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Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum.
Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming
wild mushrooms.*ousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species
of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this
study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of
model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision
Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural
network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32
using the t-distributed stochastic neighbor embedding (t-SNE) method. *e results show that ViT-L/32 is the best on the testing
dataset, with an accuracy score of 95.97%. *ese results surpass previous approaches in reducing intraclass variability and
generating well-separated feature embeddings.*e proposed method is a promising deep learning model capable of automatically
classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and
preventing public health incidents of food poisoning.*e results will offer valuable resources for food scientists, nutritionists, and
the public health sector regarding the safety and quality of mushrooms.

1. Introduction

Fungi represent a highly diversified component in the
ecological systems with a major connection with living
organisms [1–4]. Despite recent breakthroughs in fungal
taxonomic identification, only 5% of the 3,8 million fungal
species have been discovered [5]. Of the fungal species,
Morchella, Tuber melanosporum, and Cantharellus cibarius
are in the macro-fungi group and produce mushrooms that
have distinctive fruiting bodies from an underground my-
celium [6]. *ese fungal species are not autotrophs because
of the deficiency of chlorophyll. However, their enzymes can
break down complex substrates to obtain the nutrients
needed for growth [1, 2, 6]. *us, mushrooms are classified
based on their edible, medicinal, or poisonous properties [7].
Mushrooms are also divided into temperate, tropical, or

subtropical fungi. Edible mushrooms are a diverse and
important group of fungi. A previous study found that more
than 3000 varieties of mushrooms were edible, accounting
for 20% of all mushroom species taxa reported in worldwide
sources [8].*emost common edible mushrooms areWhite
Button, Shitake, Portobello, Oyster, Enoki, Cremini, Lion’s
Mane, Turkey Tail, Hen of the Woods, Beech, Chanterelle,
Porcini, etc. People consume these edible mushrooms for
their nutritional and medicinal value. However, many
poisoning incidents occur yearly by consuming wild
mushrooms [9, 10]. Poisonous mushroom species can cause
health complications when ingested, such as liver failure,
acute gastroenteritis, dizziness, respiratory distress, renal
failure, erythromelalgia, and rhabdomyolysis [11, 12]. *us,
mushroom collectors often confuse edible and nonedible
wild mushrooms due to their similarities. Sometimes,
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victims do not exhibit the symptoms of poisoning imme-
diately after ingestion as the symptoms often appear after
48 h [13]. *e severity of the symptoms varies from case to
case. In cases of fatal outcome, poisonous mushrooms can
lead to death, and the median time to death was 6.1 days
(2.7–13.9 days) after ingestion [14]. Some of the most
poisonous mushroom species include Amanita phalloides
(the death cap), Amanita virosa (the destroying angel),
Amanita muscaria (the Fly Agaric), and Cortinarius rubellus
[15]. Globally, thousands of poisoning incidents from
mushrooms are reported every year, and 80% of them are
from unidentified species of mushrooms [16]. In China, 480
distinct types of toxic mushrooms cause seven different
clinical syndromes, including acute renal failure, rhabdo-
myolysis, acute liver failure, gastroenteritis, psychoneuro-
logical illness, hemolysis, and photosensitive dermatitis [7].
Particularly, the liver suffers from irreparable damage when
consuming toxic species [17]. Mushroom poisoning is the
major cause of oral poisoning deaths in China, with a sig-
nificant risk to farmers owing to its typical temporal ag-
gregation (from summer to autumn) and high mortality rate
(approximately 20%) [10]. According to the China Center
for Disease Control and Prevention, mushroom poisoning
incidents are reported every month, especially from summer
to autumn, with a peak in July. In 2020, a total of 676 in-
dependent mushroom poisoning incidents were reported in
1719 patients, and 25 deaths were investigated in 24 pro-
vincial-level administrative divisions [9].

Experts use the traditional method for classifying and
identifying mushrooms based on their morphology. *e
mushroom structures vary from species to species. However,
their overall structure comprises cap, flesh, gills, and stalk.
Some may have rings and receptacles. Generally, cap
characteristics, such as shape, size, color, and surface cov-
ering, are used to identify mushrooms. Color, texture,
thickness, and emulsion are used to identify mushrooms’
flesh characteristics. Differences between the gill charac-
teristics of mushrooms are based on the bearing, color,
density, length, and injury discoloration. Stalk characteris-
tics, such as length, size, shape, texture, color, and coverings,
play a dominant role in identifying mushrooms. Experts use
ring characteristics, such as color, texture, shape, and growth
position, to identify mushrooms. Shape, size, color, and
cracking situation are the differences remarked in a re-
ceptacle of mycorrhizal [18, 19]. *ese morphological
characteristics are critical tools for distinguishing different
species of mushrooms [20]. However, due to a lack of
knowledge, skills, and guidance from mushroom experts,
many locals face the risk of consuming toxic mushrooms as
these mushrooms are morphologically similar to edible
mushrooms [3].

Some studies have attempted to learn the mushrooms’
characteristics through artificial intelligence and have de-
veloped models to assist consumers in identifying different
species of mushrooms and in preventing mushrooms poi-
soning. *ese studies can be divided into two main learning
approaches. One approach is to manually extract mushroom
features and classify the input features by using machine
learning models such as support vector machines (SVMs)

[21], logistic regression [22], and random forest [23]. An-
other approach involves extracting features automatically
from mushroom images using deep learning models (e.g.,
CNN) [24].

Many studies have used machine learning to classify
mushrooms. For example, Ottom et al. [21] collected the
mushroom image from a public dataset to classify mush-
rooms using different machine learning algorithms, such as
neural networks (NNs), SVMs, decision trees, and k-nearest
neighbors (kNN). Of these methods, kNN achieves the best
result for classifying mushroom images with 94% accuracy
using features extracted from the images and dimensions of
mushroom species. Wagner et al. [25] have established the
largest and most comprehensive dataset available for pre-
dicting the edible group of mushrooms. *ey evaluate
several different machine learning models, such as naive
Bayes, logistic regression, linear discriminant analysis, and
random forests (RF). Of these models, RF provides the best
results with fivefold Cross-Validation accuracy and an F2-
score of 1.0 (μ�1, σ � 0), respectively. Tongcham et al. [26]
proposed a machine learning algorithm to classify the oyster
mushroom spawn. *ey measured the performance of five
machine learning classifiers, and 4-fold cross-validation
demonstrated that the deep neural network classifier has a
higher accuracy of 98.8% with a residual variance of 2.5%.

Despite the advances of machine learning for classifying
and recognizing mushroom classification, machine learning
algorithms have some limitations. For example, they require
manual feature extraction as input data. Moreover, machine
learning has low efficiency and accuracy when using large
mushroom samples. Machine learning cannot accurately
measure various metrics and cannot automate the full
process of recognition. Deep learning (DL) was proposed
[27] to solve the problem of automatic feature extraction and
image classification, such as CNN [28], recurrent neural
network (RNN) [29], and generative adversarial network
(GAN) [30]. However, limited studies used deep learning to
examine automatic mushroom recognition. Previous studies
have focused on using CNN models for mushroom classi-
fication by establishing basic architectures or using transfer
learning with pretrained architectures. Sajedi et al. [31] used
a four-layer basic CNN to automatically identify mucilagi-
nous taxa. *e initial stage in this approach is to extract
image features using a CNN, and these characteristics are
input into machine algorithm classifiers such as SVM,
XGBoost, and Extreme Learning Machine (MLP). *e
CNN-MLP model outperformed the others with 80.7%
accuracy, 100% precision, and 100% recall, which was ap-
proximately 5% better than SVM and XGBoost. Devika et al.
[32] suggested a mushroom classification using deep con-
volutional neural networks (DCNN) model of four con-
volutional layers and one fully connected layer. On the test
set, the DCNN model was pitted against the network
structures sNet, LeNet, AlxNet, and cNET. *e DCNN
shows an accuracy of 93% better than the mushroom
classifier. Wang et al. [33] suggested a bilinear convolutional
neural network (B-CNN) based on an attention mechanism
for the Amanita classification. After training, the B-CNN
model achieves the accuracy of 95.2% in the test set, which
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helps solve the problem associated with the image classifi-
cation of genus Amanita in the wild complex environment.
Preechasuk et al. [24] established a basic CNN architecture
to classify multiple types of mushrooms. *e experimental
dataset includes 8556 mushroom images classified into 45
types, of which 35 are edible mushrooms, and the other 10
are poisonous. *e suggested method presents results of
78%, 73%, and 74% in terms of average precision, average
recall, and average F1-score, respectively. Zahan et al. [4]
applied deep learning models such as Inception-V3, VGG-
16, and Resnet50 to identify mushroom species on a dataset
of 8190 mushroom images. *ey used the contrast-limited
adaptive histogram equalization with the Inceptionv3 net-
work and obtained accuracy of 88.4% on the test set.

Currently, few studies identify mushrooms using deep
learning models, and no interpretability studies classify
mushrooms using deep learning models. To address these
issues, we conduct this study with the following major
contributions:

(1) *is study proposes a novel deep learning pipeline
(ViT-Mushroom) based on the ViT-L/32 network
for mushroom classification, which is more suitable
for the dataset after fine-tuning. A thorough search
of the literature shows that this is the first study to
classify mushrooms using a transformer-based
model.

(2) Additionally, we visualize the high-dimensional
outputs of the ViT-L/32 model to analyze clustering
the feature space based on t-SNE and compare the
learned features using the CNN models.

2. Datasets

*e mushroom dataset used in our experiments was mainly
obtained from Kaggle, and the original source of the images
was mainly from https://www.mushroom.world, which in-
cludes Agaricus, Amanita, Boletus, Cortinarius, Entoloma,
Exidia, Hygrocybe, Lactarius, Pluteus, Russula, and Suillus
for a total of 11 different species of mushrooms.

We uploaded the processed data to the Kaggle platform
as a public database and available at https://www.kaggle.
com/mustai/mushroom-12-9528. *e data and labels were
examined by the Nordic Association of Mycologists. *e
dataset consists of 9528 mushroom images, of which 80%
were used for training and validation, and the other 20%
were used for model testing, as shown in Table 1.

3. Methods

3.1. ViT-Mushroom. Figure 1 shows the architecture of the
ViT-Mushroom. *e backbone of ViT-Mushroom is ViT-
L/32, and it uses a transfer learning-based method
[34, 35]. After the breakthrough of the Transformer [36]
for dealing with natural language processing (NLP) tasks
recently, ViT [37] has been implemented as an image
recognition method for computer vision applications
[38]. It is possible to solve the CNN difficulties that re-
quire stacking more layers and expanding the receptive
field by employing Multi-Head Attention [37, 39–41]. ViT
comprises these components: Linear Projection of Flat-
tened Patches (Embedding layer), Transformer Encoder,
and MLP Head.

ViT divides the original image into patches and
transforms each patch into a vector to obtain a flattened
patch. *e shape of the input image is H ×W ×C, where C
represents the number of input image channels, and H
and W represent the height and width of the original
image. ViT obtains N image patches by segmenting the
original image with a P × P patch. ViT converts the image
of H ×W ×C into a sequence of N × (P2 ×C). *e sequence
contains a total of N image patches, and the dimension of
each image patch is P2 ×C. Finally, the image patches are
flattened and mapped to D dimensions using a linear
projection with position-encoded vectors, analogous to
the Word Vectors in NLP. *e input sequence z of ViT is
formulated as

Table 1: Training, validation, and test sets for the mushroom
classification dataset.

Class Photo
Dataset

Training Validation Testing Total

Agaricus 681 97 195 973
Amanita 523 75 150 748
Boletus 751 107 215 1073
Cortinarius 585 83 168 836
Entoloma 587 84 168 839
Exidia 304 44 87 435
Hygrocybe 520 75 149 744
Lactarius 760 109 218 1087
Pluteus 308 44 89 441
Russula 751 107 215 1073
Suillus 462 66 133 661
Total 6664 953 1911 9528
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where y is the output of ViT. ViT is mainly composed of
Multi-Head Attention (MSA) andMLP (two fully connected
layers and a Gaussian error linear unit activation function),
with LayerNorm and residual connections added in front of
MSA and MLP, as shown in Figure 2.

3.2. Transfer Learning. In deep learning, labeled image data
are scanty, and the Calibration effort is extremely expensive
[42]. Meanwhile, transfer learning has attempted to over-
come the problem of insufficient labeled training data. *is
makes transfer learning become a research hotspot in deep
learning to transfer knowledge to a different but relevant
second task when solving the first task. With this process,
training a new deep network for task 2 will be unnecessary
[34, 43]. Pan and Yang [43] put forward a formal definition
of the concepts of domain and task. Let X denote an input
space; X � x1, . . . , xm  ∈ X and Y denotes a label space;
Y � y1, . . . , ym  ∈ Y, and (xi, yi) denote the training pair.
LetD � 〈X, P(X)〉 denote a special domain, where P(X) is
a marginal probability distribution. T � 〈Y, P(Y|X)〉 de-
notes a task, where P(Y|X) is a conditional probability
distribution, in which the task is learned from training pairs.
Given source domain, DS � 〈XS, P(XS)〉 learning the task
TS � 〈YS, P(YS|XS)〉, target domain DT � 〈XT, P(XT)〉,
and learning task TT � 〈YS, P(YT|XT)〉 [34, 44]. Transfer
learning improves the learning of the target predictive
function P(YT|XT) in which TT uses the knowledge in DS

and TS. In this issue, the first source domain on the ViT L/32

backbone has been trained in ImageNet-21k [45, 46]. *e
goal is to assist the network extract the crucial but generic
feature representations to categorize images. After that, the
original ViT L/32 classifier head was replaced with a new
head specifically for mushroom classification.

3.3. t-SNE. *is study also explores the distribution of
features generated by the transfer learning model to better
understand their class separability [47, 48].*e output of the
high-dimensional layers was viewed using dimensionality
reduction methods [49]. *e t-SNE was presented by Van
der Maaten and Hinton [50] in 2008 as a novel method for
scaling down high-dimensional data. *e t-SNE uses sto-
chastic neighbor embedding to convert high-dimensional
Euclidean distances between data points into conditional
probabilities. Let X be a vector holding all samples in the
dataset and let Y be a target vector representing the low-
dimensional representation, as shown in Eq. 5 [49]. *e
similarity of data point xj to data point xi is described using
the conditional probability Pj|i in the original high-di-
mensional space, written as a conditional probability
[50, 51]:

Pj|i �

exp − xi − xj
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r≠sexp − xr − xs
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2
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*e probabilities in the original space are expressed as
follows:

Pj|i �
Pj|i + Pi|j 

2n
. (6)

*e data size is denoted as the number n. To minimize
overpopulation, the t-SNE employs Student’s t-distribution
with a single degree of freedom [50]. *e probability of low-
dimensional Qij is obtained from this distribution, as in-
dicated by the following expression:

Transformer Encoder

MLP
Head

Agaricus
Amanita
Boletus

Cortinarius
...

*0 1 2 3 4 5 6 7 8 9

Linear Projection of Flattened Patches

Patch+Position
Embedding

Figure 1: *e ViT-Mushroom pipeline.
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*e goal is to learn the coordination yi of the low-
dimensional space to preserve the distribution of clusters in
the low-dimensional embedding space. *e t-SNE ap-
proach finds the projections of the input data xi in the
lower dimension yi based on the Kullback–Leibler diver-
gence [52] as well as the loss function and a gradient-based
technique:

KL(PQ) � 
i


j

Pijlog
Pij

Qij

. (8)

4. Experimental Setup

4.1. Augmentation. Data augmentation is applied to the
deep learning model to boost the data, prevent overfitting,
and develop a more general model. Several augmentation
procedures, such as rotation, horizontal flipping, cropping,
blurring, salt-and-pepper noise, and Gaussian noise, were
used to produce an augmented dataset. Figure 3 shows the
examples of each image augmentation method during the
mushroom dataset experiment. Finally, the images were
normalized using the mean and standard deviation of the
ImageNet dataset, and we applied the random order com-
mand to disrupt the order of all transformed operations and
increase the randomness of the operations.

4.2. Experimental Settings. *e pretrained architectures for
the classification are (1) ViT-L/32, (2) ResNet-34, (3) VGG-
16, (4) Inception-V3, (5) Inception-ResNet-V2, and (6)

Xception. *ese transformer-based and CNN-based pre-
trained models are fine-tuned according to the principles of
transfer learning [34, 53, 54], which aims to transfer the
knowledge learned to a different but relevant second task
when solving the first task [34].*e weights of the pretrained
architectures are first pretrained on ImageNet (I) to obtain a
low-level feature extractor, share knowledge among com-
puter vision problems in different fields, and serve as a
feature extractor for new image sets. Most of the image data
on ImageNet (I) belong to fields such as fish, birds, and
objects. Conversely, our targets are mushroom images, and
some trained images must fine-tune the pretraining models
in the training dataset. *erefore, we fine-tune all pre-
training networks, with the full connection layer in the
original model. *en, we change the full connection layer to
a custom layer and modify the fully connected layer
according to the number of classifications.

In our experiment, all models are trained using the
Adam optimizer with up to 30 epochs. *e training batch
size value and the test batch size are set to 16 and 8, re-
spectively. *e initial learning rate value is set to 3e-5. All
models were built using Python language. *e experiments
were performed on the GPU NVIDIA CUDA version 11.0
on a Tesla P100-16GB. In addition, the models applied in
this experiment are from the PyTorch 1.9.1 (https://pytorch.
org/) and the PyTorch Image Model Library (https://fastai.
github.io/timmdocs/).

5. Results and Discussion

Table 2 presents the experimental findings obtained through
the ViT-L/32 and other models. ViT-L/32 outperformed the
CNN techniques on the mushroom test set, with an accuracy
score of 95.97% and an AUC of 99.01%. Xception is the best
performing CNN model for mushroom classification, with
an accuracy score of 92.95% (approximately 3% lower than
ViT-L/32.) and an AUC of 97.82% (approximately 1% lower
than ViT-L/32). Xception is the only CNN model with an
accuracy of above 90%. Of the CNN models, the VGG-16
produces the worst performance with an accuracy score of
81.31% and an AUC of 92.95%. *e VGG-16’s worst per-
formance is associated with its structure and lack of new
techniques, such as a residual network and an attention
mechanism. Moreover, its connection structure is simpler
and ineffective for mushroom classification.

*us, we compared the model’s precision, sensitivity
(recall), F1 scores of ViT-L/32, and Xception. *e average
performance measures of macro average and weighted av-
erage revealed that ViT-L/32 outperforms Xception in terms
of accuracy, sensitivity (recall), and F1 scores, which thereby
obtained the best performance.

Table 3 shows the classification performance of ViT-L/32
for each mushroom species. *e results suggest that ViT-L/
32 score is high in each mushroom species’ categorization.
For Exidia species, ViT-L/32 had a higher F1-score of
99.43%, which outperformed the other six additional
mushroom species with F1 scores above 95.00%. Pluteus
(88.30%) and Entoloma (93.05%) were the only two species
that performed poorly on the ViT-L/32 model.
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Figure 2: Architecture of the encoder block and MLP.
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We further examine the results of the confusion matrix
of the six models’ classification, as shown in Figure 4. Most
models struggle to distinguish between these three types of

mushroom species: (1) Entoloma and Pluteus, (2) Lactarius
and Russula, and (3) Cortinarius and Suillus, with several
misclassifications. VGG-16 misdiagnosed 30 Pluteus photos

Table 2: ViT-L/32 vs. SOTA CNN.

Model Types
Evaluation metrics (%)

Precision Sensitivity F1-score ACC AUC

VGG-16 Macro average 81.85 79.71 80.25 81.31 92.95Weighted average 81.59 81.31 81.07

ResNet-34 Macro average 85.64 84.72 84.88 85.79 94.43Weighted average 85.85 85.79 85.59

Inception-V3 Macro average 82.21 81.91 81.94 83.04 92.88Weighted average 83.01 83.04 82.90

Inception-ResNet-V2 Macro average 85.13 84.29 84.54 85.39 94.42Weighted average 85.44 85.39 85.25

Xception Macro average 92.85 92.61 92.64 92.95 97.82Weighted average 93.20 92.95 92.98

ViT-L/32 Macro average 95.69 95.92 95.77 95.97 99.01Weighted average 96.05 95.97 95.99

Table 3: Classification evaluation results of ViT-mushroom.

Class
Evaluation metrics (%)

Precision Sensitivity F1-score
Agaricus 96.50 98.97 97.72
Amanita 100.00 96.67 98.31
Boletus 99.07 98.60 98.83
Cortinarius 94.01 93.45 93.73
Entoloma 94.48 91.67 93.05
Exidia 98.86 100.00 99.43
Hygrocybe 99.32 97.99 98.65
Lactarius 95.39 94.95 95.17
Pluteus 83.84 93.26 88.30
Russula 94.95 96.28 95.61
Suillus 96.12 93.23 94.66
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Figure 3: Examples of mushroom image augmentation: (a) original image, (b) random crop, (c) random rotation, (d) random horizontal
flip, (e) random color jitter, (f ) random blur, (g) random salt pepper noise, (h) random Gaussian noise.
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as Entoloma, 25 Russula images as Lactarius, 13 Lactarius
images as Russula, and 7 Suillus images asCortinarius. Of the
top overall performer among CNNs, Xception was mis-
diagnosed as follows: 4 Suillus as Cortinarius, 14 Pluteus as
Entoloma, 17 Russula as Lactarius, and 3 Lactarius as
Russula.

ViT-L/32 had the fewest classification errors among the
CNN models, and it was the best at identifying mushrooms.
Moreover, ViT-L/32 has a good classification accuracy for
the following mushroom groups: (2) Lactarius vs. Russula
and (3) Cortinarius vs. Suillus. Only five Lactarius photo-
graphs were misdiagnosed as Russula, whereas no Russula
images were misidentified as Lactarius. Only one Suillus
photo has been mistaken for Cortinarius.

ViT-L/32 seems to be less effective in classifying (1)
Entoloma vs. Pluteus. However, it still outperforms CNN in

total accuracy. ViT-L/32 incorrectly classifies eight Pluteus
photos as Entoloma and four Entoloma images as Pluteus.

Table 4 compares the performance of the proposed
method with methods presented by other published studies,
revealing that our approach outperforms the other five
approaches, regarding the accuracy rate.

*e classification relies heavily on the visual charac-
teristics used for categorization. Since the feature represents
the content of an image, its quality has a significant impact
on classification performance. We compare the learned
features in the CNN and transformer-based models to
evaluate how crowded the feature space is. In eachmodel, we
extract the output of the last layer of the feature extractor to
obtain a multidimensional feature vector. *en, the feature
vectors were projected to 2D space using commonly used
dimensional reduction methods, such as t-SNE approaches.
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Figure 4: Confusion matrix of the classification results of all models: (a) VGG-16, (b) ResNet-34, (c) Inception-V3, (d) Inception-ResNet-
V2, (e) Xception, (f ) ViT-L/32.

Journal of Food Quality 7



−60 −40 −20 0 20 40

−60

−40

−20

0

20

40

60

VGG-16

Agaricus

Amanita

Boletus

Cortinarius

Entoloma

Exidia

Hygrocybe

Lactarius

Pluteus

Russula

Suillus

(a)

60−40 −20 0 20 40

−60

−40

−20

0

20

40

60

Agaricus

Amanita

Boletus

Cortinarius

Entoloma

Exidia

Hygrocybe

Lactarius

Pluteus

Russula

Suillus

ResNet-34

(b)

−60 −40 −20 0 20 40

−40

−20

0

20

40

60

Agaricus

Amanita

Boletus

Cortinarius

Entoloma

Exidia

Hygrocybe

Lactarius

Pluteus

Russula

Suillus

Inception-V3

(c)

Agaricus

Amanita

Boletus

Cortinarius

Entoloma

Exidia

Hygrocybe

Lactarius

Pluteus

Russula

Suillus

−60 −40 −20 0 20 40

−40

−20

0

20

40

60

Inception-Resnet-V2

(d)

Figure 5: Continued.

Table 4: Performance of the proposed method compared with other published methods for mushroom classification.

Authors Methods description Accuracy (%)
Maurya et al. [22] Classification of mushrooms using texture features based on an SVM classifier 76.60
Sajedi et al. [31] Four-layer CNN model with MLP classifier 80.70
Zahan et al. [4] Inception-V3 deep learning network and contrast-limited adaptive histogram equalization 88.40
Kiss et al. [55] Transfer learning, noisy student, and EfficientNet-B5 model 92.60
Devika et al. [32] DCNN model with four convolutional layers and one fully connected layer 93.00
Ours Data augmentation, transfer learning and vit-l/32 network 95.97
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*e findings of t-SNE are depicted in Figure 5. *e various
colors in the scatterplot signify the images of various
mushroom classes in each subgraph. *e following con-
clusions are drawn from the t-SNE feature distribution
maps. Compared with other techniques, the t-SNE results of
ViT-L/32 are well-plotted in a relatively compact space and
exhibit the clearest separation of each class, indicating that
ViT-L/32 may minimize intraclass variances and provide
well-separated feature embeddings.

6. Conclusion

We used five models based on convolutional neural network
architecture (VGG, ResNet, Inception, Inception-ResNet-
V2, and Xception) and the ViT-L/32 model based on a
transformer architecture to train and classify 11 different
types of mushrooms. To select the most suitable deep
learning model for mushroom classification, the accuracy of
these six classification models was compared. *e results
show that the ViT-L/32 model outperforms the other five
CNNmodels in all evaluation metrics, and it has the clearest
boundaries for the scatterplots in various classes of its high-
dimensional output mapping of t-SNE. ViT-L/32 is con-
sidered a promising model for the automatic classification of
toxic and edible mushrooms. *is model can also assist wild
mushroom consumers in avoiding eating toxic mushrooms,
safeguarding food safety, and helping the public health
sector prevent incidents of foodborne diseases. *e results
will offer valuable resources for food scientists, nutritionists,
and the public health sector regarding the safety and quality
of mushrooms. In the future, we will investigate ViT net-
work-based mushroom target detection and image seg-
mentation tasks. Moreover, we will compare the
performance of ViT with other target detection and seg-
mentation models of mushrooms in future work.
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