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Moisture content (MC) plays a crucial role in evaluating the quality of tea processing. However, the current automated production
line for green tea heavily relies on manual methods to determineMC, which leads to low productivity and inadequate automation.
Therefore, there is an urgent need for a fast, accurate, and convenient MC detection method. In this study, near-infrared
spectroscopy (NIRS) data were collected from seven stages of green tea processing and preprocessed using various techniques,
such as Savitzky-Golay (SG) and detrend (DT), to reduce spectral noise. Subsequently, feature variables of the preprocessed
spectral data were selected using full-band principal component analysis (PCA) and competitive adaptive reweighted sampling
(CARS). Afterwards, prediction models for MC of green tea were developed using partial least squares regression (PLSR) and
back-propagation neural network (BPNN). To address the convergence speed and local optima issues of BPNN, the study
proposes an adaptive probabilistic genetic algorithm (AGA) to optimize the initial weights and thresholds of BPNN, including
single and double-hidden layers, respectively. The results demonstrate that the double-hidden SG-DT-PCA-AGA-BPNN model
outperforms the single-hidden layer model, achieving a high correlation coefficient (RP) of 0.994 and a low root mean square
error (RMSEP) of 1.01%. This study highlights the effectiveness of increasing the number of hidden layers and using AGA to
optimize the initial thresholds and weights of BPNN in improving the prediction accuracy. Furthermore, it provides a new
approach to implement MC detection technology in green tea processing.

1. Introduction

Tea is a globally beloved beverage, particularly green tea,
which is most popular in China, and its processing quality
greatly affects its nutritional and market value [1, 2]. Mois-
ture content (MC) serves as a vital indicator of tea processing
quality, with each processing step requiring precise MC
levels [3–5]. This is because MC determines the machine
control parameters, such as baking temperature, baking
time, and machine speed, which in turn determine the proc-
essed green tea’s quality. Currently, the automated process-
ing production line for green tea can only measure MC by
heating drying equipment for about an hour, which is
time-consuming, laborious, and costly, and can damage the
green tea. Furthermore, it requires manual involvement,

leading to nonautomatic control parameters on the produc-
tion line [6]. In addition, it is worth noting that control
parameters may vary for different types of tea, including
one bud and one leaf, one bud and two leaves, and one
bud and many leaves. This variability can lead to increased
management costs and reduced production efficiency [7].
To make the automated processing production line for green
tea more intelligent, there is an urgent need to establish a
fast and accurate method to detect MC of green tea.

Near-infrared spectroscopy (NIRS) is an indirect analytical
technique that possesses multiple advantages, such as rapidity,
convenience, nondestructiveness, and cost-effectiveness [8, 9].
It has been extensively applied in diverse domains, such as
agricultural product analysis, food and beverage industry,
and petroleum product analysis, demonstrating promising
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outcomes and significant potential for further advancements
[10–12]. For instance, Ding et al. utilized NIRS and a particle
swarm algorithm to optimize support vector machine (SVM),
achieving a tea quality grade classification method with an
impressive classification accuracy of 99.17% [13]. Chen et al.
employed the combination of Back Propagation (BP) and
AdaBoost with the synergy interval partial least square
(Si-PLS) method to detect taste-related components in black
tea [14]. Meanwhile, Shen et al. developed an SNV-PCA-
ENN model using micro-NIR spectroscopy and the Elman
Neural Network (ENN) for real-time moisture detection in
black tea leaves. The results exhibited a favorable correlation
coefficient of 0.99314 and a residual prediction bias of
11.8108, demonstrating excellent performance [15]. These
experimental findings collectively validate the feasibility of
utilizing NIRS for moisture content detection in tea leaves.

The prediction of water content using NIRS entails
addressing the challenge of noise and interference from spe-
cific physical factors. This process can be divided into three
steps: (1) implementing pretreatment methods to eliminate
noise, (2) employing characteristic variable selection and
spectral dimensionality reduction algorithms to eliminate
redundant data and retain spectral information associated
with water content, and (3) establishing a quantitative
analysis model to establish the relationship between the spec-
trum and water content. To achieve this, various pretreatment
methods including standard normal variables transformation
(SNV), multiple scattering corrections (MSC), Savitzky-
Golay (SG), and detrend (DT) are employed [16]. SNV and
MSC are aimed at reducing the impact of inhomogeneous
scattering on particle surfaces, while SG effectively eliminates
high-frequency noise and DT primarily addresses baseline
drift in the diffuse reflectance spectrum. These methods are
commonly utilized for spectral preprocessing. In this study,
principal component analysis (PCA) and competitive adaptive
reweighted sampling (CARS) are implemented as dimension-
ality reduction and feature variable selection algorithms [17].
These methods have demonstrated excellent performance in
near-infrared spectroscopy detection, as they effectively retain
the essential spectral features while reducing data dimension-
ality. Nonlinear regression using back-propagation neural
network (BPNN) has been widely applied in various fields
and has achieved remarkable results. In this study, BPNN is
selected as the model for water content prediction, while linear
regression using partial least squares regression (PLSR) is
employed as a comparative method. This selection strategy
enables a comprehensive assessment of the performance
differences between the prediction models.

BPNN, a multilayer feedforward neural network that uti-
lizes back-propagation error for training, has the capability
to approximate any nonlinear continuous function with just
three layers, demonstrating its exceptional self-learning and
error correction abilities [18, 19]. However, despite these
advantages, previous research has identified limitations of
BPNN. For example, the grid structure of BPNN lacks
unified and comprehensive theoretical guidance, which can
result in slow convergence, the possibility of local optimal
solutions, and high sensitivity to initial weights and thresh-
olds [20, 21].

To address the issue of BPNN falling into local optimal
points, many studies have incorporated genetic algorithms
(GA) to optimize the initial weights and thresholds of
BPNN. Aishwarya and Babu proposed a hybrid BPNN-GA
model and extensively tested it on various datasets, includ-
ing L&T stock market data, air quality data, surface rough-
ness, and concrete strength data. The results demonstrated
that the GA-BPNN model outperformed the traditional
BPNN model in terms of prediction accuracy [22]. Similarly,
Cui et al. utilized GA to optimize the parameters of the BP
neural network model, enhancing the convergence speed
and achieving global optimization. The results showed that
the GA-BPNN improved the prediction accuracy of BPNN,
with an average absolute error of 0.05009, for predicting
the silicon content of iron in actual production [23]. Despite
existing studies that have investigated the combination of
genetic algorithms (GA) with BPNN, little research has
focused on GA-based optimization of BPNN specifically
for moisture content (MC) prediction in green tea process-
ing. While the single-hidden-layer BPNN (1d-BPNN) is
widely used in near-infrared spectroscopy (NIRS) for MC
prediction and has exhibited promising results, the multi-
hidden-layer BPNN has demonstrated superior capabilities
in feature extraction and generalization. Based on these
observations, our study is aimed at evaluating the impact
of different numbers of hidden layers on prediction perfor-
mance by developing both single-hidden-layer and double-
hidden layer BPNN (2d-BPNN) models. The initial weights
and thresholds of the BPNN models are optimized using a
GA. Additionally, we incorporate PCA and CARS to con-
struct multiple BPNN models for modeling and analysis,
with the objective of identifying the optimal model for MC
prediction. The outcomes of our study will contribute to
the optimization of BPNN and its precise detection of water
content in green tea processing, providing valuable insights
for future research endeavors in this field.

In this paper, we propose a method to optimize the
BPNN for predicting moisture content in green tea. Our
approach effectively eliminates noise in the spectral data
and eliminates redundant information using feature variable
and wavelength algorithms, resulting in reduced training
time and difficulty. To enhance the fitting ability of the
BPNN, we increase the number of hidden layers, and the
weights and thresholds of the BPNN are optimized using
an adaptive genetic algorithm (AGA) to improve training
accuracy. Incorporating the feature variables and wavelength
algorithm further reduces model complexity and enhances
the prediction accuracy of the optimized BPNN model.
The results of our study confirm the feasibility and accuracy
of the AGA-optimized BPNN for predicting moisture con-
tent in green tea.

2. Materials and Methods

2.1. Sample Preparation. The experiment was conducted in
July 2021 at Hunan Xiangfeng Tea Co. On July 14th, at
10 am, fresh green tea was randomly selected from the tea
base in Jinjing Town, Changsha County, Hunan Province.
Approximately 10 kg of green tea was collected. The
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collected tea consisted of both one bud and one leaf, as well
as one bud and two leaves. Each of these tea samples had a
spreading leaf thickness of about 4 cm. The experiment took
place in an environment with a room temperature of
approximately 22°C and a relative humidity of around
65%. The green tea processing steps involved in the experi-
ment are depicted in Figure 1.

For the tedding process, the tea leaves were evenly
spread out in a cool and ventilated environment for 7 hours.
The deenzyming process was conducted using a 6CST-70
drum killing machine (Changsha Xiangfeng Intelligent
Equipment Co., Ltd.) with a drum speed of 24 r/min and a
temperature of 340°C/320°C/300°C for 5 minutes. Cooling
and airing were accomplished using a fan set at a rotation
speed of 28 r/min. The rolling process was performed in a
6CR-55 rolling machine (Changsha Xiangfeng Tea Machin-
ery Manufacturing Co., Ltd.) for 30 minutes. The first-step
drying and second-step drying processes were carried out
using a 6CHBZ-20 tea machine (Changsha Xiangfeng Tea
Machinery Manufacturing Co., Ltd.). The temperature was
set at 120°C and 95°C, respectively, with the leaf thickness
being 1~ 2 cm for the first step and 1 cm for the second step.
The duration for both steps was 25 and 30 minutes,
respectively.

In this study, a miniature fiber optic spectrometer
(ATP8600, AOPTECS, Xiamen, China) was utilized to col-
lect spectra of processed green tea. The spectrometer had a
spectral range of 920 to 1692 nm, a spectral resolution of
3 nm, and a wavelength accuracy of ±1nm, providing a total
of 256 bands. To minimize errors in spectral acquisition,
approximately 50 g of the sample was placed on a standard
whiteboard measuring 80 × 80mm which had a diffuse
reflectance of over 98% and had naturally cooled to room
temperature. The light source (HL2000-HP-FHSA, Ocean
Optics, Inc., USA), positioned 30 cm above the whiteboard,
had an output power of 7W and a lamp life of 1500 h. The
acquisition device was positioned 40 cm above the white-
board at a 45-degree angle.

Before starting the experiment, the light source was
allowed to warm up for around 5 minutes. The spectrometer
was turned on and allowed to warm up for 30 minutes to
reach a stable state, minimizing any baseline drift interfer-
ence. Each sample was collected three times, and the average
value was considered as the raw light intensity spectrum of
the sample. To minimize background signal impact, the
whiteboard and dark current signals were collected at
30-minute intervals during the testing procedure. Finally,
the raw spectrum was transformed into a reflectivity spec-
trum of diffuse reflectance using

R = I2 − I1
I0 − I1

, 1

R is the diffuse reflectance reflectivity spectrum, I0 repre-
sents the initial intensity of the reflected light, while I1 and I2
correspond to the intensities of the reflected light from the
dark current signals and the whiteboard, respectively.

To establish a model for detecting moisture content in
green tea processing, a total of 462 spectral data were col-
lected. These data consisted of 84 spectra for the fresh leaf
process, 84 spectra for the tedding process, 71 samples for
the deenzyming process, 59 samples for the cooling and
breezing process, 68 samples for the rolling process, 53 sam-
ples for the first-step drying process, and 53 samples for the
second-step drying process. The flow of spectral acquisition
and the model building process are illustrated in Figure 2.

2.2. Measurement of Standard Moisture Content of Samples.
The moisture content of each sample was determined
according to the national standard GB5009.3-2016, which
entails sequential spectral collection. Weighing of the green
tea samples was performed using a XYSCALE analytical
electronic weighing balance (Lucky Electronic Equipment
Co., Changzhou, China). The samples were placed in a baking
tray and heated at 120°C for two hours in a BOWELL incuba-
tor (Bowei Instrument Equipment Co., Ltd., Dongguan,
China). After cooling to room temperature, the samples were
weighed, and their moisture content was calculated using

MC =
M2 −M1

M0
× 100%, 2

whereMC represents the moisture content of the samples.M0
refers to the mass of the green tea sample, M1 represents the
total mass of the sample and the baking dish after heating,
and M2 denotes the total mass of the sample and the baking
dish before heating. The data regarding the moisture content
of green tea samples during the seven processing steps is pre-
sented in Table 1.

2.3. NIR Data Preprocessing. To mitigate potential errors
arising from spectral acquisition and reduce the impact of
physical properties and background information of the sam-
ples, a comprehensive set of seven preprocessing techniques
was applied, encompassing MSC, SNV, SG, DT, MSC-DT,
SNV-DT, and SG-DT. These methodologies were imple-
mented to diminish the noise’s influence on both feature
variable selection and model prediction.

To ascertain the most suitable preprocessing approach
for augmenting model accuracy, an evaluation and compar-
ison of PLSR and BPNN models were conducted.

2.4. Method for Selecting Characteristic Wavelengths and
Characteristic Variables. The spectral bands analyzed in this
study spanned from 920 to 1690 nm, with a bandwidth of
770 nm. However, many of these bands are characterized
as irrelevant and redundant, which introduces complexity
in the identification of essential model features and leads
to decreased prediction accuracy and instability. To address
this issue, researchers commonly employ feature band selec-
tion algorithms, including random frog hopping, siPLS,
CARS, and SPA, to identify a subset of bands of substantial
importance. Additionally, feature variable selection algo-
rithms such as PCA, LDA, and ICA are utilized to transform
the original bands into a reduced number of new feature
bands [24–26]. In this study, classical algorithms PCA and
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CARS were employed to minimize superfluous information
within the spectral data.

PCA, a dimensionality reduction method, simplifies the
data structure by projecting it from a high-dimensional
space to a low-dimensional space through orthogonal trans-
formation [27]. It analyzes and transforms a potentially cor-
related set of variables into a linearly uncorrelated set known
as principal components, which capture maximum variance

and minimum error. PCA subsequently reconstructs the
original data to extract characteristic wavelengths from the
spectra, significantly reducing the number of variables while
retaining most of the relevant information.

In contrast, CARS introduces a novel spectral feature
screening algorithm that treats each set of spectral bands
independently and employs adaptive reweighted sampling
[28]. The algorithm utilizes a partial least squares (PLS)

Fresh leaves Tedding

Rolling

Package

First-step drying

Second-step drying

Cooling and breezing

De-enzyming

Figure 1: Steps of green tea processing.
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Moisture content
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Spectrograph Spectrum collection Spectrum preprocessing

Results analysis
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Green tea samples

Drying oven

Dimensionality reduction and
feature variable selection

Figure 2: Flow of spectral acquisition and model building process.
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linear model as the fitness function and employs cross-
validation for optimization. By selecting the subset yielding
the highest accuracy for the regression model and excluding
variables with significant errors, the algorithm ensures the
identification of an optimal subset. Through N Monte Carlo
samplings, N subsets are generated, and N root mean
squared errors of cross-validation (RMSECV) are calculated
accordingly. The algorithm determines the subset of bands
with the smallest RMSECV, considering the variables within
this subset as the optimal set.

2.5. Partial Least Squares Regression. Partial least squares
regression (PLSR) is a statistical technique extensively uti-
lized in multiple regression analysis to facilitate simulta-
neous modeling. It simplifies the structure of data and
investigates the correlation between two sets of variables,
thus making it a suitable approach for analyzing multivariate
data [29]. PLSR is based on a similar principle as principal
component analysis (PCA), wherein it transforms the original
independent variables (X) and dependent variables (Y) into
respective sets of principal components U and V . This trans-
formation enables the evaluation of the relationship between
X and U , as well as Y and V , using the correlation principle.
By integrating multiple linear regression methods, PLSR
enables the examination of the association between X and V ,
thereby facilitating the analysis of the relationship between X
and Y . PLSR is commonly employed in the prediction of
highly correlated datasets, such as near-infrared (NIR) data,
particularly in situations involving limited sample sizes.

2.6. Back-Propagation Neural Network. The back-propagation
neural network (BPNN) is a commonly employed multilayer
feedforward neural network architecture that leverages error
backpropagation [30, 31]. This architecture is particularly
renowned for its outstanding capability to handle nonlinear
fitting, rendering it highly suitable for diverse prediction and
regression tasks. A typical BPNN structure encompasses an
input layer, multiple hidden layers, and an output layer, as
visually depicted in Figure 3.

Previous studies have highlighted that several factors can
impact the prediction accuracy of BPNN, such as random
initial weights and thresholds, network structure, activation
function, optimizer, and learning rate. Among these factors,
the number of hidden layers and the number of nodes in the
hidden layers play a crucial role in determining the model’s
prediction capability [32]. To address this, the study explores
both single-hidden layer and double-hidden layer BPNN

architectures. For the single-hidden layer architecture, a range
of nodes from 8 to 40 is traversed to identify the number of
nodes that yield the lowest validation set root mean squared
error of cross-validation (RMSECV). The results are presented
in Figure 4, where the optimal number of nodes for the single-
hidden layer is determined. Regarding the grid structure of the
BPNN with a double-hidden layer, a trial and error method is
employed to ascertain the number of nodes for each hidden
layer. Ultimately, it is determined that hidden layer 1 contains
32 nodes, while hidden layer 2 contains 8 nodes.

The hyperparameters of the BPNN used in this study are
presented in Table 2. As the performance of the BPNN can
be sensitive to the initial weights and thresholds, resulting
in a degree of instability in the model’s predictions, an
algorithmic generation approach (AGA) is introduced to
enhance and optimize the performance of the BPNN.

2.7. Adaptive Genetic Algorithm (AGA). The genetic algorithm
(GA), originally proposed by John Holland, represents a
robust technique for optimizing intricate systems by simulat-
ing the natural evolutionary process [33]. GA can search for
the global optimal solution and avoid local optimal points, as
it maintains a diverse population of solutions and employs
selection, crossover, and mutation operations that introduce
randomness and diversity into the search process. This allows
GA to explore a wide range of potential solutions across the
search space, increasing the likelihood of finding the global
optimal solution. In the GA, the parameter to be optimized
is represented as an individual in the population, and a fitness
function is established to assess the individual’s quality. The
high-fitness parents are selected to undergo selection, cross-
over, and mutation operations, while the low-fitness individ-
uals are eliminated from the population. These operations
lead to an improvement in the overall fitness of the popula-
tion, with the individual possessing the highest fitness eventu-
ally considered as the final optimal solution.

In the standard GA, fixed probability values are assigned
to the crossover and mutation operators. However, deter-
mining the optimal values for these probabilities can be
challenging. A low probability value can result in a slow
convergence rate as the population’s average fitness gradu-
ally increases during the early stages of evolution. On the
other hand, a high probability value can lead to the loss of
beneficial genes from highly fit individuals, causing the
population’s average fitness to fluctuate and hindering the
discovery of the optimal solution [34].

Table 1: Information on the moisture content of green tea samples during the seven processing steps.

Processing step Range (%) Average (%) Standard deviation (%) Number of samples

Fresh leaves 74.11∼ 78.74 75.94 0.75 84

Tedding 65.03∼ 72.69 68.26 0.53 84

Deenzyming 48.43∼ 54.69 50.42 0.90 71

Cooling and breezing 44.98∼ 50.43 46.71 0.63 59

Rolling 46.86∼ 52.13 48.36 0.81 68

First-step drying 31.13∼ 35.67 32.94 0.47 53

Second-step drying 5.17∼ 10.94 7.28 0.34 43
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To overcome the challenges mentioned earlier, this study
proposes an adaptive genetic algorithm (AGA). In AGA, indi-
viduals with fitness levels below the population average are
assigned a larger fixed probability, enhancing their genes and

improving fitness. Conversely, individuals with fitness levels
exceeding the population average have their probability values
for the crossover and mutation operators dynamically
adjusted based on their fitness rank in the population and

Input layer

Output layer

Hidden layers

Figure 3: The basic network architecture of BPNN.
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the number of iterations. The dynamic adjustment of the
probabilities is aimed at increasing the likelihood of transmit-
ting high-quality genes to the offspring, accelerating conver-
gence, and enhancing the population’s global search
capability. Additionally, moderate mutation probabilities can
facilitate the emergence of superior individuals in the popula-
tion, thereby improving the algorithm’s global search abilities.

The probabilities of the crossover and mutation opera-
tors in AGA can be represented using

EX = f avg =
f1 + f2+⋯+f M

M
,

DX = f 21 + f 22+⋯+f 2M
M

− f 2avg,

∂ = DX
EX , EX > 0,

γ = fmax − f
fmax − f avg

,

Pc =
k1

1 + ek2/∂ × γ + k3, f ≥ f avg

k4, f < f avg

,

Pm =
k5

1 + ek6/∂ × γ + k7, f ≥ f avg

k8, f < f avg

3

The equations mentioned above involve key variables
and constants used in the AGA. These variables include M,
which represents the number of individuals in the popula-
tion; Pc, indicating the crossover probability for individuals;
Pm, denoting the variance probability related to individuals;
EX and f avg, representing the mean fitness of the current

population; DX , representing the variance of the population
fitness; ∂, used as the coefficient of variation to assess the
population’s dispersion; f , indicating the fitness of an indi-
vidual; fmax, representing the maximum fitness value in the

current population; and k1, k2, k3, k4, k5, k6, k7, and k8, all
predetermined constants.

From an algorithmic perspective, larger γ values are
assigned to individuals with lower fitness, while smaller γ
values are assigned to those with higher fitness. Additionally,
the population dispersion coefficient, denoted as ∂, plays a
pivotal role in determining the evolutionary stage of the
population. To illustrate this, consider the formula for Pc,
if two individuals with equal γ values belong to different
populations, the population in the early stages of evolution
will exhibit higher DX and lower EX. Consequently, a higher
value of ∂ is allocated to the population during the initial
iterations, resulting in a larger Pc and a more rapid popula-
tion evolution. Conversely, for populations in the later stages
of evolution, Pc becomes smaller, allowing the retention of
more high-fitness individuals and increasing the probability
of discovering the global optimal solution. The same
principle applies to Pm. The adaptive probability algorithm
is designed to accelerate the early evolution stage of GA
and, in the later stage, decrease the probability of crossover
and mutation, thereby facilitating the emergence of individ-
uals with higher fitness in the population. AGA improves the
convergence rate of GA and enhances its global search
capability.

By implementing adaptive probability adjustment, AGA
demonstrates the capability to attain quicker convergence
and yield improved algorithmic solutions [35, 36]. Presently,
parameter selection for GA continues to depend on manual
empirical adjustments, necessitating tailoring to the particu-
lars of individual problems. In this research, following sev-
eral experimental iterations, the parameters for both GA
and AGA were finalized, as presented in Table 3. The proce-
dure for employing AGA to optimize the weights and
thresholds of BPNN is elucidated in Figure 5.

2.8. Model Establishment and Performance Evaluation. The
statistical information for the moisture content of the sam-
ple is presented in Table 4. A reliable sampling method for
constructing the calibration set is essential to enhance the
model’s generalization ability. In this study, the SPXY algo-
rithm is employed to partition the validation set and predic-
tion set in a 4 : 1 ratio. The validation set comprises 370
spectra, while the prediction set consists of 92 spectra. The
moisture content of all green tea samples ranged from
5.17% to 78.74%.

The development of green tea moisture content predic-
tion models utilized PLSR and BPNN algorithms for the
full-band spectra, as well as spectra after PCA dimensional-
ity reduction and CARS feature selection. To evaluate the
models’ performance, the cross-validation correlation coeffi-
cient (RCV) and root mean square error of cross-validation
(RMSECV) were employed for the validation set, while the
cross-validation correlation coefficient (RP) and root mean
square error of cross-validation (RMSEP) were used for the
prediction set. A high RCV and RP, along with a low
RMSECV and RMSEP, indicate superior predictive ability
and accuracy of the model. Moreover, when the values of
RMSECV and RMSEP are close, the model exhibits a stable

Table 2: Hyperparameter setting for single-hidden layer and
double-hidden layer BPNN.

Parameter type 1d-BPNN 2d-BPNN

Learning rate 0.1 0.01

Number of input nodes 256 or 15 or 42 256 or 15 or 42

Number of hidden layers 1 2

Number of nodes in hidden
layer 1

15 32

Number of nodes in hidden
layer 2

None 8

Number of output nodes 1 1

Activation function Sigmoid Sigmoid

Optimizer Adam Adam

Momentum 0.937 0.937

Epoch 7000 10000
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proficiency in predicting the target variable [37]. The assess-
ment parameters are defined as follows:

RCV = 1 − ∑nc
i=1 yci − ŷci

2

∑nc
i=1 yci − yc

2 ,

RP = 1 −
∑

np
i=1 ypi − ŷpi

2

∑
np
i=1 ypi − yp

2 ,

RMSECV = 1
nc

〠
nc

i=1
ŷci − yci

2,

RMSEP = 1
np

〠
np

i=1
ŷpi − ypi

2
, 4

where nc and np represent the number of samples in the
calibration and prediction set, respectively; ŷci and yci are
the predicted and reference MC values of the ith sample
in calibration set, respectively; ŷpi and ypi are the predicted
and reference MC values of the ith sample in prediction
set, respectively; yci and ypi are the mean MC reference
value of samples in the calibration and prediction set,
respectively.

GA algorithm section
Start Start

BPNN section

Initialize a population

Calculate the fitness of each individual

Calculate the error of forward training

Output and simulation of learning results

Error back propagation to update weights and thresholds

Optimized weights and thresholds

 Select individuals with high fitness 

 Select the highest fitness individual and decode it into parameters

Genetic manipulations (selection, crossover, mutation)

N N

Y Y

End End

Whether the termination
conditions are met

Whether the termination
conditions are met

Encode the weights and thresholds of
the BPNN into an individual

Determination of network topology and
reconstruction of BPNN

Initialize the weights and thresholds of
BPNN

Figure 5: The process of using AGA to optimize the weights and thresholds of BPNN.

Table 4: Information of water content of green tea samples.

Subsets Range (%) Average (%) Standard deviation (%) Number of samples

Calibration set 5.17∼ 78.74 51.87 9.61 370

Prediction set 5.87∼ 78.43 50.04 9.07 92

Table 3: Hyperparameter settings for GA and AGA.

Parameter type GA AGA

Number of generations 20 20

Population size 50 50

Crossover probability 0.5 f > f avg for [0.2,0.5], f < f avg for 0.7

Mutation probability 0.1 f > f avg for [0.01,0.1], f < f avg for 0.2
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All data processing and model building were performed
on MATLAB R2021a (MathWorks, Natick, MA, USA) and
PyCharm 2020.1.2 (JetBrains, USA) under Windows 10.

3. Results and Discussion

3.1. Spectral Features and Preprocessing. The spectrum con-
sists of various absorption peaks associated with hydrogen
functional groups (-SH, -CH, -HO, -NH, etc.) and their
combination frequencies. The position and intensity of these
absorption peaks have a significant impact on the NIRS
reflectance rate, which varies depending on different func-
tional groups. Figure 6 illustrates the raw spectra, prepro-
cessed spectra, and average spectra for each stage of all
samples. The average spectra demonstrate that the diffuse
reflectance spectrum gradually increases as the water content
of green tea decreases. Notably, the troughs observed around
1200nm and 1450nm can be attributed to the OH bond,
which is the primary characteristic group of water [37]. The
trough at 1450nm is caused by the stretching vibration of
the first-order frequency doubling of the OH group in water,
while the trough at 1200nm is due to the second-order fre-
quency doubling of the CH group in protein and the com-
bined frequency absorption of the OH molecule in water.

During the second-step drying process, the spectra
exhibit a significant decrease from 1000nm to 1200 nm, pos-
sibly resulting from the reduction in water content in green
tea leaves, an increase in the content of tea polyphenols and
caffeine, and an increase in the CH and NH bonds, leading
to decreased reflectance. Since spectra are subject to noise
such as high-frequency noise, baseline drift, and hyperspec-
tral overlap, preprocessing methods are employed to
mitigate the impact of noise and enhance the predictive per-
formance and stability of the model. In this study, PLSR and
1d-BPNN are applied to each preprocessed spectrum, and
the optimal preprocessing method is selected to minimize
the influence of noise on the model’s performance in NIR.

Table 5 summarizes the results of the PLSR and 1d-BPNN
models using different spectral pretreatment methods. The
correlation coefficient RP and root mean square error of pre-
diction (RMSEP) for the prediction set were calculated for
each model. For the PLSR model, using the original spectral
data yielded an RP value of 0.959 and an RMSEP of 2.53.
The model’s performance improved after applying the DT
and SG-DT pretreatment methods compared to the original
spectra. Similarly, for the 1d-BPNN model utilizing the origi-
nal spectral data, an RP value of 0.960 and an RMSEP of 2.47
were obtained. The model’s performance improved after
applying the DT, SNV-DT, MSC-DT, and SG-DT pretreat-
ment methods compared to the original spectra. Among the
different pretreatment methods, both the PLSR and 1d-
BPNN models showed that the DT and SG-DT methods out-
performed the original spectra. Moreover, the SG-DT method
demonstrated superiority in both models. This indicates that
the SG-DT method effectively reduces baseline drift caused
by high-frequency noise and background noise, leading to
improved model accuracy. Therefore, in this study, the SG-
DTmethod is employed as the spectral preprocessing method.

3.2. Feature Variable Selection. The current study employed
PCA and CARS methods to select feature bands from the
full range of NIR spectra, which initially consisted of 256
wavelengths. This process is aimed at establishing a reliable
model for predicting green tea moisture content. Specifically,
PCA was utilized to extract hidden feature information and
reduce the spectral data from 256 dimensions to 15 dimen-
sions. These 15 principal components (PCs) accounted for
99.87% of the total variance observed in the NIR spectra.

In Figure 7, the PCA results of the seven steps involved in
green tea processing are presented and analyzed. Figure 7(a)
displays a plot of the first two principal components, namely,
PC1 and PC2, which explain 74.68% and 21.00% of the total
variance of the NIR spectra, respectively. Notably, differences
were observed between samples from the second drying step
and other steps, while some correlations were detected among
samples from different steps. Particularly, substantial overlap
was observed between samples from the fresh leaf and tedding
steps. To address this overlap, additional principal compo-
nents were extracted to construct the model.

To determine the final number of principal components
for PCA, Figure 7(b) illustrates the explained variance and
cumulative explained variance of the first 15 principal com-
ponents. The explained variance contribution of the 15 prin-
cipal components was approximately 0.00447%, while the
cumulative explained variance reached 99.88631%. These
results indicate that the first 15 principal components cap-
ture a significant portion of the effective information con-
tained within the spectra, thus enabling their use as the
final set of principal components for PCA.

The CARS (competitive adaptive reweighted sampling)
method was used for feature wavelength selection, as shown
in Figure 8. A 10-fold cross-validation process was
employed, with the minimum root mean square error of
cross-validation (RMSECV) as the target, utilizing 20 poten-
tial optimal variables and conducting 100 iterations.

Analysis of Figures 8(a)–8(c) reveals that the number of
selected wavelength bands decreases as the number of iterations
increases. Simultaneously, the RMSECV initially decreases and
then starts to increase. From iterations 1 to 31, the RMSECV
value exhibits a continuous decrease, indicating that the elimi-
nated variables during the selection process have little or no sig-
nificant relationship with the moisture content of green tea.
After reaching iteration 32, the RMSECV value reaches its min-
imum with 42 feature variables, indicating the selection of an
optimal subset of spectral variables. Subsequently, from itera-
tions 33 to 100, the RMSECV value continues to increase.

The final feature wavelength bands selected after 32 iter-
ations of CARS are 932, 940, 952, 975, 1019, 1037, 1071,
1077, 1093, 1096, 1109, 1127, 1145, 1166, 1188, 1191, 1202,
1208, 1216, 1269, 1271, 1284, 1295, 1300, 1310, 1313, 1315,
1379, 1392, 1437, 1451, 1462, 1499, 1502, 1513, 1522, 1525,
1550, 1592, 1637, 1640, and 1693 nm.

4. Results and Discussion of Different
Prediction Models

Table 6 presents the prediction results of full-band NIR
spectra (920∼ 1690 nm) using PLSR, 1d-BPNN, and 2d-
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Figure 6: Continued.
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Figure 6: The raw reflectivity spectra, pretreatment, and average spectra of each process for all samples: (a) none pretreatment; (b) MSC
pretreatment; (c) SNV pretreatment; (d) SG pretreatment; (e) DT pretreatment; (f) MSC-DT pretreatment; (g) SNV-DT pretreatment;
(h) SG-DT pretreatment; (i) average of spectra for seven processing steps.

Table 5: The results of PLSR and 1d-BPNN model building with original spectra and different preprocessed spectra.

Model Pretreatment
Calibration model Predictive model

RCV RMSECV RP RMSEP

PLSR

None 0.959 2.36 0.959 2.53

MSC 0.961 2.35 0.949 2.83

SNV 0.956 2.45 0.957 2.60

SG 0.961 2.30 0.959 2.53

DT 0.966 2.15 0.961 2.47

MSC-DT 0.961 2.33 0.958 2.58

SNV + DT 0.962 2.31 0.958 2.56

SG-DT 0.963 2.25 0.962 2.43

1d-BPNN

None 0.961 2.34 0.960 2.47

MSC 0.951 2.63 0.957 2.60

SNV 0.951 2.65 0.954 2.75

SG 0.958 2.42 0.959 2.51

DT 0.967 2.15 0.965 2.31

MSC-DT 0.974 1.83 0.961 2.43

SNV + DT 0.976 1.79 0.965 2.27

SG-DT 0.977 1.77 0.966 2.26
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Figure 7: PCA results for seven steps in green tea processing: (a) score plot of PC1 against PC2 and (b) explained variance rates and
cumulative explained variance rates of the first 15 PCs.
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Figure 8: CARS characteristic wavelength selection process. (a) Changes in the number of waveband variables. (b) Variation of RMSECV.
(c) Path of variable regression coefficients.

Table 6: Prediction results of different models after PCA and CARS.

Model
Calibration model Predictive model

RCV RMSECV (%) RP RMSEP (%)

PCA-PLSR 0.967 2.13 0.965 2.30

PCA-1d-BPNN 0.988 1.32 0.985 1.53

PCA-2d-BPNN 0.990 1.22 0.986 1.46

CARS-PLSR 0.962 2.30 0.961 2.48

CARS-1d-BPNN 0.971 1.99 0.970 2.16

CARS-2d-BPNN 0.983 1.53 0.982 1.70

Table 7: Results of the AGA-BPNN model optimized by combining PCA and CARS.

Model
Calibration model Predictive model

RCV RMSECV (%) RP RMSEP (%)

AGA-1d-BPNN 0.982 1.58 0.981 1.71

AGA-2d-BPNN 0.992 1.06 0.986 1.51

PCA-AGA-1d-BPNN 0.993 0.95 0.990 1.23

PCA-AGA-2d-BPNN 0.995 0.81 0.994 1.01

CARS-AGA-1d-BPNN 0.977 1.75 0.974 2.02

CARS-AGA-2d-BPNN 0.989 1.25 0.984 1.56
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BPNN. The PLSR model performed less effectively com-
pared to the 1d-BPNN and 2d-BPNN models, indicating
the presence of a significant nonlinear relationship
between the full-band spectra and water content. BPNN,
known for its strong nonlinear fitting ability, can better
capture the spectral data patterns. The improved perfor-
mance of 2d-BPNN over 1d-BPNN can be attributed to
the increased fitting ability achieved through the addition
of hidden layers. The 2d-BPNN model achieved an RCV
value of 0.984 and an RP value of 0.977, with an RMSEP
of 1.83%. The slightly lower RP value may be due to the
presence of redundant data in the spectral data, which
makes model training more challenging and can impact
its ability to identify patterns between water content and
spectra.

In this study, PCA and CARS were used for dimension-
ality reduction and feature band selection to remove irrele-
vant and redundant spectral data, and PLSR, 1d-BPNN,

and 2d-BPNN models were developed for predicting the
green tea’s moisture content. The prediction results of these
models using PCA and CARS are presented in Table 7. PCA
successfully reduced the number of feature variables to
5.86% of the original full-band spectrum, leading to
improved prediction accuracy for the PLSR, 1d-BPNN, and
2d-BPNN models. It is important to note that the PCA-2d-
BPNN model achieved a high RP value of 0.986. On the
other hand, CARS reduced the number of feature variables
to 16% of the original full-band spectrum. While the
prediction accuracy of the CARS-PLSR model slightly
decreased, the performance of the CARS-1d-BPNN and
CARS-2d-BPNN models improved. The CARS-2d-BPNN
model achieved an RP value of 0.982 and an RMSEP of
1.70%. Based on these results, it can be concluded that
utilizing PCA and CARS for removing irrelevant and
redundant spectral data improves the prediction accuracy
of the models.
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Figure 9: Population’s best MSE plots of GA and AGA-optimized 1d-BPNN or 2d-BPNN. (a) 1d-BPNN. (b) 2d-BPNN.
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Figure 9 compares the mean squared error (MSE) plots
of 1d-BPNN and 2d-BPNN models optimized using genetic
algorithm (GA) and adaptive genetic algorithm (AGA). The
MSE values for the GA-optimized 1d-BPNN and 2d-BPNN
models decrease from 0.331 to 0.301 and from 0.237 to
0.191, respectively, within 50 generations. Similarly, the
MSE values for the AGA-optimized 1d-BPNN and 2d-
BPNN models decrease from 0.343 to 0.235 and from
0.251 to 0.163, respectively. The results indicate that AGA
exhibits better global search ability than GA, leading to
improved optimization efficiency of the initial network
weights.

Figure 10 illustrates the comparison between the predicted
and true values of the three 1d-BPNN models: standard 1d-
BPNN, GA-1d-BPNN, and AGA-1d-BPNN. The error

distribution for each model ranges from negative percentages
to positive percentages. AGA-optimized 1d-BPNN shows
greater stability compared to the other two models (1d-BPNN
and GA-optimized 1d-BPNN). Figure 11 shows the compari-
son between the predicted and true values of the three
2d-BPNN models: standard 2d-BPNN, GA-2d-BPNN, and
AGA-2d-BPNN. The error distribution for each model also
ranges from negative percentages to positive percentages.
AGA-2d-BPNN exhibits smaller average error and greater sta-
bility compared to 2d-BPNN andGA-2d-BPNN. These results
demonstrate that optimizing the initial weights and thresholds
of the BPNNmodels helps prevent them from getting trapped
in local optimal solutions. The use of adaptive probabilistic
genetic strategy in AGA further improves the prediction accu-
racy and generalization performance of the BPNN models.
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Figure 10: Comparative results of three 1d-BPNNmodels for water content prediction. (a) Comparison of the predicted and actual values of
the three 1d-BPNN models. (b) Comparison of water content error of three 1d-BPNN models.
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Based on the above conclusions, it can be inferred that
the dimensionality reduction and feature variable algorithms
used in this study effectively remove redundant information
from the spectrum and reduce the data dimensionality. The
AGA optimization technique enhances the global search
capability of the BPNN model by optimizing its initial
weights and thresholds, thereby avoiding local extreme
points and improving prediction accuracy. By combining
these methods, the study successfully leveraged the strengths
of both techniques to enhance the prediction performance of
the BPNN model.

Table 7 presents an overview of the model’s perfor-
mance. Both the PCA-AGA-1d-BPNN and PCA-AGA-
2d-BPNN models achieve high RCV values and RP values
exceeding 0.99. Notably, the PCA-AGA-2d-BPNN model

demonstrates the best performance. It achieves an RCV
value of 0.995 and an RMSECV value of 0.81% for the cal-
ibration set. For the prediction set, it achieves an RP value
of 0.994 and an RMSEP value of 1.01%.

The prediction results and errors of the PCA-AGA-2d-
BPNN model are illustrated in Figure 12, showing an aver-
age error of 0.72%. The predicted values closely align with
the true values, with errors concentrated between -2.61%
and 2.50%.

5. Conclusions

Based on the findings of this study, the following conclu-
sions can be drawn:
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Figure 11: Comparative results of three 2d-BPNNmodels for water content prediction. (a) Comparison of the predicted and actual values of
the three 2d-BPNN models. (b) Comparison of water content error of three 2d-BPNN models.
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(1) Comparison of models: Among the different models
compared, the double-hidden layer BPNN under
full-band spectra showed improved prediction accu-
racy compared to the single-hidden layer BPNN,
with an RP value of 0.977 and an RMSEP of 1.83%

(2) Impact of feature variable selection: Using PCA for
feature variable selection resulted in better predic-
tion results compared to using full-band spectra in
PLSR, 1d-BPNN, and 2d-BPNN models. The PCA-
2d-BPNN model demonstrated the best perfor-
mance, and PCA outperformed CARS in terms of
improving the prediction accuracy of the model

(3) Comparison of optimization techniques: Compared
to GA, AGA performed better in optimizing the
1d-BPNN and 2d-BPNN models under the full-
band spectra. The AGA-2d-BPNN model achieved

better prediction, with an RP value of 0.986 and an
RMSEP of 1.51%

(4) Combined model performance: The PCA combined
with AGA-optimized 2d-BPNN model achieved opti-
mal results with reduced training parameters. The SG-
DT-PCA-AGA-BPNN model demonstrated optimal
prediction performance, with an RCV value of 0.995
and an RMSECV of 0.81% for the calibration set,
and an RP value of 0.994 and an RMSEP of 1.01%
for the prediction set

The AGA-optimized BPNN model has potential applica-
tions in predicting the moisture content of green tea during
processing, offering benefits such as improved adjustment
and monitoring capabilities for automated production lines
and reduced production costs. However, it is important to
consider the stability of the model in the complex green
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Figure 12: Results of the PCA-AGA-2d-BPNNmodel for water content prediction. (a) Comparison of the predicted and actual values of the
model. (b) The error of the model.
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tea production environment. The limited range of green tea
samples used in this study may lead to model instability.
Additionally, the single NIR data used in the model is sus-
ceptible to environmental factors such as temperature.
Future research is aimed at addressing these limitations by
conducting comprehensive data collection, including green
tea processing images, temperature, and NIR data. This inte-
grated approach will enable a more comprehensive analysis
and improve the model’s performance and stability.
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