible. To date, single
kinetic models or BP neural networks have been used to
estimate the shelf life of foods. Few studies have compared
the prediction accuracy of the kinetic model with that of
BP neural network models. Thus, research is required to
determine which model has the best predictive performance
for AkS and to select a better model for development and
prediction.

The primary goals of this experiment were as follows: (I)
determine the color difference, water content, acid value
(AV), peroxide value (POV), thiobarbituric acid reactive
substance (TBARS), and aerobic plate count variations of

AkS held at 4, 25, and 37°C; (II) use the Arrhenius model
and the BP neural network to create a shelf-life prediction
model for AkS at various storage temperatures; and (III)
compare the prediction performance for the two models.
The study is aimed at providing concepts and fundamental
facts regarding the use of AkS in the creation of high-value
commercial products.

2. Materials and Methods

2.1. Sample Collection. The Antarctic krill was collected at
the FAO48.6 region of the Antarctic Ocean in January
2022. All the Antarctic krill samples were delivered to the
laboratory in May and stored at -80°C before use. The garlic,
millet spicy, dried pepper, cooking oil, and Jinhua ham were
purchased from the supermarket in Shanghai, China.

2.2. Preparation of AkS. About 100 g of complete raw Ant-
arctic krill without blackhead was selected and thawed. The
thawed Antarctic krill were then immersed in boiling water
for 3min and then drained at room temperature until the
water content was no more than 35%. Subsequently, the
dried Antarctic krill was placed in a sterile bag (76 × 127
mm, BKMAN, Beijing, China) at 4°C overnight to balance
the water in the Antarctic krill. The Antarctic krill with indi-
vidual sizes ranging from 3 to 5 cm were crushed in the
cooking equipment (Chigo, ZG-L74A, Guangzhou, China),
and those less than 3 cm in length were immediately com-
bined with crushed shrimp at a 3 : 5 (g/g) ratio. The Jinhua
ham was roasted for 15min before being chilled and shred-
ded. In the cooking machine, the garlic, millet spicy, and
dried pepper were smashed. A small volume of cooking oil
was heated before adding the garlic, millet spicy, and dried
pepper. After stirring for 5min, the mixture was combined
with Antarctic krill and Jinhua ham and stirred for another
10min. Seasonings were included into the mixture, which
was stirred for another 5min. Throughout the procedure,
the oil temperature was kept at less than 130°C.

2.3. Experimental Description. AkS was kept in sterilized
50mL glass bottles at 4, 25, and 37°C. Every 7 days, duplicate
sauce samples were collected to analyze color difference,
moisture content, AV, POV, TBARS level, aerobic plate
count, and sensory assessment.

2.4. Color Difference Detection. Color difference was deter-
mined as described by Kim et al. [24]. Color variations were
assessed using CIELAB color space coordinates (L ∗, a ∗,
and b ∗) measured using a CM-700d (Konica, Japan, Shang-
hai iBetter Technology Co., Ltd.) colorimeter at room
temperature.

2.5. Water Content Detection. Water content was deter-
mined using the technique developed by Rønholt et al.
[25]. Briefly, a 5 g sample was put in a porcelain crucible.
The samples were incubated at 100°C for 6 h before cooling
for 30min at room temperature in a zeroed dish. The per-
centage difference before and after water evaporation was
used to compute the water content.
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2.6. Lipid Extraction. For total lipid extraction from AkS, a
modified method by Harrison and Watts [26] was used.
Briefly, 10 g of the material was put into an Erlenmeyer flask
(As One, 200mL, Beijing, China). The materials were mixed
with 50mL petroleum ether (Sigma-Aldrich, Shanghai,
China) and left to extract for at least 12 h. The filtered extract
was then evaporated (YMD-60, YHCHEM, Shanghai,
China) (40°C, 55 rpm, 30min) to remove the petroleum
ether. The fat in the Erlenmeyer flask was collected and
stored at -18°C for one week for subsequent examination.

2.7. AV Detection. AV measurement was conducted as
described by Guo et al. [27]. Briefly, about 1 g of each fat
extract was dissolved in isopropanol/diethyl ether (Sigma-
Aldrich, Shanghai, China) solution and titrated to the phe-
nolphthalein (Sigma-Aldrich, Shanghai, China) endpoint
using 0.1mol/L potassium hydroxide solution (Sigma-
Aldrich, Shanghai, China). The AV value was expressed as
milligrams of potassium hydroxide consumed for per gram
of sample.

2.8. POV Detection. The POV was calculated using the
approach described by Cebi et al. [28], with slight modifica-
tions. In a flask, 1 g of each AkS sample was dissolved in
10mL of chloroform (Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China). The flask was filled with 15mL of
glacial acetic acid (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China) and 1mL of potassium iodide saturated
solution (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China). The flask was closed and placed in a dark area for
5min after being shaken with a hand for 1min. After adding
15mL of distilled water, the mixture was titrated against
0.01mol/L sodium thiosulphate solution (Sigma-Aldrich,
Shanghai, China) using starch solution (Aladdin, Beijing,
China) as the indicator. Under the same settings, a blank
was also titrated. The peroxide equivalent to iodine mass
fraction (g/100 g) was used to calculate the POV.

2.9. TBARS Detection. TBARS were calculated in the manner
reported by Fan et al. [29], with minor modifications. Approx-
imately 10g of AkS samples was combined with 100mL of
7.5% trichloroacetic acid stock solution (Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China) and stirred. The sample
was shaken for 30min at 50°C before being centrifuged at
5000 rpm for 10min at 4°C (Eppendorf, Centrifuge 5810R,
Germany). Following that, the filtrate was diluted to 100mL
with distilled water. The aforesaid 5mL diluent was combined
with 20mMTBA solution, and the combination was boiled on
boiling water for 10min. The sample was brought to room
temperature. Absorbance (Abs) was measured in a microplate
reader (Biotek, PowerWave XS, USA) at 532nm. The follow-
ing methods were used to get TBARS:

TBARS mg/kg =
Abs − 0 04979

1 125063
1

2.10. Aerobic Plate Count Detection. Samples (5 g) were mixed
with 45mL of sterile saline to prepare a sample homogenate.
The contents were sequentially diluted to obtain homogenates.
After resting for 30min, 100μL of each homogenate was

absorbed onto the corresponding plate containing plate count
agar medium, and the mixture was rotated to mix the con-
tents. After 48h of incubation at 37°C, the total number of col-
onies was counted. Data were recorded as colony-forming
units (CFU) and expressed as log CFU/g.

2.11. Sensory Evaluation. Ten instructors with typical taste
sensitivity and a basic sensory evaluation background evalu-
ated the AkS. The participants were taught how to assess the
samples using the sensory evaluation criteria (Table 1).

2.12. Development of Kinetic Models. Physical and chemical
interactions, as well as microbiological activities, may alter
the quality of food during storage. Most food quality changes
during preparation and storage followed zero- or first-order
reaction [30]. The zero- (Equation (2)) and first-order
(Equation (3)) kinetic models were used for the exponential
regression analysis. The kinetic model used in this experiment
was determined by the regression equation’s determination
coefficient. The shelf-life prediction model was created using
the Arrhenius equation and the kinetic model. The zero- and
first-order reaction equations are as follows:

B = B0 − kt, 2

B = B0e
kt 3

The Arrhenius equation (Equation (4)) describes the
chemical reaction [30]. The model using temperature as an
independent variable elucidates the link between the chemical
reaction rate (K) and the absolute temperature (T). Themodel
can accurately depict the rate of food deterioration. At three
different storage temperatures, Ea and the finger front factor
k0 may thus be derived from the rate constant k. The equation
is written as follows:

ln k =
−Ea
RT

+ ln k0 4

Equations (2) and (4) were converted to obtain the
formula for the shelf-life (SL, days) prediction model of AkS:

SL =
B0 − B

k0e
−Ea/RT

5

Equations (3) and (4) were also converted to obtain the
formula for the SL prediction model of AkS:

SL =
ln B/B0
k0e

−Ea/RT
, 6

where B and B0 are the levels of quality indicators at storage
time t (d) and initial value; k and k0 are reaction rate constants
and pre-exponential factor, respectively; and Ea, T, and R are
the activation energy, absolute temperature, and molar gas
constant (8.3144 JK−2/mol), respectively.

2.13. Development of BP Neural Network. To increase the BP
neural network prediction accuracy, the tansig and purelin
functions were used as activation functions at the input
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and output layers, respectively [24]. The BP neural network
accepts two inputs (temperature and storage duration) and
produces two outputs (POV and TBARS level). The number
of hidden layer neurons was set at ten using empirical for-
mulae and a trial-and-error method [31, 32]. The BP neural
network topology was tuned to type 2-10-1 to replicate the
quality fluctuations of AkS during storage at various temper-
atures. The mapminmax function was used to standardize
the input data in order to decrease data variance and
enhance the model’s convergence speed and stability of the
model. The training goal error was set to 0.00001. The learn-
ing rate was set to 0.01, and the number of training steps was
limited to 1000. Finally, the mean square error (MSE) was
utilized to assess the BP neural network’s prediction ability
of the BP neural network.

2.14. Statistical Analysis. All experimental data were col-
lected at least three times. Raw data was analyzed using
Microsoft Excel 2016 and reported as mean ± standard devi-
ation. SPSS software (version 24.0, SPSS, Chicago, IL, USA)
was used for analysis of variance, and Duncan’s multiple
range test was used to evaluate significant differences at
P < 0 05. A BP neural network model was performed using
MATLAB R2017b software.

3. Results and Discussion

3.1. Color Difference Analysis. The L ∗, a ∗, and b ∗ values
varied from 24 55 ± 0 31 to 27 72 ± 0 29, 22 51 ± 0 04 to
1 65 ± 0 05, and −13 64 ± 0 07 to −11 85 ± 0 21, respectively
(Table 2). There was no significant change in the L ∗ value
(P > 0 05) during the initial stages of storage. However, at
the three storage temperatures, the L ∗ values of AkS sam-
ples grew considerably after 70 d (P < 0 05) as the storage
period increased. Ran et al. [33] proposed that an increase
in L ∗ value is due to the denaturation of myofibrillar and
sarcoplasmic proteins, which destroys the protein structure.
Consequently, the free water content and surface light reflec-
tance of the AkS samples increased.

The a ∗ values of AkS decreased as storage duration
increased, which could be attributed to lipid oxidation and
pigment loss during storage [34, 35]. As shown in Table 2,
after 70 d of storage at 4, 25, and 37°C, the a ∗ values of
the samples decreased from 2.51 to 1.91, 1.71, and 1.65,
respectively. According to Cassens et al. [36], high storage
temperature promotes color changes. The higher the storage

temperature in this study, the faster the decrease in the
a ∗ value. In contrast, as storage time increased, so did
the b ∗ values.

The b ∗ values of the samples increased from -13.64 to
-12.30, -12.21, and -11.85 after 70d of storage at 4, 25, and
37°C, respectively, as shown in Table 2. Chelh et al. [37]
reported that the formation of a Schiff pigment (lipofuscin)
during lipid and protein oxidation increases the b ∗ value of
meat products, which might explain the results.

3.2. Moisture Content Analysis. Figure 1(a) indicates that the
moisture content of AkS reduced as storage time increased.
After 70 d of storage, the moisture content of the samples fell
from 18.8% to 6.9%, 5.9%, and 5.2% at 4, 25, and 37°C,
respectively. This reduction in moisture content might be
attributed to the oxidation of proteins in the AkS as the stor-
age duration increased. This oxidation destroys the internal
tissue structure and decreases the water binding ability of
myofibrillar protein to be reduced [38].

3.3. AV Analysis. The AV of the product represents the
degree of lipid breakdown and rancidity during storage.
Higher AV values correspond to larger quantities of free
fatty acids produced by lipid hydrolysis [39]. Antarctic krill
has an excessive amount of fat, and the AkS processing
was carried out with heat treatment, which contributed to
fat oxidation and expedited the increase in primary oxida-
tion. The initial value of AV for AkS was 0.65mg/g, as
shown in Figure 1(b). After 70 d of storage, the AV of the
sauce samples increased to 1.42mg/g at 4°C. The samples
at higher temperatures had a more rapid increase in AV
(P < 0 05) than of the sample at 4°C. After 70 d, the AV of
sauce samples at 25 and 37°C grew to 1.94 and 2.45mg/g,
respectively, which was substantially greater (P < 0 05) than
that of the sample at 4°C. Hernández Becerra et al. discovered
that shrimp experience lipid hydrolysis and oxidation during
the heat treatment procedure [40]. According to Soto-
Rodríguez et al. [41], the drying process also causes oxidation
in shrimp, which can be cytotoxic, mutagenic, and carcino-
genic. Their results of changes in acid value in shrimp through-
out processing are consistent with our findings.

3.4. POV Analysis. The principal products generated at the
start of a lipid autoxidation process are peroxides, which
represent the degree of primary lipid oxidation. The
chemical degrades into odorous volatile molecules such as

Table 1: Criteria for the sensory evaluation of AkS.

Index Criteria

Color
Slightly gray
No shine

Slightly red
Slightly shine

Bright red
Color is fresh and shiny

Aroma
None

Serious peculiar smell

Faint
Has faint seafood odor
Slightly peculiar smell

Ample
Strong seafood odor
No peculiar smell

Texture
Loose

Unevenly distributed
Slightly uniform
Slightly loose

Tight and uniform

Grade Bad (0-4) General (5-7) Good (8-10)
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alcohols, ketones, and aldehydes. As a result, POV measure-
ment can be used to assess the degree of oxidative degrada-
tion of the product [39]. As shown in Figure 1(c), the POV
of AkS at different storage temperatures rose with storage
duration, from 0.03 to 0.11 g/100 g at 4°C, 0.15 g/100 g at
25°C, and 0.16 g/100 g at 37°C. After 70 d, the samples at
4°C were considerably lower (P < 0 05) than the samples at
25 and 37°C, demonstrating that low temperature may effec-
tively suppress lipid oxidation and extend the shelf life of the
product. The faster rate of POV development at 25 and 37°C
might be attributed to the greater storage temperature, which
decreases the activation energy for free fatty acid oxidation.

3.5. TBARS Analysis. The quantity of malondialdehyde in
TBARS represents the degree of oxidative breakdown of
polyunsaturated fatty acids during lipid oxidation. TBARS

are commonly used to determine the oxidation state of
numerous meat products [42]. Malondialdehyde has an odor
and emits unpleasant fumes when TBARS levels exceed
2.0mg/kg [43]; hence, TBARS levels are helpful in evaluating
the degree of oxidation of foods. The AkS had an initial
TBARS of 0.74mg/kg, which rose to 1.18, 1.31, and
1.39mg/kg after 70 d of storage at 4, 25, and 37°C, respec-
tively. Figure 1(d) showed that the higher the temperature,
the faster the TBARS of the sauce samples increased. These
phenomena corresponded to the AV and POV because the
increased temperature might have increased the production
of free radicals and enhanced the breakdown and polymeri-
sation of hydroperoxides, resulting in the fast oxidation of
meat items in AkS samples [44]. TBARS levels in dried
shrimp increased during accelerated storage, according to
Li et al. [45].

Table 2: Changes in the color differences of AkS at different storage temperatures.

Temperature (°C) Storage time (d) L ∗ a ∗ b ∗

4°C

0 24 55 ± 0 31a 2 52 ± 0 04a −13 64 ± 0 07a

7 24 93 ± 0 06b 2 37 ± 0 03b −13 55 ± 0 04ab

14 24 92 ± 0 14b 2 33 ± 0 06b −13 48 ± 0 06b

21 25 09 ± 0 25b 2 26 ± 0 01c −13 40 ± 0 09bc

28 25 61 ± 0 14cd 2 25 ± 0 05c −13 32 ± 0 02c

35 25 47 ± 0 05c 2 23 ± 0 01cd −13 20 ± 0 07cd

42 25 90 ± 0 09d 2 18 ± 0 04d −13 18 ± 0 0d

49 27 39 ± 0 42e 2 13 ± 0 01de −12 98 ± 0 15e

56 27 37 ± 0 15e 2 09 ± 0 04ef −12 71 ± 0 05f

63 26 92 ± 0 04f 2 01 ± 0 05f −12 47 ± 0 08g

70 26 91 ± 0 09f 1 91 ± 0 02g −12 30 ± 0 03h

25°C

0 24 55 ± 0 31a 2 52 ± 0 04a −13 64 ± 0 07a

7 25 02 ± 0 09b 2 35 ± 0 02b −13 53 ± 0 02b

14 24 89 ± 0 30b 2 31 ± 0 06b −13 45 ± 0 04b

21 24 99 ± 0 14b 2 25 ± 0 04c −13 34 ± 0 03c

28 25 66 ± 0 15c 2 22 ± 0 06c −13 28 ± 0 12c

35 24 96 ± 0 03b 2 18 ± 0 03cd −13 16 ± 0 04d

42 24 78 ± 0 02ab 2 10 ± 0 04d −13 00 ± 0 03e

49 26 69 ± 0 11d 2 02 ± 0 09de −12 62 ± 0 08f

56 27 12 ± 0 06ef 1 98 ± 0 05e −12 42 ± 0 08g

63 27 37 ± 0 05e 1 81 ± 0 03f −12 33 ± 0 08g

70 27 01 ± 0 15f 1 71 ± 0 05g −12 21 ± 0 02h

37°C

0 24 55 ± 0 31a 2 52 ± 0 04a −13 64 ± 0 07a

7 24 63 ± 0 05a 2 32 ± 0 06b −13 48 ± 0 07ab

14 24 49 ± 0 11a 2 29 ± 0 01bc −13 38 ± 0 03bc

21 25 11 ± 0 14bc 2 23 ± 0 08bcd −13 31 ± 0 06bc

28 24 96 ± 0 07b 2 21 ± 0 05cd −13 24 ± 0 07cd

35 25 33 ± 0 17c 2 17 ± 0 02d −13 10 ± 0 03d

42 26 22 ± 0 19d 2 03 ± 0 07e −12 74 ± 0 08e

49 26 90 ± 0 20e 1 91 ± 0 01f −12 55 ± 0 03f

56 27 45 ± 0 20fg 1 78 ± 0 04g −12 06 ± 0 05g

63 27 22 ± 0 06f 1 72 ± 0 05gh −11 95 ± 0 19gh

70 27 72 ± 0 29g 1 65 ± 0 05h −11 85 ± 0 04h

Note: different letters in superscript following the average ± deviation in a column indicate significant differences (P < 0 05).
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3.6. Aerobic Plate Count. The aerobic plate count of the AkS
samples remained undetectable after 56 d of storage at
various temperatures, as shown in Table 3. It might be
attributed to the high temperature and commercially sterile
production environment. The highly salt- and water-
deficient environment of the AkS system may also hinder
the development of microorganisms [45]. As a result, the
microbial influence on the product was minimal. In this
study, the major causes of degradation during food storage
were protein and fat oxidation.

3.7. Sensory Evaluation. Sensory qualities are strongly associ-
ated with physicochemical parameters during storage, and
sensory attributes represent the quality changes that occur
in foods during storage [46]. A score of less than 4 indicates
that the color, texture, and scent of the AkS have deterio-
rated. The AkS was initially scarlet and shiny, with a poten-
tial and harmonious seafood flavor and a homogeneous
texture, as shown in Figure 2. The bright red AkS became
somewhat gray in the latter stages of preservation. The

texture of the AkS got looser as storage time increased.
The texture scores of the samples declined from 8.5 to 3.3
and 2.3 after 70 d of storage at 25 and 37°C, indicating sam-
ple texture degradation. Moreover, the texture scores at 25
and 37°C were considerably lower (P < 0 05) than the sample
at 4°C. The scent score also declined as the storage duration
increased. The occurrence was linked to the oxidation of
aroma-producing chemicals in the samples as storage time
increased [34]. The decreases in the scent score was quicker
when the storage temperature was higher, which is consis-
tent with the texture and color scores. Lower temperatures
reduced the deterioration of the sensory quality of the AkS
samples after storage.

3.8. Prediction Models for AkS

3.8.1. Correlation Analysis of the Indicators. The Pearson
correlation coefficients between indicators were strong at
various storage temperatures. Except for the aerobic plate
count, all indices of AkS exhibited a very significant
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Figure 1: Changes in (a) moisture content, (b) AV, (c) POV, and (d) TBARS of AkS at different temperatures during the storage time.
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association (P < 0 01). According to the findings, the oxida-
tion of lipids and proteins was the primary cause of AkS
deterioration. The correlation coefficients between POV
and overall sensory ratings were 0.951, 0.986, and 0.979 at
4, 25, and 37°C, whereas those between TBARS level and
total sensory ratings were 0.897, 0.933, and 0.923 at 4, 25,
and 37°C. The POV, TBARS level, and total sensory ratings
had a significant correlation. As a result, POV and TBARS
were used to construct a thorough model of the shelf life
of AkS during storage at 37°C.

3.8.2. Establishment of Kinetic Models Based on the POV and
TBARS Level. The Arrhenius equation has been widely uti-
lized in food research to measure the influence of tempera-
ture on the rates of various of chemical and biological
processes, as well as microbial growth and inactivation
[16]. The experimental data were fitted by swapping zero-
and first-order kinetic models. As shown in Table 4, the ∑R2

fitted to the zero-order kinetic equation during storage was
higher than the ∑R2

fitted to the first-order kinetic equation
for both the POV and TBARS level. According to these find-
ings, variations in the POV and TBARS level in AkS were
more compatible with the zero-order chemical reaction kinetic
model. Therefore, the zero-order kinetic model can replicate
the quality fluctuations of AkS.

Calculating ln k vs. 1/T using the reaction rate constants
k and storage temperature T for the three temperatures in
Table 4 yielded a linear regression equation. The pre-
exponential factor Ea for POV and TBARS level were
9452.19 kJ/mol and 11082.56 kJ/mol, respectively, as shown
in Table 4. The POV and TBARS level had activation ener-
gies k0 of 0.085 and 0.506, respectively. The R2 values of
the Arrhenius regression equations for the POV and TBARS
level at various storage temperatures were 0.985 and 0.987,
suggesting a good fit to the linear equation.

3.8.3. Establishment of BP Neural Network Based on POV
and TBARS. The experimental data on changes in the POV
and TBARS level of AkS during storage at 4, 25, and 37°C
were used to train the BP neural network, and the results
are shown in Figure 3. The MSE began to reduce and stabi-
lize as the number of training steps increased. In the second
and fifteenth phases, the POV and TBARS level achieved
ideal validation performances of 0.005. The whole set of
training, testing, and validation correlation coefficients was
all more than 0.98. The POV and TBARS level had overall
correlation values of 0.98 and 0.99, respectively. According
to the results, the created BP neural network did not exhibit

an underfitting state [47], and the optimized model and the
experimental data are well matched.

3.9. Comparison of Kinetic Model and BP Neural Network.
Table 5 shows the relative errors between the predicted
and experimental data of 310.15K generated to test the reli-
ability and accuracy of the two models. According to
Kaymak-Ertekin et al. [47], only models with relative errors
of less than 10% are acceptable. The relative errors of the
Arrhenius model based on the POV exceeded 10% at 14,
21, and 28 d, as shown in Table 5. The deviation from the
linear zero-level kinetic equation might be attributed to the
rapid oxidation of the product at the start of storage of the
sauce at 37°C. Kinetic models have been commonly utilized
to predict the shelf life of many products, including aquatic
products, fruits, and sauerkraut [46, 48, 49]. Several studies
found that the Arrhenius model may accurately reflect the
changes in quality indexes [46, 48]. When several quality
indicators, such as colors and total acid, were used to esti-
mate shelf life, the relative errors ranged from 10% to 15%,
especially at higher temperatures. These findings were com-
parable to those from our study. From 7 to 70 d, the kinetic
model predicted the TBARS level of AkS with high accuracy,
with relative errors within 10%. Table 5 reveals that the BP
neural network model had fewer relative errors than the
kinetic model. Throughout the storage time, the relative
error of the BP neural network model was less than 10%
for both the POV and the TBARS, and it was more stable.

To evaluate the dependability of the two models, the
shelf life of AkS using the two indicators were determined.
The maximum permissible levels for the samples were
0.25 g/100 g and 2mg/kg for the POV and TBARS level,
respectively. The kinetic models used for the shelf-life pre-
diction using the POV and TBARS values were produced
using the following equations.

SLPOV =
B0 − B

0 085 × exp −9452 19/RT
, 7

SLTBARS =
B0 − B

0 506 × exp −11082 56/RT
8

The experimental shelf lives of the POV and TBARS
were 119 and 142d, respectively, as shown in Table 6. The
shelf lives of AkS determined using kinetic models in POV
and TBARS were 101 and 183d, respectively. Each point at
37°C from 70 to 200 d was swapped into the trained BP neu-
ral network for shelf-life prediction at 7-day intervals. As
shown in Table 6, the relative error of the BP neural network
was lower than that of the kinetic model for each index.
Some of the high kinetic model prediction discrepancies
might be attributed to the complex material composition
of AkS and the uncertainty of lipid oxidation during storage.
It made the Arrhenius model important for accurately pre-
dicting shelf life. These findings are consistent with those
reported by Du et al. [46]. In conclusion, the BP neural net-
work outperformed the Arrhenius model in terms of predic-
tion performance during storage.

Table 3: Changes in the aerobic plate count of AkS at different
storage temperatures.

Storage time (d) 4°C (CFU/g) 25°C (CFU/g) 37°C (CFU/g)

0 ND ND ND

56 ND ND ND

63 <30 <30 <30
70 <30 <30 <30
Note: ND means not detected.
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Figure 2: Changes in the sensory value of AkS at different storage temperatures. (a)–(c) represent color, aroma, and texture, respectively.

Table 4: Kinetic model parameters for quality changes in AkS at different storage temperatures.

Indicators Temperature (°C)
Zero-order model First-order model

k R2 ∑R2 k R2 ∑R2

POV

4 0.00139 0.9621

2.9316

0.02032 0.9087

2.783725 0.00193 0.9935 0.02296 0.9663

37 0.00213 0.9760 0.01943 0.9087

Arrhenius equation ln k = −1136 9x − 2 4661

TBARS level

4 0.00408 0.8358

2.8756

0.00356 0.8115

2.883925 0.00598 0.9261 0.00493 0.9060

37 0.00673 0.9280 0.00527 0.9017

Arrhenius equation ln k = −1333 0x − 0 6806
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Figure 3: Results of the BP neural network for the training, validation, test, and all sets.
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4. Conclusions

The quality fluctuations of AkS at different storage tempera-
tures were investigated in this study. Color differences,
moisture content, acid value, peroxide value, TBARS level,
aerobic plate count, and sensory scores were among these
changes. Kinetic and BP neural network models were
created to predict the quality fluctuations and shelf life of
AkS. The predictive performances of the two models were
assessed based on the projected outcomes.

High storage temperatures hasten the deterioration of
AkS quality indices, such as a ∗ and b ∗values, AV, POV,
and TBARS levels. In 70d, the aerobic plate count did not
change substantially (P > 0 05). The major source of degra-
dation during storage was the oxidation of AkS, and the
POV and TBARS level were chosen as indicators for the
two models, and the quality indices of AkS were significantly
correlated. The POV and TBARS level experimental results
fit well with the two models. The Arrhenius model failed
to effectively forecast POV quality changes on days 14, 21,
and 28. In terms of quality change prediction, the relative
error of the BP neural network model was less than 10%.
In addition, the BP neural network model exhibited a lower
error in predicting the shelf life of AkS, which was 11.76%
for POV and 13.39% for TBARS level, respectively. Com-
pared with the Arrhenius model, the BP neural network
model demonstrated greater predicted performance and
accuracy during the whole storage period. In conclusion,
the BP neural network model can forecast the quality change
and shelf life of AkS, which is expected to be low. As a result,

further study employing hurdle technology, such as control-
ling water activity and adding antioxidants or food-grade
additives, is required to extend the shelf life of AkS.
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