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This study aimed to establish a method to identify the geographical origin of milk based on its amino acid profile. High-
performance liquid chromatography (HPLC) was carried out to measure amino acid contents. The significant differences of amino
acid profiles of milk samples from four regions in China (Hebei, Ningxia, Heilongjiang, and Inner Mongolia) were analyzed by
ANOVA. Furthermore, the principal component analysis (PCA) demonstrated the feasibility of geographical origin identification
using an amino acid profile, which the first 2 principal components account for 65.62% of total variance. The predictive model for
the geographical origin of milk samples was established by orthogonal partial least squares-discriminant analysis (OPLS-DA) with
a classification accuracy of 100% and the performance parameters of R°X 0.98, R*Y 0.82, and Q* 0.75. The excellent predictive
ability of the model was validated using the validation data set. The analysis of variable importance in projection (VIP) showed that
seven amino acids played a key role in the geographical origin identification. This method is a reliable strategy to identify the

geographical origin of milk for protecting consumers against mislabeling fraud.

1. Introduction

Milk and its products have become an indispensable part of
people’s life which provides about 20% of the total protein
consumed across the world. Almost all the land on earth has
pasture which keeps cows and sheep. The best pastures in the
world are concentrated on the temperate grassland at about
40-50 degrees north and south latitudes, internationally
recognized as the “golden belt of milk source,” where the
climate and environment are in favor of the growth of
forages and cows. The output, quality, and nutritional
composition of milk are closely concerned with the forage
quality and cows’ body health. Cows with a comfortable and
healthy lifestyle can provide high-quality milk. The golden
belt of milk sources in China is mainly located in the
grasslands of the Northeast, Northwest, and North China,
such as Hebei, Ningxia, Inner Mongolia, Heilongjiang, and
Xinjiang. These milk sources provide more than 60% of the
raw milk in China.

The high quality of milk is generally processed into high-
value products, such as infant milk powder produced from
the milk sources of New Zealand. The upscale market share of
dairy products in the world is almost completely occupied by
the milk sourced from these belts. The nutritional and eco-
nomic value of milk and dairy products is often associated
with their geographical origin. Just as the price of wine, coffee,
and tea varies enormously depending on where they come
from, customers are willing to pay more for the products from
some specific geographical regions with favorable acceptance
as reliable quality criteria. An example of a preeminent dairy
product is the “Emmentaler Switzerland” cheese from the
alpine regions, which has the status of a “Protected Desig-
nation of Origin (PDO)” and a considerable premium price
over Emmental cheese produced elsewhere [1].

There is an increasing demand of robust analytical
techniques for the geographical origin traceability of dairy
products that can be utilized by regulatory authorities to
ensure fair competition and protect consumers against fraud
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due to mislabeling. So far, many methods have been devel-
oped for identifying the geographical origin of foodstuffs
[2, 3]. Isotope ratio mass spectrometry (IRMS) coupled with
chemometric methods is the most promising techniques,
which has been widely used to determine the authenticity and
geographical origin of dairy products [4-7]. The values of the
stable isotope ratio of milk vary as the function of envi-
ronmental factors and animal feeding regimes, which provide
a proof correlated with the geographical origin of milk. A pilot
study was conducted to evaluate the suitability of multiele-
ment isotope ratio analysis for determining the origin of cows’
milk from seven dairying regions in Australia and New
Zealand. Each milk sample displayed a distinct fingerprint of
isotopic ratios of §°C, 8N, §'%0, 8*S, and 6*’Sr. The
potential of IRMS has been verified for determining the
geographical origin of dairy products produced within
Australasia [8]. The stable isotope ratios of §'*C and §'°N for
the milk samples were from different Italian origins, and their
fractions (fat, casein, and whey) were used to develop a new
analytical approach that can simultaneously discriminate
milk samples according to their geographical origin and type
of processing [9]. By using 6"°C and §'°N values of extracted
proteins and 8°H and 6'°0 values of milk water, IRMS was
applied to identify the geographical origin of pure milk from
Australia and New Zealand, Germany and France, the USA,
and China [10]. Using 813C, 8"N, 8°H, and 86'%0 values to
specifically assign geographical origin, Zhao et al. [11] studied
the traceability accuracy of cow milk samples from various
provinces in China. It was found that different geographical
locations with a separation distance greater than 0.7 km can
be distinguished using multi-element (C, N, H, and O) stable
isotope ratio analysis. In addition, stable isotopic ratios
analysis in combination with other techniques, such as in-
ductively coupled plasma atomic emission spectroscopy
(ICP-AES), inductively coupled plasma mass spectrometry
(ICP-MS), and nuclear magnetic resonance (NMR), was a
hopeful way for the geographical origin determination of milk
[12, 13]. Regarding dairy products, the determination of the
geographical origin of cheeses [14-16], butter [17], and milk
powder [18] was also successfully carried out by IRMS
coupled with chemometric analysis.

It has been demonstrated that isotope ratio analysis is
a powerful tool for the traceability and identification of
milk and dairy products. However, this technique has
some limitations, such as the high cost of sample analysis
and the high price of the instrument [5, 19]. The objective
of this work was to provide a new low-cost method for
identifying the geographical origin of milk and dairy
products. This method was based on the characteristics of
the amino acid profile of raw milk, as same as the isotope
ratio value which was correlated with the living envi-
ronment and feeding regimes of cows. This procedure was
carried out by amino acid analysis using high-perfor-
mance liquid chromatography (HPLC) coupled with
chemometric analysis to develop a classification model for
the geographical origin of milk. The method could be used
to prevent from the mislabeling fraud of the geographical
origin of milk.
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2. Materials and Methods

2.1. Sample Collection. Cow’s milk was sampled from dairy
farms located at four Chinese provinces (Hebei, Ningxia,
Heilongjiang, and Inner Mongolia) in August 2018. A total
of 178 fresh milk samples were collected to ensure a rep-
resentative data set (Appendix 1). The collected samples
were transported to the laboratory by cold chain logistics.
Milk samples were kept frozen at —20°C until preparation. In
addition, three samples were purchased from markets and
had production origin labels. That is, A, B, and C were
labeled as Inner Mongolia, Heilongjiang, and Ningxia,
respectively.

2.2. Sample Preparation. An approximate 50-100g (fresh
weight) homogeneous milk sample was placed on a glass
plate and lyophilized for 24h to dry powder. After being
ground, 0.2 g of freeze-dried milk powder was weighed into a
12mL glass vial, added 10mL of 6 mol/L HCL solution
(containing 1g/L of phenol) and screwed the cap tightly.
Subsequently, the hydrolysis was carried out in an air-
blowing thermostatic oven at 110°C for 24 h.

1 mL of hydrolysate was transferred into a 50 mL egg-
plant-shaped flask and evaporated in vacuo to dryness at
70°C. The residue obtained was redissolved with 2mL of
0.1mol/L HCL solution by vortex mixing and passed
through a 0.45um inorganic filter membrane. 100 yL of
hydrolysate filtrate, 200 yL of buffer solution (pH 9.0), and
100 uL of derivative agent (300 mg/mL of 2,4-dinitro-
chlorobenzene) were successively transferred into a 1.5mL
glass vial and screwed the cap tightly. After vortex mixing,
the derivatization was carried out in a thermostatic oven at
90°C for 90 min.

After derivatization, the solution obtained was adjusted
to pH 7 with 50 uL of 10% (V/V) acetic acid and diluted with
600 uL of ultrapure water. Finally, the derivative solution
was filtered through a 0.45um organic membrane for
subsequent analysis by HPLC.

2.3. Analysis of Amino Acids. The milk sample set was an-
alyzed by HPLC (2695, Waters Ltd., America) equipped with
a C18 column (4.6 mm * 250 mm * 5 ym, Kromat Universil,
America) and a PDA detector. The chromatography was
carried out with the following conditions: column tem-
perature 40°C; detection wavelength 360nm; flow rate
1 mL/min; injection volume 10uL; mobile phase A was
acetonitrile, mobile phase B was buffer solution (0.03 mol/L
sodium acetate solution, 0.15% triethylamine, pH 5.25 £ 0.05),
gradient elution procedure (0~ 10 min, 18% A; 10 ~ 15 min,
18% ~20% A; 15~ 30 min, 20% ~ 34% A; 30 ~ 35 min, 34% ~
45% A; 35 ~ 38 min, 45% ~ 55% A; 38 ~ 42 min, 55% ~ 60% A;
42 ~ 45 min, 60% ~ 18% A).

Seventeen amino acids were selected for determination.
The 17 analytes selected by short name were Asp, Thr, Ser,
Asn, Glu, Gln, Pro, Gly, Ala, Cit, Abu, Val, Met, Ile, Leu, Tyr,
Phe, Lys, His, and Arg (in elution order).
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2.4. Statistical Analysis. The data acquired by HPLC were
exported to Microsoft Excel (Microsoft Corp., USA), The
amino acid ratio, i.e., proportion of each amino acid content
in total 17 amino acid content, was used for multivariate data
analysis. Statistical analysis of amino acid was performed
using SPSS 22.0, and a post hoc Duncan’s test of analysis of
variance (ANOVA) was performed to determine significant
differences between samples from different origins. The
preprocessed data was subjected to principal component
analysis (PCA) by the Origin software package (North-
ampton, MA, USA). For modeling, the samples of each class
were divided into calibration sets (125 samples) and vali-
dation sets (53 samples) by applying the Kennard-Stone
(KS) uniform sampling algorithm. A calibration set was used
to develop a model by using the supervised technique OPLS-
DA from SIMCA 14.2 software (Umetrics, Umea, Sweden).

The permutation test (n=200) was used to evaluate
whether the data was overfitted or not. Furthermore, 7-fold
cross-validation was run, and its validation metrics were Q*
and the lowest root mean square error of cross-validation
(RMSECV). The external validation was performed
according to a previously reported procedure [20, 21]. The
external validation data set was imported into the developed
model under the “specify toolbar” of SIMCA. Its validation
metrics were the correct discrimination rate and receiver
operating curve (ROC). The area under the curve (AUC) of
the ROC illustrates the method performance; the closer to 1
the value is, the better the performance is.

3. Results and Discussion

3.1. Differences in Amino Acid Profile of Milk from Different
Geographical Origins. The content of 17 amino acids in milk
samples was determined by HPLC. The amino acid ratios,
i.e., proportion of each amino acid content to the total 17
amino acid content, were calculated and shown in Table 1.
Unlike the amino acid content, the value of amino acid ratio
is only related to the protein composition, which is not
affected by other components, such as fat, in milk samples.
So the amino acid ratio, rather than the amino acid content,
was selected to show the amino acid profile of milk. The
differences in amino acid profiles of milk samples from four
regions were analyzed by post hoc Duncan’s test of ANOVA.
The ratios of Asp, Cys, and Ala of samples were significantly
different between four regions (P <0.05). The ratios of Glu
and His in the samples were significantly different between
three of the four regions (P <0.05). The amino acid profiles
of samples from Hebei and Ningxia were relatively similar.
The results of ANOVA indicate the potential feasibility of
using amino acid ratios as an indicator of geographical
origin traceability. It was reported that the amino acid profile
of milk is linked to feed [22]. The differences in pasture
conditions, such as forage quality, feeding strategy, and
climate, lead to the differences in the amino acid profiles of
milk from different geographical origins.

3.2. Potential of Geographical Origin Classification Based on
Amino Acid Profiles. PCA was first applied for data

visualization, which demonstrated the general potential to
differentiate between the geographical origin of milk sam-
ples using amino acid profiles. PCA is the most commonly
used variable-reduction method, which decomposes the data
matrix with # rows (samples) and P columns (variables) into
the product of a score matrix [22]. All principal components
(PCs) are mutually orthogonal. Each successive PC contains
less of the total variability of the initial data set, and the
scores show the position of samples in the space of the PCs.

PCA was carried out on the 178-sample data set of 4
geographical origins. The scores are plotted as a multiclass
model; i.e., each geographical origin of the milk sample is
separately presented as a class (Figure 1). The first two PCs
accounted for 65.62% of the total cumulative variance, which
interpreted a majority of the variables from the raw data.
Samples from Inner Mongolia are well separated from the
other three groups of samples. The three groups of samples
from Hebei, Ningxia, and Heilongjiang overlapped to a
certain extent, which was consistent with the results of the
previous ANOVA. The results suggested that the amino acid
profiles had the potential for the identification of geo-
graphical origin.

3.3. Establishment of the OPLS-DA Model. As an unsuper-
vised chemometric method, PCA just shows the data as they
are, which is frequently seen as a practical indicator for the
potential of OPLS-DA model [23]. Conversely, OPLS-DA is
a supervised chemometric method that can determine
features within data and is explicitly oriented to address
particular issues, such as food authentication and geo-
graphical origin traceability. By constructing the predictive
models, OPLS-DA can separate and classify new data points,
which allows it to be used as a nontargeted method to
analyze whether an unknown sample is accepted or rejected
by a predefined class. Through orthogonal signal correction
(OSC), by filtering out the useless orthogonal information in
the independent variable X matrix which is not related to the
dependent variable Y, the correlation between X and Y is
strengthened, and the explanatory ability and accuracy of
predicting model are improved. [24, 25].

The predicting model of OPLS-DA was established using
the calibration data set with unit variance scaling and principal
components of “3+8+0.” It was shown that there was a clear
clustering of milk samples from different regions with obvious
separation boundaries (Figure 2(a)). Note that the new vari-
ables t1 and t2 summarize the X-variables. Score t1, which is
the first component, corresponds to the largest variation of the
X space, followed by t2, and so on. Inner Mongolia samples
were negatively affected by tl, while samples from other
provinces both had positive score values for t1. Ningxia, Hebei,
and Heilongjiang samples were separated according to t2,
where Heilongjiang samples were negatively affected. The
prediction performance of the model was frequently assessed
according to the cumulative coefficient of determination
(R* (cum)) and cross-validated coefficient of determination
(Q? (cum)). R? evaluates the fitting degree and @’ indicates the
predictability. And R* values were evaluated based on their
components attributed to the input variables (R*X (cum)) and
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TaBLE 1: Amino acid ratios (mean values + SD, %) of milk samples from different regions.

Amino acids Hebei Inner Mongolia Ningxia Heilongjiang
Asp (%) 9.11+0.24° 7.80+0.76% 9.58 +0.21° 8.50 +0.30°
Glu (%) 22.78 +0.73° 20.94 + 1.61° 23.83 +0.46" 21.04 £0.94°
His (%) 2.60 +0.24° 2.67 +0.23° 2.50+0.19° 217 £0.14°
Ser (%) 5.66 +0.47% 5.82+0.63% 5.95 +0.34° 5.47 +0.52°
Arg (%) 3.84 +0.38° 3.52+0.33" 3.79+0.43° 3.53+0.52°
Gly (%) 1.96 +0.22° 2.05+0.27° 1.73+0.23° 1.74 +0.20°
Thr (%) 4.66 +0.32° 4.66 + 0.43" 4.60 £0.10% 4.38+0.42°
Pro (%) 8.53+0.62° 10.31 +1.20° 7.78 +0.32° 8.17 +0.78%
Ala (%) 3.59+0.11° 3.15+0.21¢ 3.68 +0.09° 3.47 +0.15°
Val (%) 6.05+0.24° 6.59 +0.44° 6.02+0.17% 5.89+0.21°
Met (%) 2.11+0.18° 1.91+0.23 213+0.18° 2.18+0.14°
Cys (%) 0.65+0.07¢ 0.81 +0.13" 0.70 + 0.08° 0.74 +0.06°
Tle (%) 4.75+0.23° 510 +0.32° 4.73+0.15° 4.78+0.19°
Leu (%) 8.94 +0.24 1012 +0.55% 8.80 £0.27% 8.73 +£0.25°
Phe (%) 4.42+0.21% 4.51+0.31° 4.46+0.20" 435+0.15°
Lys (%) 7.61 +1.69" 6.58 +3.39" 7.25+1.37° 10.32 +1.57°
Tyr (%) 2.73 +0.94% 3.45+2.24° 247 +0.72¢ 454+1.43°

Mean values in a row with different superscript letters are significantly different by post hoc Duncan’s test (P <0.05).

PC2 (27.8%)
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o Hebei

FIGURE 1: PCA score plot for different geographical origins of milk
samples.

class response (R*Y (cum)). The model was considered stable
and robust when the values of R* and Q> were greater than 0.5,
and the closer to 1 these values were, the better the model was
[26]. The model fitting parameters of R*X (cum) and R*Y
(cum) were 0.98 and 0.82, respectively, and the prediction
parameter of @ (cum) was 0.75. In addition, the lowest root
mean square error of cross-validation (RMSECV) for the
proposed model was 0.18. Note that the closer to 0 the value is,
the better the model is. The above results indicated that the
model had a good fitness and a strong ability of prediction. In
the score plot (Figure 2(a)), it seems that the data point dis-
tribution is relatively close between samples from Hebei and
Ningxia. However, these two groups are clearly separated from
each other in the corresponding 3D model plot (Appendix 2).
The data points of the Inner Mongolia samples were separated

very successfully from those of the other three regions,
probably because their large differences in latitude and lon-
gitude led to differences in amino acid profiles.

The permutation test (n=200) was performed to assess
whether the OPLS-DA model overfitted the data or not
(Figure 2(b)). The results showed that the intercept value of
QY was below 0, and the values of R? and Q* on the left were
all lower than the original points on the right, which in-
dicated that the model was valid and did not exhibit
overfitting [27]. Moreover, the statistical significance of the
OPLS-DA model was also validated by Pcy_snova Value,
which was 0. The result of the ROC curve can also represent
the ability of the model to classify samples correctly. Of
those, an ACU value of 1 in Figure 2(c) revealed an excellent
performance of this model.

The analysis of variable importance in projection (VIP)
was performed to evaluate the contribution of independent
variables to the model classification. The potential key
markers for differentiation between classes were determined
according to the criteria of both the variable importance in
projection (VIP) value >1 and P <0.05 [28]. As can be seen
from Figure 2(d) and Appendix 3, Asp, Glu, Leu, Cys, Ala,
Pro, and Val gave a major contribution to the model clas-
sification and were proposed as potential markers between
four different geographical origins of milk samples.

The amino acids required by dairy cows include essential
and nonessential amino acids. Essential amino acids are
those that cannot be synthesized by the cow herself and need
to be absorbed directly from feed or metabolites by the
microbiome of the rumen, including Arg, His, Ile, Leu, Lys,
Met, Phe, Thr, and Val [29, 30]. Nonessential amino acids
are synthesized through the cow’s metabolism using feed
and amino acid profiles are controlled by genes. The amino
acids in milk are fractionated from the amino acids in the
blood through mammary metabolism. Therefore, the rea-
sons for amino acid differences between cow milk origins
may include: metabolism differences of essential amino acids
between cow milk origins are mainly influenced by feeding
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FIGURE 2: OPLS-DA analysis based on amino acid ratios. (a) Score scatter plot of the OPLS-DA model for different geographical origins of
milk samples. (b) Result of permutation test for OPLS-DA model (intercepts: R*=(0.0,0.05); Q*=(0.0, —0.29)). (c) ROC curves and (d) VIP

values of OPLS-DA.

differences, as different topography and environment result
in different feed population. Metabolism differences of
nonessential amino acid between cow milk origins are
mainly influenced by genetic differences because different
regions may raise different breeds of cows and different
environments can also cause genetic mutations for cows on
adapting to the environment. In addition, the microbiome of
the rumen may also vary depending on the environment,
and it has been reported that some amino acids in cows are
derived from these microbial metabolites [29]. In conclu-
sion, amino acid differences between cow milk origins are
influenced by a combination of many factors that are rep-
resentative of the origin, including the regional climate
conditions (rainfall, temperature, possibility to graze) and
the breeding of different breeds.

3.4. Validation of the OPLS-DA Model. The predicting model
of OPLS-DA established was validated using the validation
data set. The OPLS-DA model is a binary classification
method that can only assign imaginary value of 1 and 0. For
example, if the imaginary values of 1 (deviation <0.5) is
assigned to the class predefined as Hebei, the value of 0
(deviation <0.5) will be assigned to the other three classes

(Inner Mongolia, Ningxia, and Heilongjiang). The predicted
values of classification were separately calculated by the
OPLS-DA model for each of four classes, and the results of
four binary classification predictions are shown in Figure 3.
The classification accuracy of the predicting model was 100%
for the four classes (Table 2). All the samples were correctly
classified, which suggested the powerful predicting ability of
the model.

3.5. Practical Application of the OPLS-DA Model.
Chemometric analysis, particularly using the partial least
squares-related methods, can intuitively visualize the clas-
sification results, and is widely used in the field of geo-
graphical origin traceability. Xie et al. [13] established an
OPLS-DA model for milk traceability in a small-scale region.
Chen et al. [31] used PCA and LDA to trace the geographical
origin of Thelephora ganbajun. However, these studies did
not perform the practical application to the real samples. It is
crucial to provide a practical process for identifying the
geographical origin of commercial milk using the proposed
model. The OPLS-DA model established has been applied to
the geographical origin identification of commercial milk in
this study. Firstly, amino acid ratios in the unknown milk
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F1GURE 3: The results of the four binary classification predictions. The values of 1 are assigned to (a) Hebei, (b) Inner Mongolia, (c) Ningxia,
and (d) Heilongjiang, respectively.

TaBLE 2: Discrimination accuracy (%) of the model and validation.

a Model Validation
ass

Sample size Correct (%) Sample size Correct (%)
Hebei 33 100 14 100
Inner Mongolia 33 100 14 100
Ningxia 12 100 5 100
Heilongjiang 53 100 14 100

TasLE 3: The predicted values of the hold out samples in the 4 binary categories.

Samples YPred (Hebei) YPred (Inner Mongolia) YPred (Ningxia) YPred (Heilongjiang)
A 0.29 0.91 -0.09 -0.11
B 0.04 -0.06 —-0.00 1.03
C 0.26 -0.03 0.59 0.18

samples were measured. Subsequently, these data were
imported into the developed model under the “specify
toolbar” of SIMCA. The geographical origin class of the
sample was judged according to the predicted value. If the
predicted value of an unknown sample locates at the range
from 0.5 to 1.5 in one of the four binary classifications, it will
be identified as the corresponding class of geographical

origin with an assigned value of 1. According to the above
procedure, the predicted values of three samples were ob-
tained, which are detailed in Table 3. The predicted results
show that the samples of A, B, and C are from Inner
Mongolia, Heilongjiang, and Ningxia, respectively, which is
consistent with the labeled information of geographical
origin.
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4. Conclusions

This study provided a method to identify the geographical
origin of milk based on its amino acid profile. The significant
differences of amino acid profiles of milk samples from four
regions in China (Hebei, Ningxia, Heilongjiang, and Inner
Mongolia) were analyzed by ANOVA and PCA. The results
suggested that the amino acid profiles had the potential for
the identification of geographical origin. The predictive
model for the geographical origin of milk samples was
established by OPLS-DA with the correct classification ac-
curacy of 100%. The excellent predictive ability of the model
was validated using the validation data set. The VIP analysis
showed that the amino acids of Asp, Glu, Leu, Cys, Ala, Pro,
and Val gave a major contribution to the model classifi-
cation. This method is a reliable strategy to identify the
geographical origin of milk for protecting consumers against
mislabeling fraud.
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