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The growing popularity of soy proteins among vegans and vegetarians, owing to their high protein content and widespread
availability, has led to scientific studies on its various extraction methods mainly on ultrafiltration. This research employed
artificial neural network (ANN) and Box-Behnken design (BBD) methodologies to predict the process parameters of
ultrafiltration for the preparation of soy protein. Using BBD, the optimum process parameters of ultrafiltration were
identified via the desirability function approach. The optimized permeate flux was 11.13 litres per hour (LPH) and 85.52%
protein content in retentate. The identified ideal process parameters for ultrafiltration to achieve maximal protein retention
encompassed a 10 kDa membrane module, a transmembrane pressure of 117 kPa (17 PSI), a volume concentration ratio of
3.5, diafiltration set at 1, and a flow rate of 65% of the pump capacity, exhibiting an absolute percent error value of 2.81.
Employing these refined process parameters, the predicted value for protein retentate stood at 80.49%. The predictive
accuracy of the model achieved an impressive 99.61% for protein retention. The ANN model effectively predicted the
optimal ultrafiltration conditions, resulting in maximal protein retention and a protein content accuracy of 96.41% and
99.61%, respectively.

1. Practical Applications

Ultrafiltration process optimization for the production of
various high-quality protein concentrates and isolates using
artificial neural network can be done with high accuracy.

2. Introduction

Pressure-driven membrane separation processes, particu-
larly ultrafiltration (UF), have gained widespread adoption
for protein concentration and purification [1]. This tech-
nique emerges as a promising alternative to traditional acid
precipitation methods due to its minimal pH shock, ambient
temperature conditions, and superior membrane selectivity
during purification and fractionation [2, 3]. Efficient protein

recovery hinges upon suitable membrane modules and
operating parameters, influencing the effectiveness of UF
in producing various protein forms such as concentrates
and isolates. Aguero et al. [4] reported higher protein yield,
better protein quality, and other functional attributes after
using a membrane separation process. While UF exhibits
significant potential, membrane fouling remains a primary
concern impacting its performance, necessitating prefiltra-
tion strategies. As membrane separation methods represent
physical separation techniques, there is an anticipated surge
in their applications in the near future. A number of
researchers [5–8] have identified the scope of membrane-
based techniques, especially ultrafiltration and microfiltra-
tion for concentrating and purifying soy proteins. The rela-
tively lower quality of commercially available soy proteins
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derived from conventional methods underscores the oppor-
tunity for utilizing appropriate ultrafiltration membrane
modules to enhance their quality.

Numerous studies have explored the UF process for the
preparation of various soy protein fractions under varied
conditions [9–11]. Prior research has demonstrated the effi-
cacy of BBD in optimizing soy protein extraction [12, 13].
Similarly, ANN has emerged as a powerful tool for under-
standing complex systems due to its accuracy and computa-
tional efficiency [14, 15]. Its applications in membrane
separation processes, including microfiltration and ultrafil-
tration, have showcased predictive capabilities for flux, rejec-
tion, and separation efficiency in various domains [16–19].
In dairy processing, ANNs have been used as an efficient
method for modelling and simulating the ultrafiltration of
milk in cross-flow mode [20–22]. Park et al. [23] used
ANN for predicting the fouling behaviour of ultrafiltration
in pilot scale operations. ANN was used to model the flux
decline during the ultrafiltration of whey by Gaudio et al.
[24]. Commercially available soy proteins are prepared by
conventional acid precipitation methods. The overall quality
and functional properties of soy proteins are adversely
affected by pH shock and other processing conditions of acid
precipitation methods [25], and these lead to the scope of
using suitable ultrafiltration membrane modules for produc-
ing high-quality soy proteins. Less number of investigations
has been carried out to maintain the low molecular weight
bioactive components also with soy proteins using low
molecular weight cutoff hollow fibre ultrafiltration mem-
brane modules.

Recent studies have reported the applications of ANN
and RSM techniques as different process optimization
tools in food processing [26–28]. Despite these advance-
ments, there is limited literature on comparing the optimi-
zation of soy protein production via ultrafiltration using
ANN and BBD. This study seeks to bridge this gap by
employing both methods, thereby offering a comprehen-
sive comparison of their optimization results for soy pro-
tein ultrafiltration.

3. Materials and Methods

3.1. Extraction of Protein from Defatted Soy Flour. For isola-
tion of protein, soybean (variety JS335) was procured from
the research farm of ICAR-Central Institute of Agricultural
Engineering, Bhopal, Madhya Pradesh (77024′10″E longi-
tude and 23018′35″N latitude), and defatting was done
using Sox plus (Soxtron, Tulin-6 number) apparatus [29].
The subsequent extraction of protein from the defatted soy
flour took place in purified water at pH 9 (adjusted with
0.2M NaOH) and at 50°C with a solid/liquid ratio 1/10,
using a mechanical stirrer (Jyoti, model JSI-555, India) for
one and half hours. Solid-liquid separation was performed
in a centrifuge (Remi instruments-model K-70, India) at
10,000 g for 20 minutes at 15°C temperature. The resultant
supernatant was then utilized as the feed for the subsequent
ultrafiltration process following the methodology outlined
by John and Sinha [10].

3.2. Production of Soy Protein Isolate Using Ultrafiltration.
Following the centrifugation process, the supernatant,
constituting the protein extract, underwent prefiltration to
eliminate particles prone to causing fouling in the subse-
quent ultrafiltration phase. A Millipore microfiltration unit
employing a cellulose nitrate membrane, 47mm in diameter
with a 5.0μ pore size, was utilized for this purpose. The
ultrafiltration study was conducted utilizing a laboratory-
scale GE Healthcare hollow fibre module, boasting a surface
area of 650 cm2. The schematic depiction of the soy protein
preparation process from defatted soy flour (DSF) via ultra-
filtration is delineated in Figure 1. Each trial utilized 75 g of
defatted soy flour (DSF), resulting in the acquisition of
550ml of extract. Postcentrifugation, the supernatant was
subjected to prefiltration prior to its entry into the ultrafiltra-
tion unit. Approximately 375ml of retentate, the component
of interest, was collected from the process, while the perme-
ate was discarded, indicating successful concentration of the
target compounds.

3.2.1. Permeate Flux. Flux is defined as the permeate flow per
unit membrane area in unit time. It is expressed in litres per
square meter of membrane surface area per hour.

Permeate flux, J LMH = permeate flow, Qp
surface area of membrane, A

1

Surface area of hollow fibre cartridge is 650 cm2.

3.2.2. Protein Rejection. It is the percentage of protein
removed from the feed stream by the membrane. If one is
interested in the retentate part, it is the percentage of protein
retained in the retentate part.

Rejection, R = 1 − protein concentration in permeate
protein concentration in retentate 2

3.3. Estimation of Protein. Protein estimation was done as
per the method described by Ranganna [30]. About 0.5 g of
the sample was weighed into the digestion tubes, and two
heaped spatulas of digestion were added to each tube.
10ml of concentrated H2SO4 was also added, and samples
digested until the contents of the tubes were sea green in col-
our. The digested sample was transferred into the distillation
chamber, and 20ml of 4% boric acid was kept in the col-
lecting conical flask. The boric acid turned from reddish
pink to green as it collected the ammonia in the distillation
chamber. Then, the green-coloured boric acid was titrated
against 0.1N HCl until its colour turned to pink. Then, the
protein content of soy proteins was calculated using the
given formula:

Percent protein content = VA −VB × 0 1 × 14 001 × 6 25
W

,

3

where VA is the sample titre value, VB is the blank titre value,
and W is the sample weight.
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3.4. Optimization of Process Parameters of Ultrafiltration for
the Preparation of Soy Protein. Membrane modules, trans-
membrane pressure, diafiltration and volume concentration
ratio, and flow rate were selected as the independent vari-
ables, and permeate flux, protein content of retentate, and
protein retention percentage were the dependent parame-
ters (response variables). Designing of experiments, fitting
mathematical models, and optimization of variables were
done with Design-Expert software 7.0.0 (trial version) using
response surface methodology (BBD). Optimized process
parameters were used for producing soy proteins by ultrafil-
tration in present study. Table 1 outlines the independent
parameters alongside the corresponding levels designated
for the experiments and subsequent analysis.

Responses can be represented as a function of indepen-
dent variables.

Responses, Y = f X1, X2, X3, X4, X5 4

Experimental data were analyzed to optimize the process
parameters with respect to the responses. Regression analy-
sis and analysis of variance were conducted to fit the model
and to know the statistical significance of the selected model
terms. Model adequacy was determined using model analy-
sis, R2 value, and lack of fit test. Model is adequate if the lack
of fit is nonsignificant. R2 value represents the ratio of the
explained variation to total variation [31], and if R2 is more
than 80 percent, the model can be considered for further
analysis [32]. Furthermore, the model’s performance was
assessed using various statistics including root mean square
error (RMSE), sum of squares error (SSE), percent error,
and chi-square.

Numerical optimization technique was used to optimize
the responses simultaneously. The desired goal for each
dependent and independent parameter was chosen. All inde-
pendent parameters were kept in range, and permeate flux
and protein retention percentage was maximized. Optimum
solution was obtained based on the combined desirability
value. Dependent variables or responses were assigned equal
importance. Response surfaces were generated in Design-
Expert software to understand the effect of independent
parameters on dependent parameters or responses.

For conducting the experiments, 75 grams of defatted
soy flour (average particle size 330μ) was taken and 550ml
extract was obtained after centrifugation. Total solid content
of extract was recorded as 7 ± 1%.

3.5. ANN Modelling. The BBD and the responses were used
to develop the ANN model using Python 3.9.4. The basic
ANN structure is given in Figure 2.

ANN was run to fit the regression model. Dependent
variables were designated as the target variable, while inde-
pendent variables served as predictors. Column abbrevia-
tions and details were provided under data description to
understand the dataset better. The dataset was divided into
training and testing sets with an 80 : 20 ratio to facilitate
model training and testing. Essential libraries like “Tensor-
Flow” and “Keras” were installed to implement deep learn-
ing ANNs in Python. Tuning of the ANN model involved
searching for the best combination for optimal model per-
formance. The “Sequential” module from the Keras library
was used to create a sequence of ANN layers. The “Dense”
module in Keras helped define each layer, specifying the
number of neurons, initialization technique, weights in the
network, and activation functions for each neuron. Different
model architectures were experimented with by varying the
number of layers and neurons to identify the best structure.
Among the combinations tested, the model demonstrated
superior performance with two hidden layers, each contain-
ing five neurons (Figure 2). Hence, two hidden layers with
five neurons each and one-input and one-output layers were
used for training. The “Dense” module of Keras was used to
define each layer where the specification of the number of
neurons, the technique to be used to initialize the weights
in the network and the activation function for each neuron
in that layer, etc. were defined. Specifications like batch size
(5, 10, 15, and 20) and epochs (up to 50) were employed
during model training. Hyperparameters were fine-tuned
using a grid search approach to determine the most effective
configuration. The model was trained using the best set of

Protein extraction
pH : 9
50°C

Extract

Supernatant

Centrifuge
10,000 g
10 min

Prefltration
microfltration

5.0 � size

Ultrafltration

DSF 1:10 Water

Figure 1: Preparation of soy protein from defatted soy flour by
ultrafiltration.

Table 1: Independent parameters and levels chosen.

Independent parameters
Levels

-1 0 1

Ultrafiltration membrane modules (kDa) (X1) 1 10 30

Transmembrane pressure (kPa) (X2) 83 117 152

Volume concentration ratio (VCR) (X3) 3 3.5 4

Diafiltration (batch) (X4) 0 1 2

Flow rate (% pump capacity) (X5) 55 65 75
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parameters identified earlier, and predictions were made on
the testing data. Absolute percentage error was calculated for
each row in the testing data. Mean absolute percentage error
(MAPE) was computed as the average of all rows, and the
ANN model accuracy was derived as 100-MAPE. The
model’s performance was assessed using various statistics
including root mean square error (RMSE), sum of squares
error (SSE), percent error, and chi-square.

4. Results and Discussion

4.1. Preparation of Soy Proteins Using Ultrafiltration. Table 2
showcases the proximate analysis results for both the
defatted soy flour (DSF) and the soy protein obtained
through ultrafiltration. DSF displayed a protein content of
56%, whereas the soy protein derived via ultrafiltration
exhibited substantially higher protein content, recording at
88%. Moisture and fat content displayed comparable values
between the DSF and the ultrafiltered soy protein. However,
a notable disparity was observed in the ash content, with the
ultrafiltered soy protein demonstrating a lower ash content
in comparison to DSF. This divergence in ash content could
potentially be attributed to the characteristics of the ultrafil-
tration process. Smaller molecular weight of ash particles
relative to the selective retention by the ultrafiltration mem-
brane led to a reduced concentration of ash in the resulting
soy protein. This outcome aligns with findings from John
and Sinha’s research [10] and highlights a distinct alteration
in the proximate composition, notably the increased protein
content and a reduction in ash content, through the ultrafil-
tration process from DSF to soy protein.

4.2. Optimization of Process Parameters of Ultrafiltration
Process Using Response Surface Methodology. Ultrafiltration
process parameters were optimized using response surface
methodology (Box-Behnken design). With 46 experiments,
including 6 central point runs, the study sought to compre-
hend how independent parameters influenced dependent
variables within the ultrafiltration process. Quadratic model
was used to fit the data. The statistical significance of each
model term was checked by regression analysis and analysis
of variance (ANOVA). Table 3 depicts the regression coeffi-
cients and significance of each variable on membrane pro-

cess parameters. All the quadratic models were observed to
be significant at p < 0 006, and lack of fit was nonsignificant.

4.2.1. Prediction of Permeate Flux by Box-Behnken Method.
The model has shown significant overall significance at an
extremely low p value (p < 0 0001), indicating its reliability.
Among the model terms, certain factors like ultrafiltration
membrane modules, transmembrane pressure, interaction
effect of ultrafiltration membrane modules, and flow rate,
as well as square terms of ultrafiltration membrane modules,
transmembrane pressure, and flow rate, have emerged as
statistically significant. The “lack of fit F value” of 2.17
implies that the lack of fit is not significantly relative to the
pure error. This suggests that the model accurately predicts
the responses. The “Pred R-squared” of 0.8100, which
denotes the predictive ability of the model, aligns reasonably
well with the “Adj R-squared” of 0.9093. This indicates that
a substantial portion of the variability in the data can be
explained by the model. The coefficient of variation (C.V)
calculated at 15.53% suggests a slightly lower precision due
to a higher C.V value compared to the ideal threshold of
10%. A decrease in the root mean square error (RMSE),
sum of squared errors (SSE), percent error, and χ2 values
(Table 4) indicates the enhanced appropriateness of employ-
ing this model for the prediction of permeate flux.

The ultrafiltration membrane module exhibits a signifi-
cant effect on permeate flux (p < 0 0001). Initially, there
was an increase in permeate flux with the rise in membrane
module, followed by a subsequent decline. Optimal perme-
ate flux is achieved within the range of 15.50 to 22.75 kDa
(Figure 3). The highest permeate flux was observed with
the 10 kDa membrane, surpassing both 1 kDa and 30 kDa
membranes. This finding parallels Sagu et al.’s [33] study
on banana juice ultrafiltration using hollow fibre membranes.
They observed minimal pore blocking in the 10 kDa mem-
brane, resulting in higher flux compared to higher cutoff
membranes (27 and 44 kDa membranes). Transmembrane
pressure also significantly impacts permeate flux (p < 0 0031),
showcasing an increase in flux with rising pressure. In con-
trast, volume concentration ratio and flow rate did not show
a significant impact on permeate flux. However, diafiltration
exhibited a significant effect (p < 0 0819) on permeate flux.
The interaction effect between the ultrafiltration membrane
module and feed flow rate significantly affects permeate flux
at a 5% level (p < 0 0494). These findings resonate with
prior studies. Blonigen’s [34] research on protein mixture
ultrafiltration with a 30 kDa membrane revealed a similar
curvature in permeate flux concerning transmembrane

Hidden layers Output layerInput layer

Figure 2: Basic ANN structure.

Table 2: Proximate analysis of the defatted soy flour (DSF) and the
ultrafiltered soy protein.

Parameters DSF Ultrafiltered soy protein

Protein (%) 56 88 ± 0 3
Moisture content (% w.b.) 5 5 ± 0 1 5 7 ± 0 03
Fat (%) 0 45 ± 0 01 0 4 ± 0 02
Ash (%) 6 77 ± 0 11 4 4 ± 0 03
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pressure. The initial flux increase was attributed to enhanced
cross-flow rate with pressure. Understanding these influ-
ences on permeate flux is pivotal for optimizing the ultrafil-
tration process, especially in selecting membrane modules
and adjusting operating parameters to achieve desirable
flux rates while minimizing pore blocking and flux decline
over time.

4.2.2. Prediction of Protein in Retentate by Box-Behnken
Method. In the analysis of the experimental data, the model
F value of 18.01, indicating significance at p < 0 0001, estab-
lishes the overall significance of the model. Notably, values
of “Prob > F” less than 0.0500 underscore the significance
of model terms. Specifically, among these, the main effect
of ultrafiltration membrane modules, including their square
terms, as well as diafiltration and flow rate, emerged as note-
worthy contributors within the model. Furthermore, the
assessment of the “lack of fit F value” at 3.10 indicates its
lack of significance concerning pure error, signifying the
model’s adequacy in fitting the observed data. The compara-
bility between the “Pred R-squared” (0.7732) and the “Adj
R-squared” (0.8832) suggests a reasonable agreement in
predicting outcomes and a robust fit of the model. Addition-
ally, the other performance parameters (Table 4) contribute
to elucidating the model’s aptness in predicting protein
levels in the retentate. Interestingly, concerning membrane

Table 3: Regression coefficients and significance of each variable on membrane process parameters.

Source
Permeate flux Protein content of retentate Protein retention percentage

Coefficient p value Coefficient p value Coefficient p value

Intercept 11.67 <0.0001 86.71 <0.0001 0.99 0.0060

X1 2.63 <0.0001 5.50 <0.0001 0.00 <0.0001
X2 0.95 0.0031 0.51 0.3124 0.00 0.4862

X3 -0.39 0.1874 -0.50 0.3209 0.00 0.4045

X4 0.52 0.0819 -0.75 0.1434 0.00 0.4996

X5 -0.30 0.3078 0.32 0.5282 0.00 0.4361

X1X2 -0.71 0.1540 0.26 0.7593 0.00 0.8387

X1X3 -0.13 0.7949 0.04 0.9635 0.00 0.5930

X1X4 -0.16 0.7376 -0.43 0.6076 0.00 0.2977

X1X5 -1.00 0.0494 -0.37 0.6623 0.00 0.8812

X2X3 -0.08 0.8761 -0.97 0.2792 0.00 0.4267

X2X4 -0.35 0.4982 0.31 0.7281 0.00 0.4009

X2X5 0.45 0.3881 -0.25 0.7795 0.00 0.9465

X3X4 0.53 0.3078 -1.07 0.2337 0.00 0.4465

X3X5 -0.42 0.4202 -0.27 0.7580 0.00 0.5952

X4X5 0.27 0.6009 -1.14 0.2053 0.00 0.3912

X1
2 -8.17 <0.0001 -11.27 <0.0001 0.00 0.0030

X2
2 -0.79 0.0303 0.16 0.7836 0.00 0.2221

X3
2 -0.25 0.4690 0.26 0.6651 0.00 0.0362

X4
2 -0.67 0.0648 -1.93 0.0032 0.00 0.0012

X5
2 -0.75 0.0387 -1.75 0.0068 0.00 0.2946

R2 0.95 0.94 0.70

Adj R2 0.91 0.88 0.46

F value 23.56 18.01 2.93

C.V (%) 15.53 2.21 0.33

LOF 2.17 NS 3.1 NS 0.2 NS

X1: ultrafiltration membrane module; X2: transmembrane pressure; X3: volume concentration ratio; X4: diafiltration; X5: flow rate.

Table 4: Performance criteria used for BBD modelling.

Response
variable

RMSE SSE
Percent
error

Chi-square
(χ2)

Absolute
average
deviation

Permeate flux 1.15 1.31 7.9 0.96 0.74

Protein in
retentate

3.88 0.64 0.75 0.99 0.43

Protein retention 0.0034 0.08 0.24 0.99 0.22
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module size (kDa), a trend was observed wherein an initial
increase in the retentate’s protein content was followed by
a subsequent decrease. However, this change was not solely
linear, implying a nuanced relationship between module size
and protein content. Moreover, the examination of interac-
tion effects among independent parameters revealed their
nonsignificant impact on the retentate’s protein content,
suggesting that their combined influence did not signifi-
cantly alter the protein content outcomes.

4.2.3. Prediction of Protein Retention by Box-Behnken
Method. The model F value of 2.93 demonstrates signifi-
cance at p < 0 0060, affirming the overall significance of the
model. Ultrafiltration membrane modules, their square
terms, volume concentration ratio, and diafiltration emerged
as pivotal model terms at a significance level of p < 0 0500,
underscoring their substantive impact within the model.
The “lack of fit F value” at 0.20 indicates its lack of signif-
icance concerning pure error, validating the model’s
suitability in accurately representing the observed data.
Furthermore, the coefficient of variation (C.V) below ten
percent reflects the experiments’ precision, ensuring reliable
and consistent results. The values of RMSE, SSE, absolute
average deviation, etc. (Table 4), further underscore the
appropriateness of this model in predicting protein reten-
tion through ultrafiltration membrane. There observed an
inverse relationship between protein retention and ultrafil-
tration membrane module size (Figure 4). Remarkably, the
highest protein retention was attained using a membrane
module with a lower molecular weight cutoff. Similar
observations align with prior research. For instance, Vijaya-
santhi et al. [35] examined protein recovery from coconut
milk whey using ultrafiltration, noting 83% (w/w) protein
retention with a 300 kDa membrane and 86-90% (w/w)
retention with membranes at 5 and 50 kDa molecular

weight cutoffs. Similarly, Machado et al. [36] explored
ultrafiltration (10 and 30 kDa) for protease separation and
purification, highlighting superior purification with smaller
MWCO membranes. The interaction effects among inde-
pendent variables did not significantly influence protein
retention, suggesting that their combined impact did not
markedly alter the observed protein retention outcomes.

4.2.4. Optimization of Process Parameters. The polynomial
model derived through response surface methodology under-
went validation via three trials conducted at the numerically
optimized point, maximizing desirability. The optimal ultra-
filtration process parameters, determined using the desirabil-
ity function approach with a desirability score of 0.767, were
as follows: membrane module size: 13.38 kDa; transmem-
brane pressure: 117 kPa (17 PSI); volume concentration ratio:
3.6; diafiltration: 1; and flow rate: 63.04% of pump capacity.
At these optimized conditions, the resulting performance
indicators were as follows: permeate flux: 11.13 LPH; protein
content in retentate: 85.52%; and protein retention: 98.99%.
The identified parameters and their respective values show-
case an enhanced performance, maximizing permeate flux
while maintaining high protein content in the retentate and
achieving substantial protein retention levels.

4.3. ANN Modelling

4.3.1. Prediction of Permeate Flux by ANN. In the experi-
ment, the ANN model was developed to predict the target
variable “permeate flux” using the “predictors” UMM
(ultrafiltration membrane module), TMP (transmembrane
pressure), VCR (volume concentration ratio), diafiltration,
and FR (flow rate). Initially, data from the BBD parame-
ters, including the response variable permeate flux, were
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Figure 4: Contour plot representing the effect of ultrafiltration
membrane module and volume concentration ratio on protein
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imported into the model development environment. To eval-
uate the model, the dataset underwent a split into training
and testing sets. Subsequently, multiple configurations with
different numbers of hidden layers and neurons were
explored and tested to identify the optimal ANN model.
The determination of the best combination of epochs and
batch size involved a grid search approach, and a graphical
representation was created to pinpoint the most suitable
parameters (Figure 5).

However, despite these efforts, the performance of the
developed ANN regression model in predicting permeates
flux remained suboptimal. The accuracy of the model was
noted to be only 39 percent, reflecting a significant discrep-
ancy between predicted and actual values. Additionally,
other performance metrics utilized to assess the efficiency
of the ANN model (Table 5) did not align favourably, fur-
ther suggesting inadequacy in using this particular ANN
model for predicting permeate flux accurately. This outcome
suggests that the current ANN architecture or parameter
configuration might not sufficiently capture the complex
relationships between the predictors and the target variable
permeate flux.

4.3.2. Prediction of Protein in Retentate by ANN. An ANN
model was employed to predict the “protein in retentate.”
Figure 6 displays the batch size-epoch vs. score graph corre-
lating with the prediction of protein in retentate. The model
was trained using the combination of epoch and batch size
values that corresponded to the highest peak value on the
graph.

Upon training the ANN model, its accuracy was assessed
and found to be 96.41 percent, indicating a high degree of
alignment between predicted and actual values. The maxi-
mum absolute percentage error was 9.8 percent, with vari-
ability in absolute percentage error (APE) values ranging
from 1.7 to 9.8 percent. Additionally, other metrics such as
sum of squared errors (SSE) and root mean square error
(RMSE) were calculated and obtained as 15.06 and 9.8 per-
cent, respectively (Table 5). These metrics collectively sug-
gest the suitability and effectiveness of the ANN model in

accurately predicting the protein content in the retentate.
Furthermore, the optimization process identified the ultrafil-
tration parameters associated with achieving the maximum
protein content in the retentate as follows: membrane
module: 10 kDa; transmembrane pressure: 117 kPa (17
PSI); volume concentration ratio: 3.5; diafiltration: 1; and
flow rate: 65% of pump capacity. This optimized parameter
configuration yielded an absolute percent error value of
2.81. Consequently, with these optimized process parame-
ters, the predicted value of protein content in the retentate
was calculated to be 80.49. These findings underscore the
capability of the ANN model to accurately predict the pro-
tein content in the retentate and highlight the identified
optimal parameters for maximizing protein retention during
ultrafiltration processes.

4.3.3. Prediction of Protein Retention by ANN. An ANN
model was employed to predict “protein retention” using
batch size and epoch configurations, identified from the
graph (Figure 7). The model was trained using these optimal
values, subsequently tested on a separate testing dataset. The
accuracy of the model was determined to be 99.61 percent,
indicating an exceptional alignment between predicted and
actual protein retention values. The maximum absolute per-
centage error was noted at 0.74 percent, with APE values
varying between 0.07 and 0.74 percent across different pre-
dictions. Additional performance metrics, as outlined in
Table 5, further corroborate the efficacy of the ANN model
for predicting protein retention through ultrafiltration.
Notably, the root mean square error (RMSE) and sum of
squared error (SSE) values approaching zero signify a close
fit between the observed and predicted values, emphasizing
the model’s accuracy and reliability in predicting protein
retention [37].

Moreover, the optimized ultrafiltration parameters asso-
ciated with maximizing protein retention were identified as
follows: membrane module: 10 kDa; transmembrane pres-
sure: 117 kPa (17 PSI); volume concentration ratio: 3.5; dia-
filtration: 1; and flow rate: 65% of pump capacity. These
optimized process parameters exhibited an absolute percent
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Figure 5: Batch size-epoch vs. score graph corresponds to permeate flux.

7Journal of Food Processing and Preservation



5–5
0

20

40

60

80

5–10 5–50 10–5 10–10 10–50 15–5
Parameters

Sc
or
e

15–10 15–50 20–5 20–10 20–50

Score
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Table 5: Performance criteria used for ANN modelling.

Response variable RMSE SSE Percent error Chi-square (χ2) Absolute average deviation

Permeate flux 15.45 238.81 37.71 1 34 × 10−7 12.20

Protein in retentate 3.88 15.06 4.18 0.9 2.88

Protein retention 0.0034 1.15 x 10-5 0.34 1 0.005

Table 6: Comparison of the predicted optimum process parameters of ultrafiltration.

Ultrafiltration process parameters RSM (BBD) ANN

Membrane module 13.38 kDa 10 kDa

Transmembrane pressure 117 kPa 117 kPa

Volume concentration ratio 3.6 3.5

Diafiltration 1 1

Flow rate 63.04% of pump capacity 65% of pump capacity

Predicted values of response variable and accuracy

Permeate flux 11.13 LPH (desirability 0.767) 39% accuracy

Protein in retentate 85.52% (desirability 0.767) 80.49 (96.41% accuracy)

Protein retention 98.99% (desirability 0.767) 99% (99.61% accuracy)
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error value of 0.07. Consequently, using these parameters,
the predicted value of protein retention was estimated to
be 99 percent. These findings underscore the robustness of
the ANN model in accurately predicting protein retention
and highlight the identified optimal parameters for maxi-
mizing protein retention in ultrafiltration processes.

4.4. Comparison of Optimized Values from RSM and ANN.
The RMSE, SSE, percent error, χ2, and absolute average
deviation values for both the response surface methodology
(RSM) using Box-Behnken design (BBD) and artificial neu-
ral network (ANN) models highlight their suitability in pre-
dicting ultrafiltration process parameters for soy protein
preparation. In Cheok et al.'s study in 2012[38], they utilized
both RSM and ANN to optimize phenolic compound
extraction from Garcinia hull. Their findings favoured
ANN as a superior modelling technique for nonlinear data,
especially based on performance parameters such as average
absolute deviation. Table 6 compares the predicted optimal
process parameter values for ultrafiltration, aiming to attain
desired response values. This table showcases a comparative
analysis between the predictions made by RSM and ANN
methodologies.

In Lin et al.’s [39] study, they conducted a comparison
between response surface methodology (RSM) employing
Box-Behnken design (BBD) and artificial neural network
(ANN) models to optimize the ultrafiltration process aimed
at removing nickel ions from aqueous solutions. Their find-
ings affirmed the suitability of both tools in predicting ultra-
filtration process parameters. Interestingly, the ANN model
exhibited higher prediction accuracy compared to RSM.
This aligns with observations made by Chakraborty et al.
in 2014 [40], where they similarly noted that neural models
effectively handled the nonlinear behaviour inherent in the
ultrafiltration process.

5. Conclusion

Optimization of the ultrafiltration process for soy protein
preparation was carried out using both response surface
methodology (Box-Behnken design) and artificial neural
network (ANN) techniques. For RSM, a quadratic model
was utilized to optimize the ultrafiltration process parame-
ters. The generated polynomial model from the response
surface methodology underwent validation at the numeri-
cally optimized point, achieving maximum desirability. The
resulting optimum process parameters for ultrafiltration
were obtained through the desirability function approach,
yielding a desirability score of 0.767. However, the ANN
regression model faced challenges in accurately identifying
the best combinations of predictors to optimize the permeate
flux. Despite this limitation, the ANN model demonstrated
efficacy in predicting the optimal process conditions for
ultrafiltration to maximize both the protein content in the
retentate and protein retention. Notably, the ANN model
achieved an accuracy of 96.41 percent for predicting the opti-
mal conditions to maximize protein content in the retentate
and 99.61 percent accuracy for predicting the conditions
maximizing protein retention.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Code Availability. The source code will be made available on
request.
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