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Origanum majorana belongs to the Lamiaceae family as a famous spice plant in Egypt, which is used to treat arthritis, allergies,
fever, flu, hypertension, respiratory infections, migraine, and asthma. In our studies, it was found that the ethanol extract of
O. marjoram could significantly reduce NO release at 200 (P< 0.001), 100 (P< 0.001) and 50 (P< 0.01) μg/mL compared with the
model group. .erefore, the chemical constituents were further studied to obtain the bioactive compounds. As a result, ten
compounds were isolated and identified from the 70% ethanol extract ofO. marjoram, including six flavonoids (3–8), two terpene
derivatives (9-10), one lignan (2), and one phenolic glycoside (1). Among them, compounds 1–3, 5, and 9-10 were isolated from
this genus for the first time. Compounds 1, 9, and 10 could significantly decrease the content of NO at the concentration of 100 μm
(P< 0.001) in RAW264.7 cells induced by LPS. Furthermore, compounds 9 and 10were more effective than compound 1 to lower
the content at 50 μm (P< 0.001).

1. Introduction

Inflammation is the normal protective reaction in response
to infection, tissue injury, trauma, or noxious stimuli, and it
is the most common pathological process in many diseases
[1, 2]. Activated macrophages directly resist pathogens
through phagocytosis or indirectly resist pathogens by
producing related factors, such as nitric oxide (NO), in-
terleukin (IL), and tumor necrosis factor-α (TNF-α), and
produce inflammatory responses [3, 4]. Local skin inflam-
mation is usually manifested as red, swollen, hot pain.
Respiratory inflammation is usually characterized by cough,
expectoration, and dyspnea. Besides fever and vomiting,
brain inflammation also has obvious headache. Accumu-
lating evidence suggest that inflammation is an important
pathological process of various kinds of human chronic
diseases including cardiovascular diseases, neurological
disorders, and cancer. .erefore, it is determined as an
important treatment strategy to inhibit the inflammatory

response [5–7]. .us, it is particularly important to search
for compounds with antiinflammatory activity.

Medical food is popular, and themarket has grown in the
whole world [8]. Origanum majorana is a medicinal plant,
belonging to the Lamiaceae family, and it can be used as
medical food. It is native to North Africa and southwest Asia
and grown in France, Greece, Hungary, Egypt, and other
Mediterranean countries [9]. O. marjoram is widely used in
traditional medicine to treat a variety of diseases, including
allergies, fever, flu, hypertension, respiratory infections,
migraine, and asthma [10]. In Egypt, O. marjoram has been
used as an antiseptic, insect repellent, and expectorant and
for arthritis, muscle pain, and rheumatism for thousands of
years. In our studies, it was found that the ethanol extract of
O. marjoram significantly reduced NO release at 200
(P< 0.001), 100 (P< 0.001), and 50 (P< 0.01) μg/mL com-
pared with the model group.

.erefore, in order to find the compounds with anti-
inflammatory activity, the chemical constituents and the
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antiinflammation activity were investigated. As a result, 10
compounds were isolated and identified as robust aside B (1)
[11], syringaresinol-β-D-glucoside (2) [12], (−)-(2S)-5,3′,4′-
trihydroxy-7-methoxy-dihydroflavone (3) [13], luteolin (4)
[14], luteolin-7-O-β-D-apiofuranosyl-(1⟶6)-β-D-gluco-
pyranoside (5) [15], apigenin-4′-O-α-D-glucopyranoside (6)
[16], apigenin-8-C-β-D-glucopyranoside (7) [17], 5,6,4′-
trihydroxy-7,8,3′-trimethoxyflavone (8) [18], (6R, 7E, 9R)-9-
hydroxy-4,7-megastigmadien-3-one (9) [19], and (6R, 9S)-9-
hydroxy-megastigma-4, 7-dien-3-one-9-O-β-D-glucopyr-
anoside (10) [20] (Figure 1). .e bioactivity assay showed
that compounds 1, 9, and 10 could significantly decrease the
content of NO in RAW264.7 cells induced by LPS.

2. Materials and Methods

2.1. Reagents and Instruments. .e following technologies
were used in this research. NMR spectra were performed on
Bruker AM-400 instruments with TMS as the internal
standard (Bruker, Bremerhaven, Germany). Column chro-
matography was performed by using silica gel (200–300 and
300–400 mesh, Qingdao Marine Chemical Inc., Qingdao,
China), Rp-18 gel (40–63 μm,Merck, Darmstadt, Germany),
and Sephadex LH-20 (20–150 μm, Amersham Biosciences,
Uppsala, Sweden).

.e following reagents were used in this research.
RAW264.7 cells were purchased from the Typical Culture
Preservation Committee Cell Bank; fetal bovine serum
(FBS) from Gibco, Grand Island, NE, USA; Dulbecco’s
Modified Eagle’s Medium (DMEM) from Procell, Wuhan,
China; LPS and L-NMMA from Sigma-Aldrich, St. Louis,
MO, USA; and the NO kit from Shanghai Beyotime
Biotechnology.

2.2. Plant Material. O. majorana was provided by the De-
partment of Medicinal and Aromatic Plants, Horticultural
Research Institute, Egyptian Agricultural Research Center.
.e samples were identified by Prof. Changqin Li (Henan
University). A voucher specimen (20191008) was deposited
in National R&D Center for Edible Fungus Processing
Technology, Henan University.

2.3. Extraction and Isolation. .e dried aerial parts of
O. majorana (4.9 kg) were extracted with petroleum ether at
room temperature for 72 h to remove the volatile oil. .e
filter residue was soaked and extracted three times (each
time for 7 days) with 70% ethanol at room temperature and
then filtered and evaporated under reduced pressure to
obtain a crude extract (1360 g).

.e crude extract was chromatographed on D101
macroporous resin column chromatography and eluted with
water, 20% ethanol, 40% ethanol, 60% ethanol, and 95%
ethanol, respectively, to obtain five fractions (Fr. A∼Fr. E).
Fr. B (115 g) was subjected to silica gel column chroma-
tography, eluting with a gradient of CHCl3-MeOH (40 :1∼1 :
1) to obtain eight subfractions (Fr. B-1∼Fr. B-8) by TLC
plate analysis. Fr. C (70 g) was subjected to silica gel column
chromatography, eluting with a gradient of CHCl3-MeOH

(50 :1∼5 :1) to obtain five subfractions (Fr. C-1∼Fr. C-5) by
TLC plate analysis.

Fr. B-1 (1.57 g) was subjected to silica gel column
chromatography and eluted with PE-EtOAc (3 :1, v/v) to
obtain fraction B-1-1 to fraction B-1-4. Fraction B-1-3
(167mg) was subjected to silica gel column chromatography
and eluted with CHCl3-MeOH (60 :1, v/v) to obtain com-
pound 9 (8.7mg).

Fr. B-3 (1.59 g) was subjected to silica gel column
chromatography and eluted with CHCl3-acetone (6 :1, v/v)
to obtain fraction B-3-1 to fraction B-3-7. Fraction B-3-1
(115mg) was purified by Sephadex LH-20 (MeOH) to obtain
compound 4 (24mg).

Fr. B-4 (3.1 g) was separated by an automatic preparation
of liquid chromatography (MeOH-H2O, 55 : 45, v/v) to
obtain fraction B-4-1 to fraction B-4-4. Fraction B-4-1
(1.04 g) was subjected to silica gel column chromatography,
eluted with a system of EtOAc-MeOH (10 :1, v/v), and then
purified by Sephadex LH-20 (MeOH) to obtain compound 2
(80mg). Fraction B-4-3 (248mg) was purified by Sephadex
LH-20 (MeOH) to obtain compound 10 (35mg).

Fr. B-5 (8.0 g) was subjected to silica gel column chroma-
tography and eluted with EtOAc-MeOH (20 :1, v/v) to obtain
fraction B-5-1 to fraction B-5-7. Fraction 1 (307mg) was sub-
jected to silica gel column chromatography, eluted with CHCl3-
MeOH (40 :1, v/v), and further purified by semipreparative
HPLC (MeOH-H2O, 51 : 49 v/v) to obtain compound 5
(7.6mg). Fraction B-5-4 (846mg) was subjected to Sephadex
LH-20 (MeOH) and further purified by semipreparative HPLC
(MeOH-H2O,48 : 52, v/v) to obtain compound 6 (5.2mg).

Fr.B-6 (15 g) was performed by Rp-18 column chro-
matography (MeOH-H2O, 30 : 70⟶100 : 0, v/v) to obtain
fraction B-6-1 to fraction B-6-5. Fraction B-6-1 (699mg) was
subjected to Sephadex LH-20 (MeOH) and further purified
by semipreparative HPLC (MeOH-H2O,51 : 49, v/v) to ob-
tain compound 1 (10.8mg). Fraction 6-4 (1.32 g) was re-
peated by crystallization to obtain compound 7 (32mg).

Compound 8 (230mg) was obtained by recrystallization
from Fr. C-1-1 (1.06 g). Fr. C-1-2 (2.21 g) was subjected to
silica gel column chromatography and eluted with CHCl3-
MeOH (100 :1, v/v) to obtain fraction C-1-2-1 to fraction
C-1-2-3. Fraction C-1-2–3 (187mg) was purified by
Sephadex LH-20 (MeOH) to obtain compound 3 (33mg).

2.4. Spectral Data of Compounds

2.4.1. Robustaside B (1). White amorphous powder,m/z: 434,
molecular formula C21H22O10; 1H-NMR (CD3OD, 400MHz)
δH: 3.36∼3.50 (3H,m, H-2′, 3′, 4′), 4.35 (1H, dd, J� 11.8, 6.6Hz,
H-6′a), 4.53 (1H, d, J� 11.9Hz, H-6′b), 4.73 (1H, d, J� 7.1Hz,
H-1′), 6.29 (1H, d, J� 15.9Hz, H-7″), 6.65 (2H, d, J� 8.8Hz,
H-3, 5) 6.80 (1H, d, J� 8.1Hz, H-5″), 6.94 (3H, m, H-6, 2, 6),
7.06 (1H, s, H-2″), 7.58 (1H, d, J� 15.9Hz, H-8″); 13C-NMR
(CD3OD, 100MHz) δC: 127.7 (C-1″), 115.0 (C-2″), 149.7 (C-
3″), 146.8 (C-4″), 116.5 (C-5″), 123.1 (C-6″), 114.8 (C-7″),
147.2 (C-8″), 169.0 (C�O), 103.7 (C-1′), 74.9 (C-2′), 77.9 (C-
3′), 71.8 (C-4′), 75.5 (C-5′), 64.7 (C-6′), 153.9 (C-1), 119.6 (C-2,
6), 116.6 (C-3, 5), and 152.3 (C-4).
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2.4.2. Syringaresinol-β-D-glucoside (2). White powder, m/z:
580, molecular formula C28H36O13; 1H-NMR (DMSO-d6,
400MHz) δH: 3.00∼3.19 (6H, m, H-2‴, 6‴), 3.75 (6H, s, 3′-
OCH3, 5′-OCH3), 3.74 (6H, s, 3″-OCH3, 5″-OCH3), 4.88
(1H, brs, H-1‴), 6.60 (2H, s, H-2′, 6′), 6.66 (2H, s, H-2″, 6″);
13C-NMR (100MHz, DMSO-d6) δC: 152.6 (C-3″, C-5″),
147.9 (C-3′, C-5′), 133.7 (C-1″), 134.8 (C-4′), 137.2 (C-4″),
131.3 (C-1′), 104.1 (C-1‴), 103.6 (C-2″, 6″), 102.6 (C-2′, 6′),
85.4 (C-2), 85.1 (C-6), 77.2 (C-5‴), 76.5 (C-3‴), 74.2 (C-2‴),
71.3 (C-4), 71.2 (C-8), 69.9 (C-4‴), 60.9 (C-6‴), 56.4 (3′-
OCH3, 5′-OCH3), 56.0 (3-OCH3, 5-OCH3), 53.7 (C-1), and
53.6 (C-5).

2.4.3. (−)-(2S)-5,3,4′-Trihydroxy-7-methoxy-dihydro�avone (3).
White powder, m/z: 302, molecular formula C16H14O6; 1H-
NMR (400MHz, DMSO-d6) δH: 12.11 (1H, s, 5-OH), 9.06
(1H, s, H-3′), 6.89 (1H, s, H-2′) 6.75 (2H, t, H-5′, 6′), 6.07
(2H, m, H-8, H-6), 5.42 (1H, dd, J� 12.6, 3.0Hz, H-2), 3.24
(1H, dd, J� 17.1, 12.6Hz, H-3a), 2.72 (1H, dd, J� 17.1,
3.1Hz, H-3b), 3.77 (3H, s, 7-OCH3), 13C-NMR (100MHz,
DMSO-d6) δC: 196.9 (C-4), 167.4 (C-7), 163.2 (C-5), 162.9
(C-9), 145.8 (C-4′), 145.2 (C-3′), 129.3 (C-1′), 118.0 (C-6′),
115.4 (C-5′), 114.4 (C-2′), 102.7 (C-10), 94.6 (C-6), 93.8 (C-
8), 78.7 (C-2),55.9 (7-OCH3), and 42.2 (C-3).

2.4.4. Luteolin (4). Yellow powder, m/z: 286, molecular
formula C15H10O6; 1H-NMR (DMSO-d6, 400MHz) δH:
12.98 (1H, s, 5-OH), 7.42 (1H, brd, J� 7.6Hz, H-6′), 7.39
(1H, brs, H-2′), 6.88 (1H, d, J� 7.6Hz, H-5′), 6.67 (1H, s,
H-3), 6.44 (1H, d, J� 1.6Hz, H-8), 6.18 (1H, d, J� 1.6Hz,
H-6); 13C-NMR (DMSO-d6, 100MHz) δC:164.2 (C-2), 102.9
(C-3), 181.7 (C-4), 161.5 (C-5), 98.9 (C-6), 164.2 (C-7), 93.9
(C-8), 157.3 (C-9), 103.7 (C-10), 121.5 (C-1′), 113.4 (C-2′),
145.8 (C-3′), 149.8 (C-4′), 116.0 (C-5′), 119.0 (C-6′).

2.4.5. Luteolin-7-O-β-D-apiofuranosyl-(1⟶6)-β-D-gluco-
pyranoside (5). Yellow powder,m/z: 580, molecular formula
C26H28O15; 1H-NMR (DMSO-d6, 400MHz) δH: 6.74 (1H, s,
H-3), 6.47 (1H, d, J� 1.9Hz, H-8), 6.39 (1H, d, J� 1.9Hz,
H-6), 5.18 (1H, d, J� 6.5Hz, Glu-1); 13C-NMR (100MHz,
DMSO-d6) δC: 162.3 (C-2), 103.0 (C-3), 181.7 (C-4), 156.8
(C-5), 99.2 (C-6), 164.5 (C-7), 94.3 (C-8), 161.1 (C-9), 105.4
(C-10), 121.0 (C-1′), 113.3 (C-2′), 145.8 (C-3′), 150.3 (C-4′),
116.0 (C-5′), 119.3 (C-6′), 98.5 (Glu-1), 73.0 (Glu-2), 75.7
(Glu-3), 69.4 (Glu-4), 76.6 (Glu-5), 65.6 (Glu-6), 108.8 (Api-
1), 76.1 (Api-2), 79.2 (Api-3), 74.0 (Api-4), and 64.1 (Api-5).

2.4.6. Apigenin 4′-O-α-D-glucopyranoside (6). Yellow
powder, m/z: 432, molecular formula C21H20O10; 1H-NMR
(DMSO-d6, 400MHz) δH:7.91 (2H, d, J� 8.7Hz, H-2′, H-6′),
6.88 (2H, d, J� 8.8Hz, H-3′, H-5′), 6.84 (s, H-3), 6.80 (d,
J� 1.9Hz, H-8), 6.40 (d, J� 1.9Hz, H-6), 5.02 (2H, d, Ha-6″,
Hb-6″); 13C-NMR (DMSO-d6, 100MHz) δC:181.9 (C-4),
164.4 (C-2), 162.8 (C-5), 161.3 (C-4′), 156.8 (C-9), 128.6 (C-
2′), 128.6 (C-6′), 121.0 (C-1′), 116.1 (C-3′, 5′), 105.2 (C-10),
103.0 (C-3), 99.9 (C-1″), 99.5 (C-6), 95.0 (C-8), 77.2 (C-3″),
76.4 (C-5″), 73.1 (C-2″), 69.6 (C-4″), and 60.6 (C-6″).

2.4.7. Apigenin-8-C-β-D-glucopyranoside (7). Yellow pow-
der, m/z: 432, molecular formula C21H20O10; 1H-NMR
(DMSO-d6, 400MHz) δH: 13.17 (1H, s, 5-OH), 8.03 (2H, d,
J� 8.7Hz, H-2′, H-6′), 6,89 (2H, d, J� 8.7Hz, H-3′, H-5′),
6,78 (1H, s, H-3), 6.27 (1H, s, H-6), 4.68 (1H, d, J� 9.3Hz,
H-1″), 3.83 (1H, t, J� 9.3Hz, H-2″), 3.76 (1H, d, J� 10.8,
H-6″), 3.49 (1H, dd, J� 10.8, 5.2Hz, H-6″), 3.24 (3H, m,
H-3″, H-4″, H-5″); 13C-NMR (DMSO-d6, 100MHz) δC:
182.1 (C-4), 164.0 (C-2), 162.6 (C-7), 161.1 (C-9), 160.4 (C-
4′), 156.0 (C-5), 129.0 (C-2′, C-6′), 121.6 (C-1′), 115.8 (C-3′,
C-5′), 104.6 (C-10), 104.0 (C-8), 102.5 (C-3), 98.2 (C-6), 81.9
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Figure 1: Structures of compounds 1–10 isolated from O. majorana.
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(C-5″), 78.7 (C-3″), 73.4 (C-1″), 70.8 (C-2″), 70.5 (C-4″),
and 61.3 (C-6″).

2.4.8. 5,6,4′-Trihydroxy-7,8,3′-trimethoxyflavone (8).
Yellow powder,m/z: 360, molecular formula C18H16O8; 1H-
NMR (DMSO-d6, 400MHz) δH: 3.89 (3H, s, 7-OCH3), 3.92
(3H, s, 8-OCH3), 3.95 (3H, s, 3′-OCH3), 6.94 (1H, s, H-3),
6.97 (1H, d, J� 8.3, H-5′), 7.56 (1H, d, J� 8.3, H-6′), 9.51 (1H,
s, 6-OH), 10.13 (1H, s, 4′-OH), 12.51 (1H, s, 5-OH); 13C-
NMR (DMSO-d6, 100MHz) δC: 163.8 (C-2), 102.7 (C-3),
182.6 (C-4), 145.4 (C-5), 134.2 (C-6), 148.0 (C-7), 132.9 (C-
8), 143.1 (C-9), 106.1 (C-10), 121.7 (C-1′), 110.0 (C-2′), 148.1
(C-3′), 150.9 (C-4′), 115.9 (C-5′), 120.3 (C-6′), 55.9 (7-
OCH3), 61.0 (8-OCH3), and 61.8 (3′-OCH3).

2.4.9. (6R, 7E, 9R)-9-Hydroxy-4,7-megastigmadien-3-one (9).
Colorless oil, m/z: 208, molecular formula C13H20O2; 1H-
NMR (CDCl3, 400MHz) δH: 5.89 (1H, s, H-4), 5.67 (1H, dd,
J� 15.3, 9.4Hz, H-8), 5.54 (1H, dd, J� 15.3, 7.8Hz, H-7),
4.35 (1H, m, H-9), 2.50 (1H, d, J� 8.8Hz, H-6), 2.32 (1H, d,
J� 18.1Hz, H-2a), 2.07(1H, d, J� 18.1Hz, H-2b), 1.89 (3H,
m, H-13), 1.29 (3H, d, J� 6.4Hz, H-10), 1.02 (3H, s, H-11),
0.95 (3H, s, H-12); 13C-NMR (CDCl3, 100MHz) δC:36.3 (C-
1), 47.6 (C-2), 199.4 (C-3), 125.9 (C-4), 162.1 (C-5), 55.6 (C-
6) 126.7 (C-7), 138.7 (C-8), 68.4 (C-9), 23.8 (C-10), 27.3 (C-
11), 28.0 (C-12), and 23.7 (C-13).

2.4.10. (6R, 9S)-9-Hydroxy-megastigma-4,7-dien-3-one-9-O-
β-D-glucopyranoside (10). White powder, m/z: 370, mo-
lecular formula C19H30O7; 1H-NMR (CD3OD, 400MHz) δH:
5.89 (1H, s, H-4), 5.76 (1H, dd, J� 15.4, 9.6Hz, H-7), 5.60
(1H, dd, J� 15.4, 7.4Hz, H-8), 4.48 (1H, dd, J� 7.4, 6.4Hz,
H-9), 4.29 (1H, d, J� 7.7Hz, H-1′), 2.70 (1H, d, J� 16.6Hz,
H-2), 2.48 (1H, d, J� 9.6Hz, H-6), 2.06 (1H, d, J� 16.7Hz,
H-2), 1.98 (3H, s, H-13), 1.29 (3H, d, J� 6.4Hz, H-10), 1.03
(3H, s, H-11), 0.99 (3H, s, H-12); 13C-NMR (CD3OD,
100MHz) δC: 202.0 (C-3), 165.7 (C-5), 137.0 (C-8), 131.2 (C-
7), 126.2 (C-4), 101.2 (C-1′), 78.3 (C-3′), 78.2 (C-5′), 74.9 (C-
2′), 74.7 (C-9),71.7 (C-4′), 62.8 (C-6′), 56.9 (C-6), 48.4 (C-2),
37.2 (C-1), 28.0 (C-12), 27.4 (C-11), 23.9 (C-13), and 22.2
(C-10).

2.5. Cell Culture and Treatment

2.5.1. Cell Culture and Cell Viability Assay. Cell treatment
methods refer to the literature [21]. Cells were then treated
with different concentrations (6.25, 12.5, 25, 50, 100, and
200 μM) of the compounds 1, 2, and 9–10, while the control
group was given the same volume of DMED. 10 μL MTT
(0.5mg/mL) was added to each well followed by further
incubation for 4 h at 37°C..en, the cell culture mediumwas
discarded and added into 100 μL DMSO. .e absorbance
was measured at 490 nm to calculate the survival rate of cells.

2.6. Nitric Oxide Assay. Cell treatment methods refer to the
literature [22]. Cells were treated with nontoxic concen-
trations of the compounds, and the positive control group

was treated with 50 μm L-NMMA stimulation for 1 h, fol-
lowed by 1 μg/mL LPS treatment. .e control group did not
add LPS. After further incubation for 24 h, the concentration
of NOwas determined according to production instructions.

3. Results and Analysis

3.1. Effects of theEthanolExtract ofO.majoranaonRAW264.7
Cell Viability and NO Production. NO is an important in-
flammatory mediator because various inflammation-related
diseases are caused by the excessive production of nitric
oxide [23]. First, the effect of the ethanol extract of
O. majorana was tested on cell viability in LPS-induced
RAW 264.7 cells. .e results showed that the ethanol extract
had no effect on cell viability when the concentration was
under 200 μg/mL (Figure 2(a)).

.erefore, the concentrations of 200, 100, and 50 μg/mL
were used to detect the NO release in LPS-induced RAW
264.7 cells. In Figure 2(b), the ethanol extract significantly
reduced NO release compared with the LPS group at 200
(P< 0.001), 100 (P< 0.001), and 50 (P< 0.01) μg/mL.

3.2. Effects of Compounds on RAW 264.7 Cell Viability.
To determine the nontoxic concentration of compounds, the
effects of different concentrations of compounds on the
viability of RAW 264.7 cells were detected by an MTTassay.
In Figure 3, compared with the control group, compounds 1,
9, and 10 did not affect cell viability when the concentration
was below 100 μM. .erefore, the concentration of 100, 50,
and 25 μM was selected for activity screening.

3.3. Effects of Compounds on NO Production. .erefore, we
evaluated the antiinflammatory activity efficacy of com-
pounds 1, 9, and 10 by detecting NO content. In Figure 4,
compared with the control group, NO content in the LPS
group was significantly higher, indicating that the inflam-
matory model was successful. Compared with the LPS
group, positive control group NO release decreased obvi-
ously (P< 0.001), compounds 1, 9, and 10 significantly
reduced LPS-induced NO production, suggesting that these
compounds had significant antiinflammatory activity.
Compound 1 inhibited NO release at 100, 50, and 25 μM,
and the effect was the best at 100 μM (P< 0.001). Com-
pounds 9 and 10 significantly decreased NO at 100 and
50 μM (μ), while compound 9 also inhibited the release of
NO at 25 μM (P< 0.01).

4. Discussion

In this study, 10 compounds were extracted and separated
from O. marjoram, including six flavonoids, two terpene
derivatives, one lignan, and one phenolic glycoside. Among
the six flavonoids, compounds 4–8 are flavones, while
compound 3 is a flavanone. .e skeleton of compound 2
belongs to furofuran lignans. Compounds 1–3, 5, and 9-10
were isolated from this genus for the first time.

In our studies, it was found that the ethanol extract of
O. marjoram could significantly reduce NO release which
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showed good antiin�ammatory activities. �erefore, the
phytochemical constituents were studied to look for the
bioactive molecules. Finally, 10 compounds were identi�ed,
and 3 compounds (1, 9, and 10) could signi�cantly decrease
LPS-induced NO production in RAW 264.7 cells. It has been
reported that compound 9 exhibited an inhibition e�ect
against leukotriene C 4 (LTC 4) synthesis and degranulation
de�nitely in c-kit ligand (KL) induced mast cells. Mast cell
LTC 4 and degranulation are the main initiating cells of type
I allergic in�ammation [24]. �ese also indicated that
compound 9 had a better antiin�ammatory e�ect. So, it can

be further studied for the antiin�ammatory mechanism of
compound 9 and to develop its application prospects.

Also, O. marjoram is rich in �avonoids. �e �avonoids
have, among others, pharmacological actions as neural
protection, antimyocardial ischemia, blood pressure re-
duction, learning memory improvement, antigastric ulcer,
reproductive tissue protection, antitumor, and lowering of
blood sugar [25]. Flavones can improve the cognitive dys-
function of Alzheimer’s disease (AD) model animals from
multiple targets, alleviate AD-like pathological symptoms,
and inhibit the pathological progress of AD [26]. Flavanones
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Figure 2: E�ects of the ethanol extract on the viability of RAW 264.7 cells (a). E�ects of the ethanol extract on NO production in LPS-
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can effectively block angiogenesis and dilate blood vessels
[27]. .ere are abundant plant resources of O. marjoram,
and the ethanol extract is rich in flavonoids, which has a
good medicinal prospect.

At present, the research on O. marjoram mainly focuses
on the constituents and pharmacological activities of the
volatile oil, but its nonvolatile components and monomer
compounds are lacking. In order to expand the application
range of O. marjoram and make full use of its medicinal
value, the chemical constituents and antiinflammatory ac-
tivity of the ethanol extract of O. marjoram were prelimi-
narily studied, which provided reasonable and reliable
scientific basis for expanding the drug sources.
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