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Ohmic-assisted drying (OAD) is a novel drying system that combines ohmic heating and convection drying simultaneously. The
present study is aimed at evaluating the mechanism of OAD system behaviours against the combined impact of operational and
model uncertainties. Moreover, the dynamic (time-dependent), as well as static (end-of-drying) spatial homogeneity of the model
predictions, was quantitatively described for the first time in the literature using Buzas and Gibson’s evenness value (an α-diversity
index). The Monte Carlo simulation approach was used to propagate the uncertainty of randomly selected input variables using
the Halton sequence sampling method. Mechanistic models include input uncertainties that lead to deviations in model
estimations. Both time-dependent and independent global sensitivity of moisture, sample temperature, sample’s internal
pressure, their spatial homogeneity, and drying time were assessed using Lasso regression (a variable selection method that
penalises the coefficients using l1 norm). The stochastic results of the mechanistic investigation showed that the effects of the
input variables are almost identical both as static and time-dependent variables. Lasso regression results indicated that
operational and model uncertainties cause varying changes in the magnitude and direction of the stochastic model predictions
throughout the process. By contrast, the homogeneity properties of the dry product are not caused by these variations and
heterogeneous distribution of the electric field. Additionally, electrical conductivity, oven temperature, applied voltage, and
initial moisture were found to be the variables which have the most significant effect on all the variables which were examined
in terms of operational and model uncertainties. Practical Applications. The present study investigates the stochastic behaviour
of the OAD system through the mechanistic model and using a probabilistic modelling approach. To the best of our
knowledge, in addition to being the first study to probabilistically evaluate the OAD system, we are introducing Buzas and
Gibson’s evenness value for the first time in the food science/technology literature. This measure serves as a numerical
indicator of the spatial distribution homogeneity of the physical properties of the sample. The study’s findings and proposed
methodologies will have further applications not only for researchers but also for manufacturers, particularly for those involved
in the design and analysis of new drying and food systems in general. Moreover, the presented methods and novel
homogeneity measures are generic tools; they can be easily adapted to other process improvement practices involving input/
output uncertainty/variability.

1. Introduction

Drying, especially convection and drying under the sun, is
one of the well-known methods of prolonging the shelf life

of foods. However, these popular drying methods have some
disadvantages such as high amount of energy consumption
and extensive loss of quality and nutrients, climate depen-
dency, and chemical and/or biological contamination threats
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[1–7]. To address these issues, researchers generally priori-
tise the development of alternative and energy- and time-
efficient technologies [8–11].

One of these technologies is ohmic-assisted convective
drying (OAD) which was—to our knowledge—first intro-
duced in the literature with our previous study [12]. In this
study, a mechanistic model for OAD that consist of momen-
tum, heat, and mass transport, as well as ohmic heating, was
established. Furthermore, parametric optimisation of pro-
cess conditions and changes in product quality as a function
of their variations (voltage, air temperature, and velocity)
have recently been studied [13]. In each of these studies,
empirical and mechanistic modelling methods were used
based on a top-down modelling approach in which the
major underlying drying mechanisms were characterised
without in-depth analysis [14]. However, modelling a food
drying system is a complicated and challenging task since
there are many factors influencing a performance drying
system, including drying temperature, airflow rate, sample
qualities, and pretreatment [3]. Since the variations of the
input parameters such as material properties, as well as the
model parameters, might have different and complicated
behaviours, the developed model cannot be implemented
for other materials/systems [15]. As a result, it is vital to
address the effects of uncertainty sources in the analysis
and design process of systems of interest to assist in building
an effective approach preventing deviations from the
expected performance [16]. That is why there are a large
number of examples of probabilistic evaluation of food
models/systems [17–21]. To the best of our knowledge, no
study has yet been presented on the probabilistic evaluation
of the OAD in response to uncertainty of model parameters
to explain stochastic system behaviours and investigate the
underlying mechanisms in depth.

The instability of a model prediction can arise from
model and operational uncertainties which are also called
(i) structural uncertainty and (ii) parameter uncertainty,
respectively [22]. Structural uncertainties are frequently
associated with physics assumptions in the mechanistic
model, whereas parameter uncertainties arise from variances
in the input parameters, which can have a significant impact
on simulation estimates but cannot be known precisely due
to natural variations in food materials. On the other hand,
sensitivity analysis can be performed using two general
methods, which are (i) local and (ii) global sensitivity analyses.
Global sensitivity analysis provides a better understanding
but is often more complex and requires more computational
effort [23]. One of the most usually recommended and used
methods to imitate input uncertainty and emphasize a sys-
tem’s global sensitivity is Monte Carlo (MC) simulation
[24, 25]. Although the MC method has been previously used
for probabilistic evaluation of the systems, including food
drying [26–29], the present study is the first example of its
implementation for OAD system.

Another critical issue required to consider is the heating
uniformity of ohmic heating systems. The homogeneous
treatment of food materials using ohmic heating is an
important and challenging issue, especially in foods with
spatial inhomogeneities in electrical conductivity. As a

result, heterogeneous moisture and temperature distribution
can cause local over- or underprocessing problems [30] or
the formation of soggy surfaces [31], reducing product qual-
ity and system production efficiency. Although no soggy sur-
faces were observed at the end of drying in our preliminary
study, heterogeneous heating (due to spatial variations in
moisture and electrolyte concentration in samples) and
overshoots (around electrodes) were clearly visible (please
see Figure S1 in Supplementary Materials) [12]. Therefore,
a thorough understanding is required to improve the OAD
design and performance for further studies. To accomplish
this, rather than the commonly used visual inspection that
allows for subjective evaluation, Buzas and Gibson’s evenness
value (E) [32] was adapted and used in the present study
for the first time in the food-related literature, as far as we
know. It was used for both dynamic (time-dependent) and
static (end-of-drying) analyses of spatial homogeneity of
model predictions, along with uncertainty analysis.

Therefore, the current study is aimed at (i) assessing the
probabilistic behaviour of the OAD against the combined
impact of operational and model uncertainties, (ii) identify-
ing model variables with the greatest impact on the stochas-
tic model predictions, (iii) introducing the adapted use of
Buzas and Gibson’s evenness value as a numerical measure
of static and dynamic model homogeneity, and (iv) drawing
a perspective for future efforts regarding possible improve-
ment of the OAD system.

2. Methodology

2.1. OAD Equipment and Numerical Method. The OAD sys-
tem consists of a tunnel-type hot air dryer (Eraktek Innova-
tion, Konya, Türkiye) equipped with custom-built lab-scale
electrode apparatus (ohmic cell with 6 needle-type elec-
trodes, each with a 3mm diameter) and an AC power supply
(max operation conditions are 400V-10A AC at 50–60Hz)
(Eraktek Innovation, Konya, Türkiye). A schematic repre-
sentation of the OAD system is given in Figure 1.

The mechanistic model was developed for the drying of
potato slices (rectangular prisms, 40 × 40 × 5mm) using
OAD system under different process conditions (air velocity:
0.74, 1.55, and 2.15m/s; air temperature: 50 and 60°C; and
voltage: 75, 100, and 125V without interruption during dry-
ing) until the desired moisture content (mdb = 0 1) was
attained. The model of OAD system employs coupled heat
and mass transport, as shown in Figure 2:

(i) Convective heat and mass transfer between the
potato surfaces and the hot drying air surrounding
them

(ii) Heat generation by electric current

(iii) Internal heat transfer by conduction and convection

(iv) Internal mass transfer by diffusion and convection

(v) Evaporation/condensation of water in different
internal locations and on the surfaces
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A summary of the governing equations of the mathemat-
ical model and the list of uncertain input parameters can be
found in Tables 1 and 2. More information about the OAD
equipment, experimental model validation studies, and
mechanistic model details (such as the assumptions, input
parameters, calculation of the transfer coefficients, and solu-
tion strategies) can be found in Turgut et al. [12]. Moreover,
a brief list of assumptions, input parameters, symbols,
values, and corresponding units is given in Supplementary
Materials (please see Table S1).

2.2. Probabilistic Evaluation Setup. To evaluate the proba-
bilistic behaviour of the OAD system, MC simulations are

done in three steps: (1) modelling a system of interest as a
sequence of probability distribution functions, (2) repeated
sampling from a specified random selection until conver-
gence, and (3) calculating the relevant statistics [25].
Figure 3 shows a schematic description of uncertainty
assessment.

Step 1. The first step in running an MC simulation is to
determine the uncertainty of each model input parameter.
To determine the uncertainty range of the input parameters,
expert opinion (opinion based on our experimental observa-
tions), experimental data, and/or literature data may all be
used. For example, the range for the initial moisture content
(mdb0) was obtained from measured experimental data
(marked with • in Table 2). Based on literature and experi-
mental observations, the uncertainties of other input param-
eters were classified as low (∗), medium (∗∗), and high (∗∗∗)
indicating 15%, 30%, and 50% of variability around the
nominal value, respectively. For the operating parameters
(oven temperature (Toven), air velocity (u0), and applied
voltage (V)), a 15% variability around the nominal values
was considered, based on the experimental observations
and the limits of the experimental OAD setup. Furthermore,
the diffusion coefficient of gases (Deff ,g) and the multipliers
for electrical conductivity and capillary diffusivity (kσ and
kw) were sampled within a range of medium variability
(30%). Finally, the uncertainty of the evaporation rate con-
stant (K) was set to high variability (50%) because the values
reported in the literature widely range from 1 to 1000 for dif-
ferent food processes [33–37].
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Figure 1: Schematic illustration of (a) the drying tunnel and the ohmic heating apparatus from (b) top view (c) and (d) side views where red
and black lines are phase/neutral power supply cables, respectively (reused material from Innovative Food Science & Emerging
Technologies, A novel drying system - simultaneous use of ohmic heating with convectional air drying: System design and detailed
examination using CFD, 72, 102727, Turgut et al. [12], Copyright Elsevier (2021)).
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Step 2. The Halton sequence (HS) sampling method was
used to reproduce the uncertainty of the input parameters,
because HS was previously described as a rapid converging
sampling method for MC simulations compared to other
sampling techniques [18]. Detailed information about HS
can be found in the study by Kroese et al. [38]. In total,
1000 randomly paired samples were chosen, each (θi) with
one value for every unknown input parameter.

θi = θ1i, θ2i, θ3i ⋯ , θmi , for i = 1, 2⋯ n, 1

where n corresponds to the input parameter number (9) and
m is the number of reproduced input levels for each uncer-
tain variable using HS (1000). To test the convergence of

the MC simulation, the sample size (m) in the current study
was increased from 25 to 1000 until it no longer influenced
the sensitivity analysis results.

Step 3. The simulations were conducted using randomised
input space, which included m × n different combinations
of input variables. For every combination of inputs (θi),
one simulation was run. In the end, solution matrices con-
sisting of the volume averages of mdb, T , and P as a function
of time (1min intervals between 0 and 300min) for m × n
combinations were obtained. In addition, homogeneity for
the distribution of each value (Emdb

, ET , and EP) was calcu-
lated as a function of time. The drying time (DT) of the

Table 1: Summary of physics equations of the model ohmic heating-assisted convection drying system [12].

Mass and momentum transfer

GE:
∂ci/∂t +∇∙ −Di∙∇ci + ui∙ci = ±Ri

ui = −к in,i ∙к r,i ∇P/ ϕSiμi ⟶
ueff ,w = uw +Dcap∇cw
ueff ,g = ug +Deff ,g∇cg

BC:
Psur = Pamb

nv,sur = cvun,v + hmϕSg cv − cv,oven

nw,sur = hmϕSw cv − cv,oven + cwun,w Sw=1

Heat transfer and electric physics

GE:
ρeff cp,eff ∂T/∂t +∇∙ −keff ∙∇T + ρeff cp,effueff ∙T = ±RiMwL +Q

Q = ησ ∇V 2

∇∙σ∇V = 0

BC:
qsur = hT T − Toven − nv,surMwcp,vT

−hmϕSwMw cv − cv,oven λ + cp,vT

− cwun,w Mwcp,vT Sw=1

V =
0, ground

100, electric source

∇V = 0 boundaries except electrodes

Thermophysical and physical properties and constitutive equations

aw = exp −0 033/m1 497
db

Pv,sat = exp −580 2206/T + 1 3915 − 0 0486T + 0 4176 × 10−4T2 − 0 01445 × 10−7T3 + 6 546 ln T

mdb = cwMw / 1 − ϕ ρs

P = pa + pv

ρeff = ϕ Sgρg + Swρw + 1 − ϕ ρs

cp,eff = xg ωvcp,v + ωacp,a + xwcp,w + xscp,s

keff = ϕ Sg ωvkv + ωaka + Swkw + 1 − ϕ ks

ρi = piMi / RT

cv,oven = RH%oven Psat Toven
/ RToven

σ = 0 25 1 + 0 030 T − 298 15

η =
mdb −mdb,lim / mdb0 −mdb,lim

3,mdb >mdb,lim

0,mdb ≤mdb,lim

Dcap = 1 × 10−8e −2 8+2mdb

(i) GE: governing equations; BC: boundary conditions. (ii) For the definitions of the abbreviations and symbols given in the table, please see Nomenclature.
(iii) For the full list of BCs and initial conditions and details of GEs, please see Turgut et al. [12]. Moreover, a brief list of assumptions, input parameters,
symbols, values, and corresponding units is given in Supplementary Materials (please see Table S1).
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potato samples (an important output of the drying process
model) was measured from the beginning of the process
until the time when mdb = 0 1. DT was analysed to evaluate
the effect of input uncertainties on the performance of the
OAD system. Moreover, the final Emdb

, ET , and EP values
of the samples at the end of drying (corresponding to the
homogeneity values at t = DT) were evaluated as scalar
model outputs. The means and percentiles of 10% and 90%
of the model predictions were used to illustrate the distribu-
tion of the results.

2.3. Statistical Evaluation of the Stochastic Model Predictions.
To assess the sensitivity/uncertainty of the parameters, the
Lasso regression (LR) method was used. LR works in princi-
ple like multiple linear regression (MLR), but with an addi-

tional penalty term for the sum of squared residuals (RSS)
[39]. MLR models have the following general equation form.

ŷ = b0 + 〠
n

i=1
bixi, 2

where ŷ is the model prediction, b0 is the intercept term, bi is
the corresponding model coefficient, and xi describes each
input parameter. The least squares optimisation was used
to determine model coefficients (bi) by minimising the RSS.

RSS = 〠
m

j=1
yj − 〠

n

i=1
b0 + bixi

2

3

The MLR models have a low bias but a high variance
while having a high coefficient of determination. This
means that a minor change in the training data might result
in a significant change in the model parameters. Thus, ordi-
nary least squares minimisation does not yield the optimal
subset of them. Therefore, various regularisation methods
(such as ridge and Lasso regressions) can be used to find
the optimal subset of model parameters that play with the
variance-bias trade-off. Although the theoretical back-
grounds of ridge and Lasso are similar, LR is advantageous
when the model parameter values are extremely small (close
to 0) due to the use of the l1 norm as the shrinkage term
[39]. The addition of a hyperparameter (λ) with a shrinkage
penalty to the minimisation term (MT) takes the following
form for LR [40].

MT = RSS + λ〠
n

i=1
bi 4

The λ hyperparameter controls the degree of fit of the
predictive model. At a value of λ⟶ 0, the prediction

Table 2: Uncertainty ranges for input parameters.

Parameter Unit
Nominal
value

Range
Source

Min–max

Initial moisture content (mdb0)
• g water g-1 dry

mater
4.78 2.72-6.84 [a]

Air velocity (u0)
∗ ms-1 1.5 1.275-1.725 [b]

Drying temperature (Toven)
∗ °C 60 51-69 [b]

Voltage (V)∗ V 100 85-115 [b]

Evaporation rate constant (K)∗∗∗ s-1 10 5-15 [b]

Limiting moisture content for electrical conductivity
(mdb,lim)

•
g water g-1 dry

mater
0.26 0.15-0.37

Calculated from [c] and
[d]

Diffusion coefficient of gases (Deff ,g)
∗∗ m2 s-1 2 6 × 10−6 1 82 − 3 38 × 10−6 [e]

Multiplier for σ (kσ)
!,∗∗ — 1 0.7-1.3 [b]

Multiplier for Dcap (kw)
!,∗∗ — 1 0.7-1.3 [b]

•Obtained from measurement. ∗±15% of the nominal value. ∗∗±30% of the nominal value. ∗∗∗±50% of the nominal value. !The kσ and kw are multipliers for
electrical conductivity (σ, S m-1) and capillary diffusivity (Dcap, m

2 s-1) calculated from the corresponding equations of σ and Dcap given in Table 1.
[a]Experimental. [b]Present study. [c]Lewicki [55]. [d]Kaymak-Ertekin and Gedik [56]. [e] Halder et al. [36].
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Figure 3: Schematic representation of the uncertainty evaluation
with Monte Carlo procedure.
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model approaches MLR (with lower model bias and higher
variance). As the value increases, the model variance of LR
decreases and the model bias increases. As a result, the coef-
ficients of the model parameters shrink towards zero and all
model coefficients become equal to zero with λ⟶∞ [39,
40]. However, under the same conditions, none of the
model coefficients are equal to 0 when ridge regression is
used. Because of these properties, LR provides a simpler
model and can be used as a feature selection/ranking
method [39].

In this case, before implementing LR as a ranking
method, all model variables were transformed into the stan-
dard normal distribution. Then, LR was repeated for an
array of λ values, starting from 0.01 and increasing to 1. In
this way, standardised model coefficients (SMC) were calcu-
lated for a series of λ values. To assess the sensitivity of the
scalar model outputs to uncertainty input variables, the
SMC results were used in comparison to the λ values. To
evaluate time-dependent output variables, the same proce-
dure was repeated for each minute of the drying process
and the minimum λ values where the model coefficients
were zero (λi bi=0) were extracted and plotted against time.

2.4. Spatial Homogeneity. For product quality, homogeneity
of sample properties is an important parameter for food pro-
cessing systems based on ohmic heating. However, homoge-
neity is usually assessed visually by looking at model results,
e.g., the coloured plots of a model (such as 2D surface, 3D
volume, or contour plots), which can be subjective. Buzas
and Gibson’s evenness value (E) can be used to overcome
this [32]. Therefore, we used E to assess the homogeneity
of the model behaviour with respect to the spatial distribu-
tion of the variables mdb, T , and P. With this method, it is
possible to make a numerical and objective inference about
the homogeneity of the variables. To find E, we first
extracted the required output variables from the nodes of
the mesh for each minute of drying and then calculated
the Shannon-Wiener diversity indices (H) (Eq. (5)) [32,
41]. H is a well-known α-diversity index used to determine
the homogeneity of the distribution of a value over an
area/domain [41]. In our case, this domain is the volume
of the potato slice in the mechanistic model and mdb, T ,
and P are the output variables to be evaluated.

H = −〠
N

i=1
pi ln pi , 5

where pi is the proportional value of each extracted output
variable (ci) in a one-minute time interval (Eq. (6)) and N
is the number of total observations for the given output
per minute.

pi =
ci

∑N
i=1ci

6

To determine ci, being output variables (mdb, T , and P),
the time-dependent data were divided into bins of sizes 0.01,
0.5, and 0.05 and the number of observations falling into

each bin was counted. To calculate pi, this number was
divided by the total number of observations. Although the
H value is a good indicator of the spatial homogeneity of
the data, it can be further improved by normalisation. This
gives us the Buzas and Gibson’s evenness value (E) [32].

E =
eH

N
7

After the transformation according to Eq. (7), E values
range between 0 and 1. If the spatial distribution of the var-
iable of the interest is completely homogeneous, then E takes
the value of “1,” and if the homogeneity decreases, the E
value decreases close to “0,” indicating high heterogeneity.

2.5. Model Implementation and Solution. Propagation of
input uncertainties with HS was performed using MATLAB®
(version 2016b). The model equations (Table 1) for different
combinations of inputs were solved using COMSOL Multi-
physics® LiveLink™ for MATLAB (version 5.3a, Burlington,
USA) (for more details, please see Turgut et al. [12]). The
data extraction and the calculation of the sensitivity indices
were made using the COMSOL-MATLAB environment.
The statistical calculations of the extracted data were com-
pleted using Python language (version 3.7). Array/matrix
and data manipulation/analysis operations were done using
the “NumPy” and “pandas” libraries, while statistical and
machine learning tasks were carried out using the “scikit-
learn” and “SciPy” libraries. “Plotly” library was used to cre-
ate graphical objects.

3. Results and Discussion

3.1. Model Outputs and Uncertainty of Model Predictions.
Figure 4 shows the mean and the 10th and 90th percentiles
of mdb, T , and P resulting from the N = 1000 simulation
(for a detailed description, see Section 3.2). With the help
of Figure 4, one can see how the output variables are distrib-
uted depending on the uncertainty of the input parameters
as drying time progresses. The uncertainty range increases
for mdb and T with drying time, whereas it remains nearly
constant for P over the entire drying time. For mdb, the same
behaviour is seen when ohmic heating begins to weaken. In
addition, the uncertainty of T grows steadily until the com-
pletion of the drying process (Figures 4(a) and 4(b)). Except
for the period when ohmic heating is active, there is no clear
uncertainty for P compared to mdb and T (Figure 4(c)).

In general, Figure 4(a) can be examined by dividing it
into two parts. The first part lasts up to 20 minutes and
has higher slopes (indicating a higher drying rate due to
ohmic heating of the sample) than the rest of the drying.
This region was previously referred to as the “accelerated
drying step” because of higher drying rates when compared
to the rest of the process [12]. The accelerated drying step
approximately involves the combination of heating, stream-
ing, and enthalpic periods of drying [42]. Different mecha-
nisms can occur, altering the effectiveness of ohmic heating
on the increased drying rate. One of these possible mecha-
nisms is the modifications in potato structure, also named

6 Journal of Food Processing and Preservation



“tissue damage,” as a result of electroporation, which occurs
even at very low electric fields (≥20V cm-1) [43, 44]. During
processing, this tissue damage promotes the release of water
from the cell wall, enhances the transport of water mole-
cules, and increases the drying rate. It was previously discov-
ered that changes in porosity, density, and textural
characteristics of samples after ohmic heating (as a pretreat-
ment) increase drying performance [44–47]. These struc-
tural changes are linked to increased water diffusivity
through the tissue [43]. However, in our scenario (simulta-
neous use of ohmic heating and convection), it was thought
that the very quick temperature increase in the drying mate-
rial, rather than structural changes in the potato tissue, was
the major contributing factor to rapid drying with OAD.
As shown in Figures 4(b) and 4(c), the temperature of the
entire domain rises too quickly due to volumetric heating
(as for microwave [31]) in the ohmic heating-dominated
zone of the drying. Therefore, the average T of the samples
reached the maximum rapidly, which was approximately
between 45 and 90°C for 1000 simulations of MC. There is
no doubt that the maximum temperatures (even higher tem-
peratures than seen in Figure 4(b) since average T is given

with it) would be expected primarily in the regions near
the electrodes. It has been reported that when volumetric
heating methods are used, the temperature rises above the
boiling point of water [31]. For example, microwave drying
can generate temperatures higher than 150°C for porous
materials [42]. As previously discussed in our earlier study
[12], the reason for temperatures above the boiling point
of water at 1 atm (100°C) is the internal pressures of the
potato exceeding the atmospheric level. Figure 4(c) shows
that the maximum average P of the potato slice was between
1.1 and 1.8 atm confirming our previous argument. How-
ever, reciprocally, the reason for the overpressures during
OAD is the increased evaporation at high temperatures
caused by ohmic heating. Furthermore, the much higher
temperatures in the region of interest are related to the high
evaporation rates, which cause overpressures. As a result, the
temperature and pressure in the domain mutually rise and
trigger each other until the temperature of the liquid water
falls to a level that mitigates the effects of ohmic heating.
Similarly, high pressure values (up to 4 atm gauge pressure)
for combined microwave convection drying of softwood
materials have already been recorded [42]. And smaller
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Figure 4: Uncertainty of volume averages for (a) moisture content (mdb, g water/g dry matter), (b) temperature (T , °C), and (c) pressure
(P, atm) using mean and 10th and 90th percentiles (the 1000 Monte Carlo simulations are shown in grey spaghetti plots).
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overpressures have also been observed during microwave
drying for food [31, 48, 49].

Following the accelerated drying step, OAD moves on
to the “regular drying step” [12]. This drying step begins
when the sample’s temperature falls to a level close to its
initial level, and the process then has characteristics similar
to conventional drying. During this step, the air velocity
and air temperature are the main factors affecting the dry-
ing characteristics [50]. The drying rate decreases towards
the end of the OAD process as the removable moisture
content in the sample domain decreases continuously dur-
ing the regular drying step. Moreover, with the end of the
accelerated drying step, the overall P of the domain
decreases to atmospheric pressure and follows a stable
trend until the drying process is completed. Therefore, only
a few barely perceptible increases in P can be seen in
Figure 4(c), which are most likely from simulations with
higher air temperatures. Despite P, the samples’ average T
begins with a slight increase at regular drying steps. Because
the surface temperature is lower than the ambient temper-
ature (Toven), there is an intense flow of energy from the
drying air to the sample. The evaporation rate and energy
spent on it decrease between 20 and 40 minutes of drying
due to the reduced moisture content and low drying rate.
As a result, the majority of the energy gained by convection
begins to be spent on raising the temperature of the sample
surfaces. Then, as the water content decreases over time, a
considerable amount of the energy is used to raise the tem-
perature of the sample [12, 51]. As a result, as the OAD
process nears completion, the temperature of the sample
approaches the ambient temperature.

Homogeneity of sample properties, such as moisture
and/or temperature homogeneity, is an important parameter
for ohmic heating-based food processing systems. This is
because variations in the electric field can cause problems
with quality and production efficiency. For example, these
differences can cause local over- or underprocessing issues
in various regions of the sample [30]. Furthermore, soggy
surfaces may appear as a result of moisture accumulation
in some parts of the material [31]. So, to analyse the effect
of OAD on them, time-dependent spatial homogeneity var-
iations for the output variables (Emdb

, ET , and EP for mdb, T ,
and P, respectively) were computed and illustrated in
Figure 5. The figure shows that at the beginning of the
OAD process, all homogeneity values are equal to 1. This
means that the output variables in the sample volume are
at first completely homogeneous. This is because the initial
values are the same everywhere and are equal to the model’s
set values. With the start of the OAD process, the ohmic
heating is promptly initialised and the sample domain
begins to heat up, resulting in hot and cold regions where
the ohmic heating is effective and ineffective, respectively.
This leads to a decrease in the ET value, which indicates a
decrease in the spatial homogeneity of T , or in other words
an increase in spatial variations/heterogeneity. This also
affects the moisture and pressure distributions across the
sample domain, and Emdb

and EP show a similar trend to
ET . Emdb

reaches low values between 0.45 and 0.75 before
ET and EP due to the rapid evaporation of liquid water in

the domain. However, after the accelerated drying step is
completed, the homogeneity of the variables begins to
increase. ET and EP reach relative stability by the end of
the drying process. This is due to T and P approaching the
environment values and the process gradually reaching equi-
librium for these variables. Emdb

, on the other hand, shows a
slight decrease and may be attributed to the difference inmdb
values between the inner and outer portions of the sample.

The heterogeneous distribution of sample properties
(such as temperature and moisture) causes undesirable
changes during the process as previously discussed by Tur-
gut et al. [12]. For instance, overshoot regions can be
observed depending on the applied electrical potential, due
to rapid water removal and a decrease in electrical conduc-
tivity caused by the sudden temperature increase. These
changes, combined with the rapid drying of the inner areas
(the region between the electrodes), result in a decrease in
electrical conductivity and it leads to an interruption of the
electrical field. Thereby, not only does the ohmic heating
efficiency decrease, but burnt areas of the sample near the
electrode surfaces are also observed. Furthermore, the het-
erogeneous temperature distribution increases heteroge-
neous evaporation/pressure and moisture movement from
the interior to the exterior of the domain. Finally, depending
on the applied voltage, this resulted in an accumulation of
excess moisture at the sample boundaries, which can cause
slightly soggy surfaces typical of volumetric drying processes
(similar phenomena occur with microwave heating) [31].

3.2. The Use of Lasso Regression for Global Uncertainty
Analysis. The LR method was used to compare the effects
of uncertain input parameters on the model’s output vari-
ables. For time-dependent model outputs (that are volume
averages of mdb, T , and P), λ bi=0 (the λ values that make
the LR coefficients equal to zero) was used as a function of
time. On the other hand, SMC against λ was presented for
scalar variables (DT and final values of Emdb

, ET , and EP).
However, as the first step, the effect of sample size (N) on
SMC was evaluated to conclude the convergence of the
MC simulation. The effect of sample size on SMC vs. λ is
depicted in Figure 6 for this purpose. For clarity, only the
results for mdb, Toven, and V were given. The high deviation
for mdb is easily seen in Figures 6(a)–6(c) for small sample
sizes, i.e., 25-200. Increasing N (for N > 200) had no discern-
ible effect on λ bi=0 regarding V . However, with increasing
sample size, λ bi=0 of mdb and Toven reached a nearly con-
stant value after 750-1000 simulations. As a result, all further
analyses in the rest of the paper are performed for N = 1000.

Figure 7 shows the SMC values of the predictive LR
models at various λ values for DT and Emdb

, ET , and EP at
the end of the drying process (simulations were stopped
when the volume average of mdb ≤ 0 1). As for LR, the SMCs
of model parameters tend to approach zero as λ increases. It
is worth noting that the parameters that reach λ bi=0 earlier
have weaker effects on the model outputs than on other
explanatory variables and vice versa. Thus, the values of
λ bi=0 can be used as a direct index showing the relative
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influence of the input parameters on the stochastic outputs.
Furthermore, the sign of SMC values indicates whether the
correlation between input and output variables is positive
or negative.

Figure 7(a) illustrates the effects of the input parameters
on the predictions of DT. DT was previously defined as the
amount of time required to reduce the dry basis moisture
content of the potato slice to 0.1. According to the results,
the most effective model parameters on DT are, in decreas-
ing order, mdb0, Toven, K . With nearly equal efficiency, these
parameters are followed by kσ and V . Other input variables
either have very little effect, e.g., Deff ,g and kw, or no impact
asmdb,lim has. Onlymdb0 has a positive correlation indicating
that a higher initial moisture content causes a higher DT as
expected. Apart from the effect ofmdb0, kσ and V were found
to have smaller effects on DT than Toven because ohmic
heating directly affects the physical properties of the material
(temperature, pressure) during a limited period of OAD (see
Section 3.3 for a detailed explanation). However, in addition
to their direct effects, kσ and V also have some real-world

influences on other material properties (such as structural
deformation and increase in diffusion coefficient). As a
result of these modifications, ohmic heating has an indirect
positive impact during the regular drying period, as observed
in our experimental study [13]. Since air velocity and tem-
perature are important parameters for convection drying
systems [50], Toven (as an important parameter affecting heat
and mass transfer coefficients) has a significant influence on
DT during the regular drying step. The evaporation rate con-
stant (K) is a parameter that indicates the evaporation rate
and has a dimension of reciprocal time in which phase
change takes place [36]. K can have various values depend-
ing on the process and material [33–37]. Therefore, it is a
critical term for defining the phase change rate of water
and has a considerable impact on the DT of an OAD system.
Moreover, by controlling the evaporation rate, K also has a
relative influence on the system’s temperature and pressure
[52]. Air velocity (u0), another important parameter of
convection drying, has no effect on the DT of the OAD
system. The same result was previously observed in our
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Figure 5: Uncertainty of volumetric averages of Buzas and Gibson’s evenness values for (a) dry basis moisture content (Emdb
), (b)

temperature (ET ), and (c) pressure (EP) using mean and 10th and 90th percentiles (the 1000 Monte Carlo simulations are shown in grey
spaghetti plots).
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experimental optimisation study of the OAD system [13]. As
for the other process variables, their higher values (except
mdb,lim) lead to shorter DT values.

The influence of the input variables on Emdb
, ET , and EP

values of the final product is shown in Figures 7(b)–7(d). In
the decreasing order, the most effective input variables are as
follows:

(i) Toven, K with negative correlation, and kw with pos-
itive correlation on Emdb

(ii) Toven, Deff ,g, K with positive correlation and mdb0,
and kw with negative correlation on ET

(iii) Deff ,g, kw, and mdb0 with all negative correlations on
EP

The effects of these input variables on Emdb
, ET , and EP

should be investigated in terms of α-diversity. With the sim-
plest explanation, α-diversity indicates the average species
diversity in a habitat/specific area [41]. In our case, the term

“the habitat/specific area” refers to the model geometry.
And “the species” refers to the number of observations
(from the output variables) that fall into each bin, as
described in Section 2.4. Lower E values, for example, are
obtained as the number of different temperature values in
the geometry increases, implying lower homogeneity. How-
ever, if all temperature values in the domain are close to each
other (indicating less temperature diversity), the E value is
high (close to 1), as expected, indicating greater homogene-
ity. In terms of E, rather than focusing on which input vari-
able is more efficient on homogeneity, it is important to
consider whether or not ohmic heating has an effect on it.
According to Figure 5, at the beginning of OAD (when
ohmic heating is dominant/active), the sample homogeneity
decreases from 1 to nearly half for all investigated output var-
iables. This is because ohmic heating is a rapid heating tech-
nique that causes large variations in local temperature values
as well as associated physical phenomena such as evapora-
tion rate, internal pressure changes, and dependent transport
mechanisms. As the electrical conductivity of the drying
medium decreases due to the reduction in water content
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and the associated ion mobility (which is reflected in the
model in the electrical conductivity dependent on water con-
tent), the influence of ohmic heating weakens and convec-
tion begins to dominate heat and mass transfer during the
regular drying step. All homogeneity results belonging to
the model outputs of interest rise above 0.7-0.8 and approach
equilibrium towards the end of the OAD process, which is
accompanied by convective drying. This means that the sam-
ple is almost homogeneous at the end. To summarise, OAD
has no discernible negative impact on the spatial homogene-
ity of the final product. Therefore, the final product can be
expected to have a similar temperature, moisture, and pres-
sure distribution as the products produced with convection
drying at the end. Furthermore, the positive effects of the
OAD system on potato quality characteristics (such as col-
our, phenols, and enzyme inactivation) were discussed in
detail in our experimental study on OAD [13].

3.3. Time-Dependent Uncertainty. Figures 8 and 9 depict the
time-dependent effect of the model input parameters on mdb,
T, and P, as well as their distribution homogeneity (Emdb

, ET ,
and EP). The mdb0 is by far the most efficient input factor
on potato’s averagemdb, as well as on DT. It is the most effec-
tive parameter at the beginning of the OAD process, with a
strong positive correlation between mdb0 and mdb. As drying
progresses, its effect gradually diminishes and the other input
variables begin to show an effect on mdb. The temperature of
the sample begins to rise during the accelerated drying step,
owing primarily to ohmic heating (Figure 4(b)). Thus, fol-
lowing mdb0, V and kσ (the curves are superimposed on each
other in Figure 8(a)) have the greatest influence on mdb. The
increase in temperature causes evaporation of liquid water
and thus a decrease in moisture content, which is why it
correlates negatively with changes in mdb. This means that
high values of V and kσ result in higher temperatures, which
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Figure 7: Standardised model coefficients (SMCs) of Lasso regression (LR) models for (a) drying time (DT, min) and Buzas and Gibson’s
evenness values for (b) dry basis moisture content (Emdb

), (c) temperature (ET), and (d) pressure (EP) as output variables (u0, approach
velocity (m s-1); mdb0, initial dry basis moisture content; Toven, drying air temperature (°C); V , applied voltage (V); K , evaporation rate
constant (s-1); mdb,lim, limiting moisture for electrical conductivity; kσ, multiplier for electrical conductivity (σ, Sm-1); Deff ,g, effective
diffusion coefficient (m2 s-1); and kw, multiplier for capillary diffusivity of liquid water (Dcap, m

2 s-1)).

11Journal of Food Processing and Preservation



promote faster evaporation. As the temperature and vapour
concentration in the sample volume rise, so does the
domain’s overall pressure. There is no doubt that this
increase creates a pressure gradient between the sample’s
inner regions and its boundaries, causing both liquid water
and vapour to move to the boundaries via Darcy’s flow and
binary diffusion. Several studies on volumetric heating have
previously reported similar results [31, 42, 48, 49]. The high
pressure stimulates water migration from the porous struc-
ture’s core to its surface [49]. High mdb0 values, on the other
hand, tend to limit the increase in sample temperature
because more latent heat is spent for evaporation at a high
mdb0 value. According to Turgut et al. [12], a significant por-
tion of the heat generated by electrical dissipation is used for
evaporation during OAD. The electrical conductivity of the
potato begins to decrease as the mdb value of the sample
decreases during drying because the medium’s ability to
transmit electrical current gradually decreases and disap-

pears. As a result, the temperature and then the pressure of
the medium begin to fall. Electrical dissipation, rather than
convection and conduction, is the major heat mechanism
in volumetric heating methods such as ohmic heating [53,
54], and the same phenomenon occurs in the OAD system,
as well [12]. However, convection and conduction become
stronger after ohmic heating loses its efficacy. This situation
was observed in our study around the 40th minute of drying.
According to Figure 8(a), Toven becomes one of the most
important input variables for mdb after this time, while the
effects of V and kσ associated with ohmic heating disappear.
Apart from them, K , Deff ,g, and u0 gain a slight importance.
All these variables (except mdb0) show negative correlation
with mdb. This is because higher values for all these variables
help the removal moisture from the material.

A similar pattern emerges for the time-dependent uncer-
tainty of T (Figure 8(b)). mdb0, on the other hand, begins to
lose its effect on T after the 100th min of the OAD process, as
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Figure 8: λ bi=0 (the λ hyperparameter values that make the Lasso regression (LR) coefficients equal to zero) values from predictive LR
models for (a) moisture content (mdb, g water/g dry matter), (b) temperature (T , °C), and (c) pressure (P, atm) against processing time
(u0, approach velocity (m s-1); mdb0, initial dry basis moisture content; Toven, drying air temperature (°C); V , applied voltage (V); K ,
evaporation rate constant (s-1); mdb,lim, limiting moisture for electrical conductivity; kσ, multiplier for electrical conductivity (σ, Sm-1);
Deff ,g, effective diffusion coefficient (m2 s-1); and kw, multiplier for capillary diffusivity of liquid water (Dcap, m

2 s-1)).
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is typical for convective drying [51]. This is due to a signifi-
cant decrease in the sample’s mdb and the latent heat of
evaporation, particularly at the sample surfaces. As a result,
the heat gained from the sample by convection is mostly
used to raise the temperature [12]. In the case of P as an out-
put variable, the K , Deff ,g, and u0 appear to be other impor-
tant variables after V , kσ, and Toven (Figure 8(c)). Because
these variables are also the reasons for the evaporation of liq-
uid water and removal from surfaces. As the water vapour is
removed, the P value decreases proportionally. When con-
vection becomes a dominant characteristic during the regu-
lar drying step, Toven becomes the most important factor for
P (with a positive correlation), followed by mdb (with a neg-
ative correlation) (Figure 8(c)). The effects of these variables
can be investigated from the perspective of the ideal gas law.
As a result, as the oven temperature rises, the temperature of
the sample (and the gases in the sample) rises as well, leading
to higher internal P values during the regular drying step.

However, for mdb0, the situation is exactly the opposite
between 20 and 80 minutes of drying in our study
(Figure 8(c)). As expected, the higher the moisture content
is, the more evaporation takes place, resulting in a higher
pressure in the sample. However, in our study, increased
evaporation (due to the ohmic heating effect during acceler-
ated drying) results in rapid water removal, particularly due
to Darcy’s flow, which is not very dominant in convection
drying. After the ohmic heating effect has worn off, the sam-
ple temperature decreases rapidly, causing some condensa-
tion at high voltage values. The combined effect of rapid
vapour removal and cooling/condensation causes a pressure
drop until the sample T rises again due to convection [12].
For this reason, there is a negative relationship between
mdb0 and P (Figure 8(c)). However, as the evaporation rate
increases after this pressure drop, mdb0 begins to have pos-
itive effect on P. But this time, Toven gradually shows a
negative impact (Figure 8(c)). This is because a higher
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Figure 9: λ bi=0 (the λ hyperparameter values that make the Lasso regression (LR) coefficients equal to zero) values from predictive LR
models for Buzas and Gibson’s evenness values for (a) dry basis moisture content (Emdb

), (b) temperature (ET ), and (c) pressure (EP)
against processing time (u0, approach velocity (m s-1); mdb0, initial dry basis moisture content; Toven, drying air temperature (°C); V ,
applied voltage (V); K , evaporation rate constant (s-1); mdb,lim, limiting moisture for electrical conductivity; kσ, multiplier for electrical
conductivity (σ, Sm-1); Deff ,g, effective diffusion coefficient (m2 s-1); and kw, multiplier for capillary diffusivity of liquid water (Dcap, m

2 s-1)).
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temperature causes more heat to be transferred, resulting
in a higher rate of water removal. As the amount of liquid
water decreases, so does evaporation, which is the primary
source of internal pressure. As a result, the internal pres-
sure of the drying domain gradually approaches atmo-
spheric pressure levels.

At the beginning of OAD, mdb0 is the parameter that has
the most influence on the homogeneity values for mdb0, T ,
and P (Figures 9(a)–9(c)). Its effects on homogeneities are
all positively correlated at the start of drying (except for a
very small gap for ET which can be caused by excessive ini-
tial evaporation at very high values of mdb0). Higher mdb0
values lead to higher electrical conductivity, which causes a
faster temperature rise, a higher evaporation rate, and a fas-
ter pressure rise in the regions through which electric cur-
rent flows. Because ohmic heating affects the entire
volume, these changes take place over the majority of the
sample volume and help improve homogeneity. The Deff ,g,
or simply the diffusion coefficient, always tends to reduce
the gradients between the regions due to its definition.
Therefore, it contributes to the sample’s homogeneity
(Figures 9(a)–9(c)). But at the same time, the ohmic heating
parameters (V and kσ) divide the model geometry into two
separate parts, the hot and cold zones, due to the electrode
configuration (Figure 10) [12]. This distinct separation is
undoubtedly very effective in achieving low homogeneity
values. In summary, V and kσ have a negative effect on
Emdb

, ET , and EP at the beginning of OAD (Figures 9(a)–
9(c)). When the ohmic heating begins to lose its effect and
the regular drying step starts around the 40th minute of dry-
ing, the influence of mdb0 on all the homogeneity indicators
turns into a negative correlation (Figures 9(a)–9(c)). Simul-
taneously, the influence of Toven and K begins to grow signif-
icantly and the effects of the other input variables become
slightly higher (Figures 9(a)–9(c)). At around the transition
period from the accelerated drying step (when ohmic heat-
ing is active) to the regular drying step (when ohmic heating
is passive), the influence of K is neutralised, and it continues
to follow the same trend almost until the end of the process.
Around the same time, the influence of Toven on Emdb

increases and its impact on ET and EP shifts from a negative
to a positive correlation (Figures 9(a)–9(c)). This shift is the
result of the dominant heat transfer mechanism changing
from ohmic heating to convection. Because the inner T of
a potato slice (when ohmic heating is active) is notably
higher than the T values at the boundaries at the end of
the accelerated drying step. In this context, mdb and P also
exhibit a clear difference in sample volume, resulting in
low homogeneity (Figures 9(a) and 9(c)). With regular dry-
ing step, T of the inner regions begins to cool due to evapo-
ration as well as heat transfer by conduction and Darcy’s
flow. Furthermore, convection heating causes the outer
layers of the potato slice to heat up. Therefore, first T and
following mdb and P decrease due to similar regional differ-
ences. As a result, the homogeneity of these initial variables
increases (Figures 9(a)–9(c)). After this point (approxi-
mately after the 40th minute of drying), the input variables
affecting the homogeneity indices are Toven and mdb0 at dif-
ferent levels and in different directions. These variables,

however, have no effect on the homogeneity and their values
remain constant. And as already stated in Section 3.1, ohmic
heating appears to not affect the final Emdb

, ET , and EP .

3.4. Model Refinement and Perspective. The results of the
probabilistic investigation of the OAD can be used to
improve the developed mechanistic model to make better
predictions and understand the possible variations in prac-
tice. According to the results of the sensitivity and uncer-
tainty analysis of the current study, mdb0, V , kσ, and Toven
have the highest influence on all output variables (DT, mdb,
T, P, Emdb

, ET , and EP). A higher V , kσ, and Toven results in
shorter DT predictions in this case. Thus, increasing V
and soaking pretreatment in salt solutions (to increase kσ)
improve drying performance in terms of DT. However,
increasing V too much can cause overshot problems at the
electrode surfaces as well as undesired high heterogeneities,
particularly for mdb, resulting in soggy surfaces. Intermittent
current regimes at moderate voltage levels can be used to
overcome these problems. At the same time, higher Toven
values (than those used in this study) can help to reduce
DT further while also resolving the heterogeneous distribu-
tion of moisture in the sample during OAD. One of the rea-
sons for the heterogeneous moisture distribution is the
accumulation of water on boundaries which is transported
from the inner regions to the surfaces. This occurs when
evaporation from the surfaces to the surroundings is insuffi-
cient to compensate for water transport from the sample’s
interior, resulting in an accumulation at the boundaries.
Therefore, higher Toven values with higher u0 can be benefi-
cial to deal with these problems. Aside from V and Toven, u0
(the third process variable controlling OAD) has no signifi-
cant impact on the results not only in the present study but
also in our previous experimental study [13]. However,
assessing the impact of the higher u0 levels above the studied
range in the current study can be effective to observe its
impact on OAD drying performance, and it could also be
suggested as a general behaviour for convection drying.
Another possible solution to overcome the heterogeneous

90
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Figure 10: Predicted temperature maps of (a) interface and (b) top
surface of potato slices at 5th min of ohmic-assisted drying where
Toven, mdb0, u0, and V are 60°C, 4.05, 2.15m/s, and 100V,
respectively [12] (Toven, drying air temperature (°C); mdb0, initial
dry basis moisture content (g water/g dry matter); u0, approach
velocity (m s-1); and V , applied voltage (V)).
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distribution of properties during OAD (especially to increase
the spatial homogeneity and avoid overshooting) is to rear-
range/improve the design and configuration of the elec-
trodes. This results in a more homogeneous electric current
distribution, as well as a homogeneous temperature, pres-
sure, and humidity distribution.

4. Conclusion

The present study applies the Monte Carlo simulation
approach and Lasso regression to investigate the probabilis-
tic mechanism of hybrid system behaviours for simulta-
neous ohmic heating and convection drying against the
combined impact of operational and model uncertainties.
The input variables were ranked based on their impor-
tance/impact on stochastic model predictions and according
to the results:

(1) The variables mdb0, Toven, V , and kσ have the greatest
influence on the time-dependent variation of mdb.
However, there was no discernible sensitivity of
mdb to u0

(2) In relation to mdb, DT is primarily influenced by
mdb0, Toven, K , V , and kσ. To change the drying rate
of materials processed with OAD, Toven and V are
required to be controlled. In addition, a treatment
to increase electrical conductivity before drying
(e.g., soaking in a salt solution) can help to achieve
a rapid process

(3) The same parameters that affect mdb also have an
impact on the time-dependent change of T and P
. Unlike them, u0 has a very minor and ignorable
impact only at the beginning of the drying process

(4) Although the magnitude and direction of mdb, T ,
and P’s influence on homogeneity change during
drying, the main efficient input parameters on the
final homogeneity properties (at the end of drying)
are mdb0, Toven, K , Deff ,g, and kw. This demonstrates
that the ohmic heating parameters (V and kσ) are
not associated with the dry product’s homogeneity.
It is rather dependent on material and process
variables

Overall, the OAD process is primarily affected by the
sample’s initial moisture content, oven temperature, applied
voltage, and electrical conductivity. It is useful to understand
how variations and changes in probabilistic input parame-
ters affect stochastic model responses. Lasso regression is
an effective method for determining the sensitivity and
uncertainty of mechanistic model estimations. It can be used
to assess the variance of scalar and time-dependent variables
simultaneously with simple manipulation.

The findings of the current study are useful not only for
researchers but also for manufacturers. These findings, for
example, can be used to develop new or improved mecha-
nistic models for OAD-based or similar systems. In this
way, improving/optimising the current system can be

achieved through the development of models that generate
more precise predictions, and the results obtained can be
used as a starting point/source of inspiration for the devel-
opment of new, innovative, sustainable, and energy-efficient
drying systems based on electrical energy. In addition,
device manufacturers can benefit from the results of this
study when designing new devices, such as a continuous
OAD system. It is already known that device manufacturers
use mechanistic models and Monte Carlo procedure (or
similar methods) to optimise and improve their devices.
The results obtained can also be used to understand and
solve the reasons for the overheating and heterogeneity
problems that may occur when ohmic heating-based tech-
nologies are applied to the solid food materials. To this
extent, the homogeneity index derived from Buzas and Gib-
son’s evenness value (an α-diversity index) has, to the best
of our knowledge, been introduced into the food science
and technology literature. This metric is believed to be quite
useful and practical for numerical evaluation of processes in
terms of spatial homogeneity. Thus, this new homogeneity
index will be useful not only for equipment designers but
also for researchers when planning further experiments
for the OAD system.

Nomenclature

aw: Water activity
b: LR model parameter
BC: Boundary conditions
cp: Specific heat capacity (J kg-1K-1)
Dcap: Capillary diffusivity of liquid water (m2 s-1)
Deff ,g: Effective diffusion coefficient (m2 s-1)
DT: Drying time (min)
E: Buzas and Gibson’s evenness value
GE: Governing equations
hT : Heat transfer coefficient (Wm-2K-1))
hm: Mass transfer coefficient (m s-1)
H: Shannon-Wiener diversity indices
HS: Halton sequence
k: Thermal conductivity (Wm-1K-1)
kσ: Multiplier for σ
kw: Multiplier for Dcap
K : Evaporation rate constant (s-1)
L: Latent heat of evaporation (J kg-1)
LR: Lasso regression
λ: LR hyperparameter
mdb: Moisture content (g g-1, water/dry matter, unitless)
mdb,lim: Limiting moisture for electrical conductivity
m: Total number of the HS samples
μ: Viscosity (Pa s)
MC: Monte Carlo
MLR: Multiple linear regression
n: Total number of the input parameters
N : Number of total observations
OAD: Ohmic-assisted drying
pi: Proportional value of output variables
P: Pressure (atm)
RSS: The sum of squared residuals
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ρ: Density (kgm-3)
SMC: Standardised model coefficient
σ: Electrical conductivity (Sm-1)
t: Time
T : Temperature (°C)
Toven: Drying air temperature (°C)
θ: Input variable
u0: Approach velocity (m s-1)
V : Volt (V)
ŷ: LR model output.

Subscripts

0: Initial value of a variable
a: Air
i: Index of MC simulations
j: Index of the parameter vector
s: Solid
v: Water vapour
w: Liquid water.

Data Availability

The datasets generated during and/or analysed during the
current study are available from the corresponding author
on reasonable request.

Additional Points

Highlights. (i) A probabilistic-mechanistic analysis of ohmic-
assisted convectional was performed. (ii) Monte Carlo simu-
lation with Lasso regression was used. (iii) Buzas and Gib-
son’s evenness (E) was introduced as a spatial homogeneity
measure. (iv) OAD performance is mostly affected by oper-
ational factors, not product properties. (v) Operational fac-
tors affect dynamic homogeneity but not sample’s final
homogeneity.
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