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Shrimp shell waste is an attractive source of value-added bioactive-rich by-products. Shrimp shell extract containing astaxanthin
was recovered by solvent extraction method (petroleum ether/acetone/water with a ratio of 15 : 75 : 10) and ultrasound process
(amplitude 20% for 15min at 35°C). The extract was then encapsulated by freeze-drying using wall materials such as
maltodextrin (with the dextrose equivalent (DE) of 7 (MD7) and 20 (MD20)) and modified starch (Hi-Cap 100) incorporated
at different ratios. Simplex lattice with augmented axial points in the mixture design was applied for the optimization of wall
material. The optimal wall materials were 29.4% (MD7), 34.0% (Hi-Cap 100), and 36.6% (MD20), with encapsulation yield (Y)
of 94.6%, encapsulation efficiency (EE) of 91.8%, astaxanthin content (Ast) of 46.1μg/g DW, and DPPH scavenging capacity of
64.0%, respectively. The optimized microcapsules had spongy morphology and brittle and flaky mass. The degradation kinetics
of bioactive astaxanthin in UV light was evaluated and found to follow first-order reaction kinetics. The microcapsules
obtained under optimal wall composition exhibited the highest UV light stability with half-life values of 76.8 h, demonstrating
a high stability.

1. Introduction

Food, pharmaceutical, and health items all employ food
color additives widely. Food industry was forced to develop
functional food items using natural pigments like caroten-
oids due to rising consumer awareness of and governmental
actions against synthetic colorants [1]. Astaxanthin is a
carotenoid pigment that is well-known for its reddish-
orange color and a variety of health benefits. It improves
biological processes, including lowering the oxidation of
fatty acids, enhancing vitamin A production, stimulating
growth, and potentially preventing diseases such as high

cholesterol, Alzheimer’s, and Parkinson’s. It has been used as
a feed additive in aquaculture and poultry farming to enhance
the coloration of the flesh of farm-raised aquatic animals and
eggs of birds [2, 3]. Therefore, the global astaxanthin market
was valued at USD 647.1 million in 2021, and it is expected to
grow at a compound annual growth rate (CAGR) of 9.7% until
2026 (https://www.grandviewresearch.com/industry-analysis/
global-astaxanthin-market) [4].

The use of natural astaxanthin is limited by its low stabil-
ity, weak tinctorial strength, inability to match the desired hue,
and probable interactions with other food ingredients [5].
Encapsulation has been extensively studied as a technology
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to enhance astaxanthin stability. The correct choice of the wall
material and drying method has affected the encapsulation
efficiency and stability of the microcapsules [6].

Although, various astaxanthin encapsulation methods
[7–11] with different coating or wall materials [12–15] have
been reported; limited information are available on the
astaxanthin microencapsulation with maltodextrin or modi-
fied starch by freeze-drying method.

Maltodextrin (with different dextrose equivalent) is a
partially hydrolyzed product of starch that can be used to
encapsulate bioactive compounds [16, 17]. Hi-Cap 100
starch, also known as modified starch or starch octenyl suc-
cinate, is commonly produced by esterification of starch
with octenylsuccinic anhydride in aqueous media under
alkaline conditions. This process adds hydrophobic side
chains to the hydrophilic starch molecules, giving them
amphiphilic properties. As a result, in two-phase water-oil
systems, the hydrophobic side chains of the starch adhere
to the surfaces of oil droplets; in contrast, the hydrophilic
side chains interact with water molecules, creating steric
repulsion and preventing droplet coalescence [18].

The coating materials and drying methods have a
significant impact on the antioxidant activity, constancy,
solvability, and retention of the encapsulated bioactive
compounds. Microencapsulation of astaxanthin has been
achieved through spray-drying or freeze-drying methods
[13]. The practical multistep freeze-drying approach is often
used to dry and encapsulate unstable and heat-sensitive
compounds [19].

Despite the extensive efforts in encapsulating astax-
anthin, the encapsulation of astaxanthin extracted from
shrimp shell waste, which is a valuable and abundant source
of astaxanthin, using the freeze-drying technique and wall
components such as maltodextrin and modified starch, has
not been investigated.

The objective of this study was to develop encapsulated
shrimp shell extract containing astaxanthin using modified
starch (Hi-Cap 100) and maltodextrin with varying dextrose
equivalent values (DE 7 and 20) through freeze-drying.
Optimization was carried out utilizing a simplex lattice mix-
ture design (due to simplicity, efficiency, and the ability to
explore a wide range of factors). Additionally, the study
assessed the UV light stability of the microcapsules during
storage.

2. Materials and Methods

2.1. Chemicals and Reagents. Analytical grade solvents, 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radicals, 2,4,6-Tri(2-pyr-
idyl)-s-triazine (TPTZ), the Folin–Ciocalteu reagent, and
maltodextrin with dextrose equivalents of 7 and 20 (MD7
and MD20) were obtained from Sigma-Aldrich and Merck
companies. Hi-Cap 100 (modified starch with octenyl succi-
nate substituents of 5% moisture and more than 90% solu-
bility in water) was provided from the National Starch
Company of the U.K.

2.2. Preparation of Freeze-Dried Shrimp Shell Extract. Green
tiger shrimp shells were used to extract astaxanthin using a

solvent-assisted ultrasonic process [20]. For carrying out
extraction, a 10 g sample of milled shrimp shell was placed
in the 100mL flask, to which 40mL of solvent (petroleum
ether: acetone: water, 15 : 75 : 10) was added (1 : 4w/v), and
the mixture was subjected to ultrasound waves (Hielscher,
Germany Ultrasonic Electronic Equipment Co. Ltd., with a
maximum power of 400W and a frequency of 20 kHz) for
15 minutes at a temperature of 35°C and an amplitude of
20%. Following the sonication, the mixture was transferred
to a Soxhlet device for solvent extraction of 6 h. When the
extraction process was completed, the mixture was filtered,
and the solvent was concentrated in a vacuum rotary evapo-
rator (Laborota 4000 efficient, Germany). Then, the concen-
trate was dried in a freeze drier (Operon-Korea) (−55°C,
0.15mmHg) for 48 h and kept in the dark at -18°C for fur-
ther analysis. The amount of astaxanthin, ferric reducing anti-
oxidant power, and free radical scavenging capacity of the
freeze-dried shrimp shell extract was 51.5μg/g, 1705μmol of
Fe2+/g, and 73.9%, respectively [20].

2.3. Preparation of Microencapsulated Powders. Different
amounts of MD7, MD20, and Hi-Cap 100 were dissolved
in distilled water at ambient temperature (25 ± 1°C) to
achieve a total solid concentration of 10%, following a
response surface methodology (RSM) design (Table 1). The
solutions were agitated for 30 minutes and then refrigerated
at 4 ± 1°C for 24 h to complete the hydration process. The
freeze-dried shrimp shell extract was added to the solutions
at proportion 1 : 5 (W/W, shrimp shell extract: wall materials)
and homogenized by an Ultra-Turrax homogenizer (T50, IKA
company of Germany) at 15,000 rpm for 10min. Subse-
quently, solutions containing coating and core materials were
sonicated (Hielscher, Germany Ultrasonic Electronic Equip-
ment Co. Ltd., 400W, 20KHz, diameter probe: 13mm) for
3min at room temperature. Finally, the solutions were dried
in a freeze-dryer at -55°C for 48h at a pressure of 0.15mmHg.
The dried specimens were ground (using a pestle and mortar)
and passed a 0.71mmmesh and stored in brown glass at -18°C
for further analysis [21].

2.4. Determination of the Physical Properties of Microcapsules.
The moisture content of encapsulated powders was deter-
mined using an infrared moisture analyzer (MX-50, Japan)
at 105 ± 1°C [22].

The encapsulation yield (Y) was calculated based on dry
matter measurements using the following formula (Eq. (1)),
as described by Fang and Bhandari [23].

Y =
Micoencapsulated powder g
Core g + wall materials g

× 100 1

The bulk density (g/cm3) of encapsulated powders was
measured according to the method described by Tonon
et al. [24].

The particle size of the microencapsulated powders, in
terms of diameter, was determined using a laser diffraction
particle size analyzer (SALD-2101, Shimadzu, Kyoto, Japan)
based on the procedure by Parrarud and Pranee [25].
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The determination of the glass transition temperature
(Tg) was carried out using a differential scanning calorime-
ter (DSC) instrument (DSC1 Mettler Toledo, Switzerland)
according to the method described by Mahalleh et al. [26].

2.5. Determination of the Chemical Properties and Antioxidative
Activity of Microcapsules. The encapsulation efficiency of
microencapsulated powder was calculated according to the
method described by Montero et al. [27] and in

EE =
TAst − SAst

TAst
× 100, 2

where TAst and SAst are the total and surface astaxanthin con-
tent of the freeze-dried microcapsules.

The total astaxanthin content of microcapsules was
determined as follows: 100mg of the powder was thoroughly
mixed with a mixture of ethanol, acetic acid, and water (with
a 42 : 8 : 50 ratio) with a magnetic stirrer for 2min. Then,
5ml of hexane was added, stirred, and centrifuged at
5000 g for 5min at 25°C. The absorbance of the supernatant
hexane phase was measured according to the method
described by Sachindra and Mahendrakar [28].

AST
μg
g

=
A ×D × 106

100 ×G × d × E1%
1cm

, 3

where Ast is the astaxanthin concentration in μg/g, A is the
absorbance at 470nm, D is the extract volume in hexane, 106

is the dilution multiple, G is the sample weight in g, d is the
cuvette width, and E is the extinction coefficient, 2100 [28].

The amount of surface astaxanthin was determined by
washing 100mg of the microencapsulated powder twice with
2mL of hexane. Each washing step lasted 5 s. After an appro-
priate dilution, the absorbance of hexane was measured, and
the amount of surface astaxanthin was determined using
Eq. (3).

Free radical scavenging activity was evaluated by
2,2-diphenyl-1-picrylhydrazyl (DPPH) assay according to
Ramadan et al.’s [29] method using

DPPH% =
ADPPH − AS

ADPPH
× 100, 4

where AS is the DPPH solution absorbance when the extract
has been added at a specified amount and ADPPH is the DPPH
solution absorbance.

2.6. Scanning Electron Microscopy. Scanning electron
microscopy was employed to examine the particle structures
of the prepared microcapsules. The analysis was conducted
using a scanning electron microscope (LEO 1450, VP,
Germany) following themethod described by Ahmed et al. [30].

2.7. Evaluation of Stability of Encapsulated Powders to UV
Light. The prepared microcapsules were packaged in low-
density polyethylene plastic bags and subjected to UV light
(four 15W lamps, 254 nm, placed 20 cm away from the sam-
ples) for 10 h. Sampling was conducted initially (zero time)
and every 2 h, and the amount of astaxanthin in the samples
was measured.

The degradation kinetics of astaxanthin under UV light
were determined by analyzing the rate constants with
respect to time using Equation (5). Additionally, the half-
life time (T1/2) was calculated using Equations (6).

Ct = C0 exp k × t , 5

T1/2 =
Ln 0 5

k
=
0 693
k

, 6

where C0 is the initial astaxanthin content and Ct is the
astaxanthin content after time t (min) while k is the first-
order kinetic constant [31, 32].

2.8. Experimental Design and Statistical Analysis. In this
study, a simplex lattice mixture design (a type of lattice
design) based on the procedures outlined by Mahalleh
et al. [26] was adopted to investigate the impact of MD7,
MD20, and Hi-Cap 100 on the physicochemical characteris-
tics of dried microencapsulated powder. The dependent
variables (responses) were analyzed in relation to various
physicochemical properties of the encapsulated powders.
Multiple response optimizations were performed to identify
the optimal combination of experimental factors that simul-
taneously optimize the responses. The component propor-
tions were expressed as fractions of the mixture, with a
sum of 100 (A + B + C). The levels of MD7, MD20, and
Hi-Cap 100 and experimental design in terms of coded
and uncoded values as 14 combinations are presented in
Table 1. Design-Expert 11.0 software (Stat-Ease Inc., Minne-
apolis, USA) was utilized for regression analysis, as well as
generating 3D surface and Cox response trace plots. The sig-
nificance levels for statistical procedures were set at P ≤ 0 01
and P ≤ 0 05. Numerical optimization was used to find the
best conditions for shrimp shell waste extract microencapsula-
tion on responses. Experiments were aimed at maximizing

Table 1: Experimental design and mass fraction of three wall
components according to simplex lattice mixture design.

Mixtures
Wall proportions (uncoded values)

MD7 Hi-Cap 100 MD20

1 0 50 50

2 50 0 50

3 0 0 100

4 50 50 0

5 100 0 0

6 16.67 66.67 16.67

7 100 0 0

8 0 100 0

9 0 0 100

10 16.67 16.67 66.67

11 66.67 16.67 16.67

12 33.33 33.33 33.33

13 50 50 0

14 0 100 0
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encapsulation yield, astaxanthin content, and antioxidant activ-
ity (free radical scavenging capacity). Means were compared
using MstatC software. Analysis data on the stability kinetics
of microcapsules were performed with ANOVA. ANOVA
and regression analyses were performed using MstatC and
Excel software. All measurements and trials were performed
in triplicates, and significant differences between means were
determined using multiple range tests by Duncan (P values less
than 0.05 were considered statistically significant).

3. Results and Discussion

3.1. Model Fitting. Tables 2 and 3 summarize the results of
using response surface methodology (RSM) to assess the
impact of different wall materials (MD7, Hi-Cap 100, and
MD20) on the physicochemical properties of shrimp shell
extract encapsulation. In order to determine the experimen-
tal model for predicting the response, polynomial equations
including linear, two factorial (interactive), quadratic, and
cubic were fitted to the data obtained from the response sur-
face methodology. These models were then statistically com-
pared to determine the most optimal model for predicting
the responses. The selected model should have a nonsignifi-
cant lack of fit and the highest values of R2 and adjusted R2.
The regression models in this study had R2 and adjusted R2

values greater than 0.70, indicating a good fit of the models
to the data. Additionally, the Adeq precision values for all
physicochemical parameters were higher than 4, which is
desirable as it suggests a good signal-to-noise ratio.

To assess the accuracy of the proposed model, the exper-
imental results were compared with the predicted values
obtained from the mathematical models (Tables 2 and 3).
The data were gathered around the predicted model, as seen
by the plots of the predicted values against the experimental
values; as a result, there is a positive correlation between the
predicted and experimental values. Additionally, the resid-
uals do not exhibit any particular pattern or structure, as
shown by the plots of the residuals against the fitted values.
Regression models are therefore suitable.

3.2. Physical Properties of the Microcapsules. Table 4 displays
the average values for multiple responses, such as moisture,
encapsulation yield, bulk density, particle size, and glass
transition temperature.

The moisture content is a significant parameter that
affects the efficiency of drying, powder flow, stickiness, and
storage stability of the product [33, 34]. There was a signifi-
cant difference in the moisture content of the microcapsules
(7.9 to 12.5%) (P < 0 05). The equation to predict the mois-
ture content response was derived using pseudocomponent
values obtained from the mixture design (Eq. (7)). The
equation is as follows, where A represents MD7, B represents
Hi-Cap 100, and C represents MD20:

Y = 9 95A + 11 45B + 10 60C − 10 64AB − 1 93AC
− 11 01BC − 8 56A2BC − 69 40AB2C + 222 11ABC2

7

The equation, expressed in coded factors, enables the
prediction of the response at specific levels of each factor.
In this coding system, the high levels of the mixture compo-
nents are denoted as +1, while the low levels are represented
as 0. This coded equation is useful for assessing the relative
impact of each factor by comparing the coefficients associ-
ated with each factor.

Comparing the treatment means showed that higher
concentrations of Hi-Cap 100 (100%) resulted in a signifi-
cant rise in moisture content (12.5%, Table 4). The Cox
response trace plot and response surface plot (Figures 1(a)
and 1(b)) indicated that the moisture content of the micro-
capsules decreased as the levels of the wall materials
approached the midpoint of the triangular design (where
the three points have equal proportions). Overall, higher
levels of MD7, Hi-Cap 100, and MD20 were associated with
higher moisture content (Figures 1(a) and 1(b) and Table 4).
This variability in moisture content might be attributed to
the chemical structure and water affinity of the wall mate-
rials. Hydrocolloid materials with hydrophilic groups tend
to bind water molecules, resulting in higher moisture reten-
tion [35]. Additionally, the use of maltodextrin as a coating
wall has been reported to enhance drying speed due to its
low resistance to mass transfer high solubility in water, low
viscosity even at high solid content, neutral flavor, and col-
orless solutions, and they are readily available [36].

Based on Table 4, the encapsulation yield (Y) ranged
from 85.2% to 95.5%. The analysis of variance revealed a
statistically significant impact of the wall composition on
the microencapsulation yield (P < 0 05). The relationship
between the wall materials (MD7, Hi-Cap 100, and MD20)
and Y was quadratic, and higher yields were obtained in
microcapsules containing a mixture of MD7 (66.7% or
16.7%), Hi-Cap 100 (16.7%), and MD20 (16.7% or 66.7%).
The regression equation for the Y response, expressed in
terms of L-pseudocomponent values obtained from the mix-
ture design, is presented in

Y = 88 59A + 87 20B + 86 25C + 14 61AB
+ 29 89AC + 21 14BC

8

The yield of encapsulation initially increased and then
decreased upon increasing the amount of MD7 or MD20
up to 33.3% (where the three points have equal ratios)
(Figures 1(c) and 1(d)). The plots also indicated that a lower
value of Hi-Cap 100 leads to a higher encapsulation yield.
The properties of the wall and core materials such as emul-
sification properties and drying parameters are those factors
which affect the yield of encapsulating [37].

The bulk density of the microcapsules ranged from 0.121
to 0.192 g/cm3, and the interaction between the three com-
ponents was found to be significant (P < 0 05). Among the
microcapsules, those coated with Hi-Cap 100 and MD20 at
a concentration of 50% exhibited the highest bulk density
(0.192 g/cm3). The bulk density of powders can be influ-
enced by factors like particle size, fragility, and fluidity.
Moreover, the molecular weight of the wall materials also
plays a role in determining the bulk density of the powders.
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Smaller overall volume results in higher bulk density, as dis-
cussed by Mahdavi et al. [38].

Equation (9) represents the regression equation for bulk
density response in terms of L-pseudocomponent values
generated through mixture design.

Y = 0 131A + 0 155B + 0 146C − 0 068AB − 0 018AC
+ 0 162BC − 0 021A2BC − 1 11AB2C − 1 28ABC2

9

3.3. Particle Size, Glass Transition Temperature, and the
Scanning Electron Microscopy. The average particle sizes
(μm) of microcapsules obtained with various wall materials
are shown in Table 4. The particle size of the microcapsules
ranged from 31.9 to 38.5μm. The composition of the wall
material is the primary factor influencing the particle size
of the microcapsules. The freeze-drying process can lead to
a wide size range of microcapsules (20-5000μm) due to the
sublimation of ice crystals and longitudinal fractures, as
observed by Azarpazhooh et al. [21]. Condurache et al.
[39] reported size ranges of 8.5 to 81.2μm and 31.2 to
43.5μm for microencapsulated powders.

Table 4 presents a comparison of the glass transition
temperature of the prepared microcapsules. The glass transi-
tion temperature is the temperature at which molecular
movements begin in the polymer. The glass transition tem-
perature of all microcapsules was higher than the ambient
temperature. Moreover, microcapsules that contained the
same amount of wall material exhibited higher glass transi-
tion temperatures than other microcapsules. Therefore, the
softening of microcapsules were delayed at room tempera-
ture. The combination of MDs and Hi-Cap 100 may lead
to increase stability and delay crystallinity in the microcap-
sules. The phenomenon of core material release and transfer
through the wall material in the rubbery and soft state of the

polymer (temperature above the glass transition point) was
reported by Chen et al. [40] and Azarpazhooh et al. [41].

According to the scanning electron microscope images
(Figure 2), it is evident that the various types of prepared
microcapsules lack a distinct geometric shape. This lack of
uniformity may be attributed to the interplay of pressure
and temperature during the freeze-drying process. The sub-
limation of ice crystals without a phase change leads to the
retention of solid materials in a sponge-like, brittle, and flaky
state. To safeguard the active compounds against heat and
oxygen, glass structures are employed [42]. The formation
of surface wrinkles and cavities on the surface of the micro-
capsule probably indicates the effect of mechanical stress
and drying conditions on the wall materials. Mahalleh
et al. [26] reported that the surface of freeze-dried microcap-
sules with Arabic gum and MD were brittle and dentate.

3.4. Chemical Properties of Microcapsules. Table 5 shows the
encapsulation efficiency, astaxanthin content, and DPPH
radical scavenging power. Encapsulation efficiency is the
percentage of the active component that was successfully
protected in the carrier material. Encapsulation efficiency
was from 54.9 to 90.5%. Equation (10) represents the regres-
sion equation for EE response.

Y = 64 73A + 56 64B + 64 61C + 49 58AB + 20 23AC
+ 9078BC + 313 48ABC

10

The encapsulating wall materials showed a significant
effect on EE (P < 0 05). Several researches have revealed dif-
ferent astaxanthin encapsulation efficiency. Gomez-Estaca
et al. [9] reported that the EE of the encapsulation of astax-
anthin extracted from shrimp waste using complex coacer-
vation with gelatin-cashew gum as core wall material
followed by freeze-drying was 60%. Vakarelova et al. [43]

Table 4: The effect of type and concentration of wall compounds on physical properties of encapsulated powders.

Wall composition Moisture
(%)

Encapsulation yield
(Y, %)

Bulk density
(g/cm3)

Particle size
(μm)

Glass transition
temperature (Tg, °C)MD7 Hi-Cap 100 MD20

0 50 50 8 3 ± 0 51 g 93 2 ± 1 01b 0 192 ± 0 007a 34 1 ± 0 87b 51 4 ± 0 04e
50 0 50 9 8 ± 0 34de 94 8 ± 0 86b 0 135 ± 0 002de — —

0 0 100 10 4 ± 0 11cd 85 4 ± 2 18f 0 143 ± 0 003c — —

50 50 0 8 2 ± 0 90fg 93 3 ± 1 47b 0 124 ± 0 007gh — —

100 0 0 10 4 ± 0 64c 91 2 ± 1 11c 0 130 ± 0 003e — —

16.67 66.67 16.67 8 6 ± 0 76fg 90 5 ± 1 25cd 0 138 ± 0 001d 38 5 ± 1 25a 69 1 ± 0 01b
100 0 0 9 5 ± 0 77ef 85 2 ± 1 26f 0 132 ± 0 002e — —

0 100 0 12 5 ± 0 18a 89 0 ± 1 15d 0 158 ± 0 001b — —

0 0 100 10 8 ± 0 39c 86 4 ± 0 84ef 0 149 ± 0 004c — —

16.67 16.67 66.67 11 4 ± 0 16b 94 7 ± 1 7ab 0 136 ± 0 001d 31 6 ± 1 12c 68 9 ± 0 02b
66.67 16.67 16.67 9 0 ± 0 18e 95 5 ± 1 1a 0 121 ± 0 002h 31 9 ± 1 20c 64 2 ± 0 11c
33.33 33.33 33.33 9 8 ± 0 61de 91 3 ± 1 76c 0 128 ± 0 001fg 35 9 ± 0 94b 70 9 ± 0 08a
50 50 0 7 9 ± 0 03g 90 8 ± 0 45cd 0 129 ± 0 001f 35 1 ± 1 37b 57 6 ± 0 09d
0 100 0 11 4 ± 0 41bc 85 8 ± 0 58f 0 155 ± 0 001b — —

Means ± SD (standard deviation) within a column with the same lowercase letters are not significantly different at P < 0 05.
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reported 62-65% EE via ionic gelation. Huang et al. [44]
showed 85% EE via sodium caseinate and κ-carrageenan as
wall materials. Other investigations have found EEs of
58.76% for carboxymethyl cellulose sodium (CMC-Na)
[12], 94.34% for zein and oligochitosan [12], and various
percents of EE for microcrystalline cellulose (MCC) [7].

Also, results showed that the combination of MD and
Hi-Cap 100 in the wall material considerably enhanced EE
(P < 0 05), indicating that using a single wall material is
not sufficient to achieve the desired quality attributes of
microencapsulation. Combining various components such

as carbohydrates, proteins, polysaccharides, and gums can
lead to better results and help achieve maximum EE. As
can be seen in Figures 2(a) and 2(b), EE increased by
increasing wall level to the central point of the triangular
design (33.3%) compared to the use of each coating individ-
ually (P < 0 05). The efficiency of encapsulation is influenced
by various factors, including the properties of the coating
and core materials, such as emulsifying properties and dry-
ing parameters [45].

The astaxanthin concentration of the microcapsules
ranged from 28.8 to 45.1μg/g (P < 0 05) (Table 5). Equation
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Figure 1: The effect of wall composition on the moisture content (%) and encapsulation yield (Y, %) of the microcapsules. (a, c) Response
surface plots and (b, d) Cox plots. (A) MD7; (B) Hi-Cap 100; (C) MD20.
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Figure 2: Continued.
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(11) represents the regression equation correlating the
response of astaxanthin content.

Y = 33 49A + 29 59B + 33 60C + 23 80AB + 7 78AC
+ 39 31BC + 157 89ABC

11

The quantity of astaxanthin in the Cox trace plot
(Figure 3(d)) showed that the quantity of astaxanthin in
the microcapsule increased significantly with increasing the
coating concentration from 0 to 33.3% (the central point of
the triangular simplex pattern) and then decreased by
increasing coating concentration from 33.3 to 100%. This
suggests that there is a coating concentration at which the
astaxanthin content of the microcapsules can be maximized.
Also, the results indicated that the higher equivalent of dex-
trose maltodextrin (DE) causes more astaxanthin protection
in the capsule. The DE value of MD is in the range of 3–20,

indicating that it has a complex blend of high and low
molecular weight compounds and a lengthy carbohydrate
chain. The beneficial consequence of increasing the equiva-
lence of dextrose is attributed to the decrease of the capsule’s
permeability to oxygen and thus the preservation of suscep-
tible materials [46].

Table 5 shows the antioxidant capacity of the microcap-
sules ranged from 40.5 to 63.5%. Several studies have revealed
the antioxidative properties of astaxanthin [47–49]. Astax-
anthin has unique chemical properties due to its molecular
structure, which plays an important role in scavenging free rad-
icals and chelating heavy metals. The high antioxidant proper-
ties of astaxanthin are related to the presence of hydroxyl and
keto fragments on the ionic ring. Astaxanthin inhibited free
radicals both in the part of the unsaturated conjugated chain
(polyani) and in the part of the terminal rings (c3 rings) [50].

Equation (12) represents the regression equation for
DPPH radical scavenging power of astaxanthin in terms of

(i) (j)

Figure 2: Scanning electron micrographs of freeze-dried encapsulated powders. (a) MD7 (50), Hi-Cap 100 (50), and MD20 (0); (b) MD7
(50), Hi-Cap 100 (0), and MD20 (50); (c) MD7 (0), Hi-Cap 100 (0), and MD20 (100); (d) MD7 (50), Hi-Cap 100 (50), and MD20 (0); (e)
MD7 (100), Hi-Cap 100 (0), and MD20 (0); (f) MD7 (16.66), Hi-Cap 100 (66.67), and MD20 (16.66); (g) MD7 (100), Hi-Cap 100 (0), and
MD20 (0); (h) MD7 (16.66), Hi-Cap 100 (16.66), and MD20 (66.67); (i) MD7 (66.67), Hi-Cap 100 (16.66), and MD20 (16.66); (j) MD7
(33.33), Hi-Cap 100 (33.33), and MD20 (33.33).

Table 5: The effect of type and concentration of wall compounds on chemical properties of encapsulated powders.

Wall composition Encapsulation efficiency
(EE, %)

Astaxanthin content
(AST, μg/g)

DPPH radical scavenging
power (DPPHsc, %)MD7 Hi-Cap 100 MD20

0 50 50 83 1 ± 1 60bc 41 2 ± 0 34b 55 6 ± 0 75c
50 0 50 69 4 ± 0 85e 35 2 ± 0 73e 48 1 ± 0 15f
0 0 100 59 9 ± 0 23f 31 4 ± 1 04f 40 9 + 0 42h
50 50 0 70 6 ± 0 49e 35 8 ± 0 56e 47 3 ± 0 67f
100 0 0 58 6 ± 1 35f 30 0 ± 0 96f 42 2 ± 1 07g
16.67 66.67 16.67 81 5 ± 0 90c 41 3 ± 0 76bc 56 44 ± 0 57c
100 0 0 70 7 ± 1 44e 36 9 ± 0 14g 51 2 ± 0 37e
0 100 0 58 5 ± 0 79f 30 3 ± 0 94f 40 5 ± 0 25h
0 0 100 69 1 ± 1 21e 35 5 ± 0 41e 48 4 ± 1 11f
16.67 16.67 66.67 83 9 ± 0 98b 42 8 ± 1 11b 58 9 + 0 21b
66.67 16.67 16.67 80 2 ± 1 16c 40 8 ± 0 96cd 54 9 ± 0 24d
33.33 33.33 33.33 90 5 ± 2 17a 45 1 ± 0 76a 63 5 ± 0 84a
50 50 0 75 5 ± 1 30d 39 1 ± 0 30d 51 8 ± 1 37e
0 100 0 54 9 ± 2 81g 28 8 ± 0 94f 42 5 ± 0 43j
Means ± SD (standard deviation) within a column with the same lowercase letters are not significantly different at P < 0 05.
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Figure 3: The effect of wall composition on the encapsulation efficiency (%), astaxanthin content (AST, μg/g), and DPPH radical scavenging
power (DPPHSC, %) of the microcapsules. (a, c, e) Response surface plots and (b, d, f) Cox plots. (A) MD7; (B) Hi-Cap 100; (C) MD20.
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L-pseudocomponent values generated through mixture
design.

Y = 46 65A + 42 46B + 44 89C + 9 33AB
+ 10 29AC + 49 32BC + 282 61ABC

12

Based on the findings of Cox and the response surface
plots (Figures 3(e) and 3(f)), it was observed that the micro-
capsules formulated with MD20 exhibited more antioxidant
activity at lower concentrations than those formulated with
MD7. Additionally, the central point of the triangular
design, which was encapsulated with MDs and Hi-Cap

100, was stronger than the wall material alone on preserving
of the antioxidant components of the extract.

3.5. Optimization and Validation. The optimal conditions of
the different wall material concentrations for the astaxanthin
extract microencapsulation were determined using numeri-
cal optimization and graphical optimization of the software.
The desired levels of each wall material include MD7,
MD20, and Hi-Cap 100, while the dependent variables were
optimized as maximum values. Dependent variables were
analyzed individually. The Design-Expert software was
employed to obtain the optimal conditions.

A: A
100

100
B: B

100
C: C

0 0

0

Overlay plot

Encapsulation efficiency (%): 91.8
AST (�g/g): 46.1

DPPHsc (%): 64
Encapsulation yield (%): 94.6

Figure 4: The overlay contour plot.

Table 6: Predicted and experimental values of the responses at optimum conditions.

Encapsulation
yield (%)

Encapsulation
efficiency (%)

Astaxanthin
content (μg/g)

DPPH radical
scavenging
power (%)

Predicted valuesa 94.6a∗ 91.8a 46.1a 64.0a

Experimental valuesb 93 9 ± 0 97a 90 3 ± 1 05a 47 1 ± 0 72a 62 8 ± 0 95a
Note: aPredicted using response surface quadratic model. bMean ± standard deviation of triplicate determinations from experiments. ∗Data within a column
with the same lowercase letters are not significantly different at P < 0 05.
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The optimal amounts of wall materials for microencapsula-
tion were 29.4% (MD7), 34.% (Hi-Cap 100), and 36.6%
(MD20). The degree of desirability of the optimal point was
0.97. A degree of desirability above 0.8 can be considered to
be suitable and/or acceptable. At the optimal type and concen-
tration of wall materials, The encapsulation yield (Y), encapsu-
lation efficiency (EE), astaxanthin content (Ast), and DPPH
capacity were 94.6%, 91.8%, 46.1μg/g, and 64.0%, respectively.
The overlay graph is presented in Figure 4. Table 6 shows pre-
dicted and experimental values of the responses at optimum
conditions. The models’ efficiency was demonstrated by the
lack of significant deviations between the models and the
experimental observations (P < 0 05).

3.6. Stability of Encapsulated Powders to UV Light. Polar ionic
rings and nonpolar conjugate bonds of astaxanthin absorb UV
light and safeguard cells from oxidative damages [50]. The
storage conditions influenced the astaxanthin retention rate.
The more duration of light exposure caused the more astax-
anthin release percentage. To better understand the decrease
in astaxanthin levels under UV light irradiation, kinetic
parameters such as the rate constant of astaxanthin reduction
(K) and its half-life (T1/2) were calculated (Table 7). The
degradation of astaxanthin followed a first-order equation.
Nonencapsulated astaxanthin was highly sensitive to UV light,
leading to rapid degradation (with a higher reaction rate con-
stant), so that only 15% of astaxanthin was retained after 10
hours of UV light exposure. Additionally, the astaxanthin
reduction of microcapsules containing the equal percentage
of MD7, MD20, and Hi-Cap 100 and optimal wall composi-
tion were lower than the others.

This finding is in accordance with that of Jiang and Zhu
[12] who reported that after 9.5 hours of UV irradiation, the
levels of astaxanthin in free and encapsulated forms were
60% and 82.4%, respectively.

4. Conclusions

In this research, freeze-dried shrimp shell extract was encap-
sulated by using maltodextrin (MD7 and MD20) and modi-

fied starch (Hi-Cap 100) as wall materials in a mass ratio of
1 : 5 (extract/wall material, w/w) and freeze-drying method.
The resulting microcapsules exhibited particle sizes ranging
from 31.9 to 38.5μm, lacking a distinct geometric shape. A
simplex lattice design with augmented axial points in a mix-
ture design was used to optimize the wall materials. Under
the optimized conditions, the highest encapsulation yield,
encapsulation efficiency, astaxanthin content, and DPPH
capacity were achieved, indicating the significance of the
model employed. During a 10-hour UV light exposure, the
investigation of astaxanthin compounds in the microencapsu-
lated derived from shrimp shell waste extract demonstrated
that the loss of astaxanthin was significantly influenced by
the specific wall composition. Notably, the wall material with
the same percentage of walls (33.3) and optimal wall composi-
tion (29.4% (MD7), 34.0% (Hi-Cap 100), and 36.6% (MD20))
exhibited remarkable stability, preserving the structural char-
acteristics of the product and minimizing astaxanthin reduc-
tion compared to other wall materials.
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Additional Points

Practical Applications. This work fabricated a novel encapsu-
lation system for astaxanthin extract from shrimp (green tiger)
by-products through different wall materials and freeze-drying
methodology. The optimized-microcapsulated astaxanthin
powders showed proper physicochemical properties and were
UV stable whichmake them possible to use in cosmetics, phar-
maceuticals, food and beverage, and dietary supplements.
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Table 7: The effect of UV light on the reaction rate constant, correlation coefficient, and half-life of astaxanthin in microcapsules.

Wall composition Reaction rate constant
(k × 10−2) (h-1) Half-life (h) R2 Retention

astaxanthin (%)MD7 Hi-Cap 100 MD20

0 50 50 0.036 19.4 0.97 69.9

50 0 50 0.045 15.3 0.99 63.4

0 0 100 0.0455 15.3 0.97 62.7

50 50 0 0.0445 15.6 0.99 64.4

100 0 0 0.0595 11.7 0.99 55.45

16.67 66.67 16.67 0.035 20.0 0.99 71.3

0 100 0 0.059 11.8 0.96 55.3

16.67 16.67 66.67 0.033 20.9 0.97 75.5

66.67 16.67 16.67 0.038 18.3 0.98 68.3

33.33 33.33 33.33 0.027 26.1 0.99 76.7

29.39 34.07 36.55 0.026 26.3 0.99 76.9

0 0 0 0.132 5.3 0.98 15.2
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