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Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi,
yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. .e genus Bacillus is well studied for
biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and
surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immuno-
suppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food
products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be
concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we
discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their
applications in food.

1. Introduction

Biosurfactants (BSs) could be found on the surface of mi-
crobial cell and transferred into the extracellular space by
multiple filamentous fungi, and yeast (Starmerella, Candida,
Ustilago, Saccharomyces, Trichosporon, and Pseudozyma)
and bacteria (Nocardia, Rhodococcus, Acinetobacter,
Arthrobacter, and Gordonia) [1]. .ey are primarily clas-
sified according to their structural characteristics, associated
microorganisms, and molecular weight (MW) [2].

BSs have a hydrophobic region and a hydrophilic end
consisting of hydrocarbons acids, diverse fatty acids (satu-
rated, unsaturated, linear, or branched long-chain) and
carbohydrate cyclic peptide, alcohol, carboxylic acid, amino
acid, and phosphate. .is amphipathic framework provides
an ability to reduce the surface tension at the interfaces of

phases with divergent polarities, which includes emulsion
(liquid-liquid) and suspension (liquid-solid), which is col-
lectively named “dispersion” [3, 4]. BSs have also the ca-
pacity to produce molecular aggregates, for example,
micelles, like the ones patented at the critical micelle con-
centration (CMC)..e CMC of BSs is normally 1–200mg/L,
which is 10–40 times lower than that formed with chemical
surfactants [5].

BSs are produced through microbial fermentation,
which includes yeast, fungi, and bacterial strains (Pseudo-
monas, Lactobacillus, Acinetobacter, Halomonas, Rhodo-
coccus, Bacillus, Enterococcus, and Arthrobacter). Among all
microbes, genus Bacillus is well studied for its biosurfactant
production as it produces various types of cyclic lip-
opeptides/lipoproteins such as lichenysins, bacillomycin,
fengycins, and surfactins [6].
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Lipopeptides and glycolipids are highly efficient and
popular group of BSs such as surfactin and rhamnolipids,
with low-MW [7–9], whereas the high-MW BSs are lipo-
protein, phospholipids, and emulsion [10, 11]. Lipopeptide
BSs are composed of two different regions: an acyl tail (s)
and a short linear oligopeptide sequence, containing an
amide bond. .e hydrophobic tail contains a hydrocarbon
chain, whereas the hydrophilic head contains the lipopeptide
BSs peptide sequence. .e peptide module includes cationic
and anionic residues, as well as nonproteinaceous amino
acids [12].

Taking into account the unique properties of Bacillus
cyclic lipopeptides, and their applications in medicine,
healthcare, environment, agriculture, and food industries,
their biocompatibility, bioavailability, and structural di-
versity attracted further attention in the last decade [13–15].
.e nonribosomal peptide synthetase (NRPS) enzyme is
associated with the formation of cyclic lipopeptides. Lip-
opeptide surfactants are classified according to their
structure, with isoforms comprising a variety of D and L
amino acids [16, 17]. .e demand for new lipopeptides is
increasing in order to broaden their application. Earlier,
various studies have been conducted to establish the bio-
technological production, functional qualities, and physical
properties of lipopeptide surfactants. In this review article, a
comprehensive study is carried out to describe the contri-
butions of Bacillus lipopeptides in the food industry and
biological activities.

2. Classes of Lipopeptides Produced by
Bacillus spp

Lipopeptides are a subgroup of microbial surfactants, for
example, surfactin, fengycin, iturin, lichenysin, and kur-
stakin [18]. .e types or classifications of lipopeptides
surfactants are mainly based on the amino acid sequences
and various strains of Bacillus spp. producing lipopeptides
such as B. subtilis, B. cereus, B. thuringiensis, B. globigii,
B. amyloliquefaciens, B. megaterium, B. pumilus, and
B. licheniformis. [19–22] (Table 1 and Figure 1).

2.1. Surfactin. Surfactin belongs to the lipopeptides family,
which was firstly isolated by Arima et al. in 1968 and
produced by many Bacillus with surfactant activities [66].
Surfactin (1036Da) is an amphipathic cyclic lipopeptide
biosurfactant produced by many strains of the bacterial
genus Bacillus. .e surfactin molecule was firstly screened
from the culture media of B. subtilis strains and applied as a
clotting inhibitor [67, 68].

Surfactin is composed of a heptapeptide (ELLVDLL)
along with chiral sequence LLDLLDL linked with β-hydroxy
(fatty acid chain) of carbon chain (C12–C16) and forms a
close cyclic lactone ring structure. .e structure of surfactin
consists of both hydrophobic (located at 2–4, 6, and 7) and
hydrophilic (located at 1 and 5) part [69]. Surfactin displays
a stable and conserved folding in aqueous solutions, and
negatively charged amino acids, Glu and Asp, exhibit polar
domain. Moreover, it is also soluble in organic solvents, for

example, dichloromethane, ethanol, chloroform, butanol,
and methanol [70].

.e peptide part represents topology like “horse-saddle”
and is called the β-sheet structure in the backbone folding,
which believe that these structural traits contribute to the
broad spectrum of biological properties of surfactin [71, 72].

Naturally, many isoforms of surfactin present, which
only differ with their physicochemical properties such as (1)
type of amino acid of peptide ring at 2nd, 4th, and 7th
positions, and (2) branching of hydroxyl fatty acid moiety
and chain length. What’s more, isoforms also depend upon
the Bacillus strain and other factors such as media, envi-
ronmental, and nutritional conditions of substrate [73, 74].
Previously, studies reported that surfactin shows potent
antitumoral, antiviral, anticoagulant, inhibitors of enzymes,
and antimicoplasma activities [75].

2.2. Lichenysin. Lichenysin a lipopeptide produced most of
B. licheniformis strains, and it has excellent surfactant and
chelating agent for Ca2+ and Mg2+ [76–79]. Lichenysin was
also reported to exert antimicrobial, anti-inflammatory,
antitumor, and immunosuppressive properties. Besides
good biological activities, it also has hemolytic activity [79].
.ese traits of lichenysin are caused by the amphiphilic
nature of the lipopeptide. Structurally, lichenysin consists of
amino acids (7) and a β-hydroxy fatty acid along with
C12–C17 carbon atoms. Many isoforms of lichenysin are
present in nature, for example, lichenysin A [80–82]. .e
structure of lichenysin is very similar to surfactin and differs
with the substitution of glutamine with glutamic acid in the
first amino acid position [82]. However, this small difference
markedly increases the surfactant properties of lichenysin
[79].

2.3. Kurstakin. Kurstakin is a low-molecular-weight lip-
opeptide mainly produced and isolated from Bacillus
thuringiensis kurstakin HD-1. .e amino acid sequence of
kurstakin was reported as follows: .r-Gly-Ala-Ser-His-
Gln-Gln. .e fatty acyl chain of kurstakin is linked with
N-terminal amino acid residue by amide bond, and every
lipopeptide consists of lactone linkage among carboxyl
terminal amino acid and hydroxyl group in the side chain of
the serine residue [83, 84].

2.4. Iturin. Iturin are an important class of lipopeptides with
a molecular mass of ∼1.1 kDa. Iturin A consists of two parts:
(a) C14–C17 (amino fatty acids) and (b) seven amino acid
residues (heptapeptides; Asn-Tyr-Asn-Gln-Pro-Asn-Ser).
Iturin (D and E) varies from iturin A due to the presence of a
free carboxyl group in iturin D and carboxymethyl group in
iturin E. .e structure of iturin shows that it has an am-
phiphilic character [85, 86]. Iturin molecule is of great in-
terest because of their biological activities and
physicochemical traits and used in oil, pharmaceutical, and
food industries. Almost all strains of Bacillus subtilis produce
iturin lipopeptide, and its operon ranges from 38 to 40 kb in
size and contains four open reading frames such as ItuA,
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Table 1: Lipopeptide-producing strains and their applications.

Lipopeptides LP-producing bacterial strain Biological application Ref.

Surfactin

B. methylotrophicus DCS1 Antioxidant, antimicrobial, and antiadhesive activities [23]
B. mojavensis A21 Diesel biodegradation [24]

B. mojavensis PRC101 Antagonism against Fusarium verticillioides (fungal species infecting
maize) [25]

B. subtilis Inhibitory activity against phytopathogenic Fusarium sp. [26]

B. atrophaeus L193 Aphicidal activity against the aphid Rhopalosiphum padi (pest in cereal
crops) [27]

B. subtilis SAS-1
B. amyloliquefaciens BR-15 Engine oil degradation efficiently augmented (75–94%) [28]

B. subtilis SPB1 Antioxidant activity, chelating activity, histological study proved effective
treatment of complicated wound healing and skin diseases [29]

B. subtilis strain ATCC6633 Microbial enhanced oil recovery [30]

B. subtilis 573 Decreased viability of breast cancer cell lines, T47D and MDA-MB-231
and nontumor fibroblast cell line (MC-3 T3-E1) [31]

B. natto TK-1 .erapeutic agent, anti-inflammation [32]
B. subtilis ANR 88 Effective in the synthesis of silver as well as gold nanoparticles [33]

B. pumilus Silver nanoparticles produced as antimicrobial and nematicide [34]
B. subtilis LSFM-05 Nontoxic dispersion in biotechnology and nanotoxicology. [35]

Surfactin A

B. (SPB) NH-100 and NH-217 Biocontrol agent against bakanae diseases in rice [36]

B. stratosphericus sp. A15
Antioxidant and antibacterial activity, wound healing activity by
connective tissue regeneration, thickened epidermal layer, and

keratinocyte formation
[37]

Pumilacidin B. stratosphericus FLU5 Hydrocarbon removal from contaminated soil, negligible cytotoxic effect
against the mammalian cells HEK293 [38]

Lipopeptide B. subtilis SPB1 Anti-obesity effect through the inhibition of lipid digestive and liver
dysfunction enzymes [39]

Iturin A, fengycin B. amyloliquefaciens DSM 23117 Biocontrol agent against a common fungal phytopathogen botrytis cinerea [40]

Bacillomycin D B. amyloliquefaciens fiply 3A
Killing human cancer cell line viz. A549 (alveolar adenocarcinoma), A498

(renal carcinoma) and HCT-15 (colon adenocarcinoma) while not
effecting the normal cell line L-132 (pulmonary epithelial cells)

[41]

Iturin A B. subtilis Inhibiting chronic myelogenous leukemia in vitro via paraptosis,
apoptosis, and inhibition of autophagy [42]

Lipopeptide B. mojavensis ifo 15718 Pharmaceutical applications as it possesses antibacterial activity against
pathogen S. aureus and lack of toxicity to PC12 and PBMC cells [43]

Iturin A B. amyloliquefaciens PPCB004 Activity against postharvest fungal pathogens on stored fruits [44]

Fengycin B. amyloliquefaciens FZB42
Antifungal activity against fusarium moniliforme (rice bakanae disease),
fusarium oxysporum (root rot) and trichoderma atroviride (ear rot and

root rot)
[45]

Surfactin homologs
B. amyloliquefaciens MD4-12 Synergistic Antimicrobial effects against various gram-positive and Gram-

negative bacteria [46]

B. subtilis NH 217,
B. amyloliquefaciens FZB42

Excellent biofilm formation, antifungal activity against various
phytopathogen and their associated diseases [47]

Bacillomycin,
Fengycin

B. methylotrophicus XT1 CECT
8661

Effective biocontrol agent against B. cinerea infection, antioxidant
triggerer in different fruits [48]

Iturin A, Fengycin C B. Subtilis EA-CBOO15 Iturin A inhibited M. fijiensis mycelial growth, and fengycin C displayed
strong inhibitory activity on ascospore germination [49]

Iturin A, surfactin B. Subtilis Broad hypocholesterolemic activities, immune-modulators, toxins, and
enzyme inhibitors [50]

Surfactin, Fengycin B. subtilis fmbj (CGMCC no.
0934)

Effective against Newcastle disease virus (NDV) and infectious bursal
disease virus (IBDV) [51]

Lichenysin
B. licheniformis VS16 Biofilm inhibition, removal of heavy metals [52]
B. licheniformis Ali5 Enhanced oil recovery and motor oil removal from contaminated sand [53]
B. licheniformis W16 Excellent emulsification and microbial enhanced oil recovery [54]

Surfactin B. subtilis C9 Effective biocontrol agent controlling cladoceran grazers in algal
cultivation system [55]

Lipopeptide
biosurfactant B. pseudomycoides OR 1

Biocontrol agent against food-borne pathogens E. coli (MTTC 43),
Klebsiella pneumoniae (MTVV 530) and staphylococcus aureus (MTCC

96)
[56]

Novel cyclic
lipopeptide C18 B. pseudomycoides BS6 Bioremediation and recycling waste cooking oil [57]

Journal of Food Quality 3



ItuB, ItuC, and ItuD [87]. Iturin lipopeptide also contains
mojavensin, mycosubtilin, bacillomycin D, bacillomycin F,
and bacillomycin L, which differ in amino acid sequences of
the heptapeptides [88]. Iturin was reported to exert potent
antifungal activity against, Botrytis cinerea, Alternaria al-
ternate, and Penicillium expansum. Moreover, it also has
strong surface activity and destabilizing effect [89].

2.5. Fengycins. Fengycins are lipopeptides mainly produced
by the genera of Bacillus and Paenibacillus. Fengycins have
strong antifungal activity and markedly affect filamentous
fungi [90]. Fengycins are decapeptides and C14–C19 to
β-hydroxy fatty acid chain, which showed potent antifungal
activity [91, 92]. .ere are two subclasses of Fengycins,
namely, Fengycin A and Fengycin B, that only differ from
each by the amino acid attached at position 6. Fengycin B
contains Val at position 6, whereas Fengycin A contains Ala.

Fengycins (A and B) were firstly reported in B. subtilis strain
by Vanittanakom et al. [93]..e closely related fengycin type
was reported and named plipastatin due to the position of
amino acids L- Tyr and D- Tyr [94].

3. Production, Isolation, and
Characterization of Bacillus Lipopeptides

Lipopeptide surfactants are produced by many microbes
including bacteria, fungi, and yeast. However, herein, we
mainly focus on the production of Bacillus lipopeptides. .e
biosurfactants are synthesized from the extracellular or
intracellular part of microbes. Notably, biosurfactants are
produced during the stationary and exponential phase,
whereas the biosurfactant production is predominate in the
death phase. Reduction in surface tension to 8mJm−2 is the
minimum value to be considered when producing the
biosurfactant. .e various strains of Bacillus spp. produced

Table 1: Continued.

Lipopeptides LP-producing bacterial strain Biological application Ref.
Pumilacidin B. safensis CCMA-560 .ermal stable and microbial enhanced oil recovery [58]
Lipopeptide B. sp. H20-1 Antagonistic effect against sulfate-reducing bacteria [59]

Lipopeptide B. cereus UCP1615 Bioremediation of petroleum derivative in soil and water with above 90%
removal [60]

Paenibacterin Paenibacillus elgii HOA73 Effective bio-pesticide against diamondback moth Plutella xylostella
(destructive insect pest) [61]

Paenibacterin Paenibacillus
thiaminolyticusOSY-SE

Minimized endotoxemia showed low toxicity against human kidney sell
line (ATCC CRL-2190) [62]

Lipopeptide B. altitudinis MS16 Promising emulsification and antifungal activity [63]
Lipopeptide B. brevis Excellent emulsifier and antibacterial effects [64]
Lipopeptide B. subtilis SPB1 Toothpaste formulation [65]
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Figure 1: Chemical structures of some lipopeptides: (a) surfactin, (b) lichenysin, (c) iturin, (d) fengycin.
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novel lipopeptides such as B. licheniformis, and B. circulans.
Furthermore, details of lipopeptide production from various
Bacillus along with fermentation conditions are presented in
Tables 1 and 2.

3.1. Substrates. Many substrates mainly consist of hydro-
phobic mixtures, vegetable oils, waste products, dairy
products, etc. and are used for the production of lipopeptide-
based surfactants. To minimize the production cost of lip-
opeptide-based surfactants, renewable and low-cost sub-
strates were applied as presented in Tables 1 and 2.
Moreover, it is also necessary to select substrates with a high
nutritional value for the growth of microbes. One of the best
methods used is to apply organic matter such as industrial
waste, oil substrate, and agro-based materials. Interestingly,
these waste materials provide distinct energy source for
microbes with effective surfactants production.

3.2. Production of Biosurfactants by Using Agro-Industrial
Waste. Agro-industrial waste is an ideal choice for the
production of lipopeptide and helps in the industrial waste
management. Agro-industrial wastes contain both carbon
and lipids along with other necessary nutrients, which are
the major requirement for the growth of biosurfactant-
producing microbes. Previously, many researchers suc-
cessfully utilized various agro-industrial wastes such as
sugarcane molasses, date molasses, cassava flour, rice straw,
corn, fruits and vegetable wastes, bran, and others for the
production of biosurfactant [115, 140–146].

Molasses is the key waste product of sugar and date
industries, and it has gained a lot of attention for the
production of biosurfactant. .is popularity to use as a
substrate for biosurfactant production is mainly due to its
low cost and rich source of dry matter (75%), protein (2.5%),
nonsugar organic matter (9–12%), minerals (potassium,
calcium, phosphorus, and magnesium), and other compo-
nents (thiamine, biotin, inositol, and pantothenic acid). .e
sugar content in themolasses ranges from 48 to 56%,making
it ideal for the growth of various microorganisms [147–149].

Makkar and Cameotra [150], Saimmai et al. [142], and
Joshi et al. [151] reported the biosurfactant production from
Bacillus subtilis strains (MTTCC 2423, MTCC1427, and
SA9) and Bacillus licheniformis TR7) by using molasses as
carbon source. In another study, Joshi et al. [54] documented
that canemolasses and date molasses used as a carbon source
enhance the production of lichenysin-A-like lipopeptide by
using Bacillus licheniformisW16. Rane et al. [33] conducted
a study to utilized agro-industrial wastes (molasses, banana
peels, orange peels, whey, potato peels, and bagasse) as a
substrate for the production of biosurfactant by Bacillus
subtilis ANR 88. .eir study results revealed that bio-
surfactant production in the molasses substrate as a carbon
source was higher (0.24 g/L) compared to other agro-in-
dustrial wastes. Moreover, they also found that by opti-
mizing the conditions (ammonium ferric citrate 0.25%,
molasses 4%, and pH 7), the yield of biosurfactant signifi-
cantly increases to 2-fold (0.513 g/L).

Recently, Al-Dhabi et al. [141] used date molasses as a
carbon source for the production of biosurfactant from
Bacillus subtilis strain Al-Dhabi-130. .ey found that using
date molasses as a carbon source yields the biosurfactant to
74mg/g substrate and can be used for the large-scale pro-
duction of biosurfactant .

Peanut oil cake is a novel agro-waste, which can be used
for the production of lipopeptide. Nalini et al. [152] reported
that maximum lipopeptide production was obtained (8.18 g)
from peanut oil cake as a substrate by using B. cereus strain
SNAU01. Paraszkiewicz et al. [153] also observed that lip-
opeptide surfactants such as surfactin and iturin can be
produced by Bacillus strains using carrot peel as substrate.

3.3. Production of Lipopeptides by Using Oil Waste.
Wastes from oil processing industries represent one of the
best and readily available renewable substrates for microbial
biosurfactant production. .e hydrophobic substrate con-
taining media such as oil helps microbes to produce lip-
opeptide surfactant. Sunflower, olive oil, coconut oil, and
canola are the main oil made from oil industries and
considered the best carbon source for biosurfactant pro-
duction [22, 38, 143, 154].

Ostendorf et al. [143] reported the excellent production
of lipopeptide biosurfactants by Bacillus stratosphericus
strain FLU5 using waste vegetable oils (olive oil, corn oil, and
residual frying oil). In another study, Md Badrul Hisham
et al. [155] observed the excellent yield of surfactin by
Bacillus sp. HIP3 when using used cook oil as a substrate
(2%).

4. Isolation, Purification, and
Characterization of Lipopeptides

Lipopeptides are mostly synthesized by bacterial genus
Bacillus. .e bacterial cells are grown in their respective
media with specific conditions (varied from strains to
strains) to produce lipopeptides prior to their separation by
centrifugation. Malfanova et al. [156] grew bacterial cells
(60 h at 28°C) subjected to centrifugation (13,000 rpm for
10min) to obtain crude lipopeptides. .e obtained super-
natant was acidified by using HCl acid, while the precipitate
was extracted with methanol and further concentrated by
vacuum evaporation [156, 157]. .e crude extract was pu-
rified by many methods such as gel filtration in Sephadex
column and high-performance liquid chromatography, and
the collected eluent was further subjected to MALDI-TOF-
MS/LC-MS/MS-MS/NMR/FTIR [53].

5. Pharmacological Activities

5.1. Anticancer. Bacillus lipopeptides are considered ver-
satile bioactive compounds with potent antitumor activity.
For example, surfactin has been documented to exert an-
titumor activity towards human colon carcinoma cell lines
(HCT15 and HT29), Ehrlich’s ascites carcinoma cells, and
breast cancer cell lines (T47D and MDA-MB-231)
[31, 104, 158]. Surfactin inhibits the growth of transformed
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Table 2: Strategies and mechanisms used to enhance lipopeptide production by Bacillus sp.

Strategy used Factors evaluated Strain Results BS nature Ref.

RSM, CCD Brewery waste and (carbon, nitrogen,
agitation speed, temperature, pH) B. subtilis N3–1P 657 g.l−1 Surfactin [95]

RSM, BBD

(d-glucose, sucrose, xylose), hydrocarbons
(hexadecane, diesel, benzene, heptane),
nitrogen source (NaNO3, NH4NO3,

(NH4)2SO4, NaHCO3, urea)

Bacillus sp. SS105 2.65 g.l−1 Surfactin [96]

CCD, PBD

Sucrose, glucose, starch, peanut oil, potato),
nitrogen source (peptone, beef extract,
trypsin, yeast extract), other variables

(MgSO4, KCl, KH2PO4, FeSO4.6H2O, NH4Cl,
MnSO4, CuSO4, sodium glutamate)

B. subtilis N7 0.706 g.l−1 Surfactin [97]

RSM, PBD, (TFAT)
two factors at time

Nitrogen source ((NH4)2SO4, KNO3, NaNO3,
NH4Cl, beef extract, yeast extract)

B. subtilis KLP2015 0.98 g.l−1 Surfactin [98]

RSM, OFAT one
factor at a time

Carbon source (glucose, fructose, sucrose,
xylose, rhamnose, soluble starch), nitrogen
source (NH4Cl, C6H17N3O7, urea, peptone,
soybean meal), metal ions (ZN2+, Fe3+, Mg2+,

Mn2+, Ca2+, K+)

Bacillus sp. BH072 0.027 g.l−1 IturinA A [99]

OFAT Single and multidose Fe2+ B. megaterium 4.2 g.l−1 Surfactin [100]
22 factorial design,
RSM Glucose and yeast extract B. subtilis EA-CB0015 0.78, 0.355 g.l−1 Fengycin,

Iturin A [101]

PBD, CCD

Carbon source (glucose, maltose, dextrose,
mannitol, sorbitol, galactose, xylose, starch),
nitrogen source (KNO3, (NH4)2SO4, NaNO3,
soy flour, peptone, casein hydrolysate, yeast

extract urea)

B. amyloliquefaciens
MD4-12 1.25 g.l−1 Surfactin [102]

CCD, Fed-batch
strategy

Fed-batch strategy (pH-stat, DO-stat,
constant rate feeding, combined feeding),
Sunflower oil, NaNO3, MgSO4.7H2O, yeast

extract

Aneurinibacillus
thermoaerophilus HAKO1 11.2 g.l−1 Surfactin [103]

ANN-GA Glucose, urea, SrCl2, and MgSo4 B. circulans MTCC 8281 4.38 g.l−1 Unidentified [104]

ANN-GA Lp concentration, Ca2+, pH B. licheniformis,
B. megaterium 45% oil recovery Lipopeptide [105]

BBD Glucose, glutamic acid, temperature, NaCl B. mojavensis 14 4.12 g.l−1 Lipopeptide [106]

BBD
Optimization of non-nutritional factors
(inoculum age and size, pH, agitation,

aeration, temperature)
B. subtilis SPB1 3.3 g.l−1 Lipopeptide [107]

Media composition
and characteristics

Nitrogen source ((NH4)2SO4, KNO3,
NH4NO3, NH4Cl, peptone, beef extract, yeast
extract), carbon source (glucose, sucrose,

fructose, maltose, sorbitol, starch)

B. velezensis KLP2016 2.5 g.l−1 Lipopeptide [108]

n-paraffin, n-dodecane, n-hexadecane,
sunflower oil, canola oil, sucrose, glycerol,
diesel fuel, n-tetradecane, nitrogen source
((NH4)2SO4, NaNO3, KNO3, urea, peptone,
yeast extract, beef extract), metal and sulfur
source (FeSO4, MnSO4, MgSO4), and C/N

ratio, pH

Paenibacillus sp. D9 4.11 g.l−1 New
lipopeptide [109]

Different culture media, shaking speed of
shaker, liquid and solid fermentation,

attapulgite powder
B. natto NT-6 1.94-fold

increased
Iturin A,
surfactin [110]

Different culture media, vine-trimming
shoots, glucose, hemicellulosic hydrolysate,

and cellulosic hydrolysate
B. tequilensis ZSB10 1.52 g.l−1 Lipopeptide [111]

Taguchi method Carbon source (sucrose, whey, crude oil)),
NaCl, Na2HPO4, NaH2PO4, and (NH4)2SO4

B. cereus 1.8 g.l−1 Lipopeptide [112]
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Table 2: Continued.

Strategy used Factors evaluated Strain Results BS nature Ref.

Use of cheap
substrate/raw
material

Carbon source (orange peel, citrus medica
peels, banana peels, and potato peels),

inoculum size, incubation time, temperature,
substrate concentration

B. licheniformis KC710973 1.796 g.l−1 Lichenysin [113]

(Butter milk, poultry-transforming waste
flour, inoculum size), submerged

fermentation
B. subtilis SPB1 12.61 g.l−1 Lipopeptide [114]

Corn steep liquor (CSL), iron, manganese,
and magnesium B. subtilis #573 4.8 g.l−1 Surfactin [115]

Potato peels, temperature, pH, saline
conditions B. pumilus DSVP18 3.2 g.l−1 Iturin A [116]

Grape seed flour B. amyloliquefaciens C5 0.80 g.l−1 Bacillomycin
D [117]

Distiller grains (DGS, coculture fermentation
with B. B. amyloliquefaciens X82

B. amyloliquefaciens
MT45 3.4 g.l−1 Surfactin [118]

Palm oil, waste glycerol, immobilized on
chitosan Bacillus Sp. GY 19 9.8 g.l−1 Lipopeptide [119]

Solid state
fermentation (SSF)

Soybean flour, rice straw, starch, yeast extract,
kinetic parameters (iso- and nonisothermal
process, isothermal and nonisothermal

process in fermenter)

B. amyloliquefaciens XZ-
173 (55.83mg/gds) Lipopeptide [120]

Soybean flour, rice straw, glycerol, maltose,
pH, water content, inoculum size,
fermentation time, temperature

B. amyloliquefaciens XZ-
173 15.03mg/gds Surfactin [121]

Wheat bran, rice straw, soybean flour,
temperature, pH, water content, inoculum

size

B. subtilis
CCTCCM207209 70.90mg/gds Lipopeptide [122]

Rice bran husk, sunflower oil, coconut oil
cake, cotton oil cake, corn cob, orange peel,
jackfruit peel, sugarcane leaf, pineapple peel,
banana leaf, cheese whey, dry yeast cells,
pongamia seed cake, jatropha seed cake
ground oil cake, glucose with MSM

B. amyloliquefaciens 3-fold increased Iturin A [123]

Olive leaf residue flour, olive cake flour B. subtilis SPB1 0.3067 g.l−1 Lipopeptide [124]

Mutagenesis
induced enhanced
yield

UV and gamma ray-induced mutagenesis B. subtilis HS0121 2-fold increased Surfactin [125]
Random mutagenesis using gamma

irradiation B. subtilis UTB1 1.8-fold
increased Iturin A [126]

UV irradiation, nitrosoguanidine, and ion
beam mutagenesis

B. amyloliquefaciens ES-2-
4

10.3-fold
increased Lipopeptide [127]

Combination of UV irradiation and nitrous
acid treatment B. subtilis SPB1 2-fold increased Lipopeptide [51]

Genome shuffling

Genome shuffling B. amyloliquefaciens
FMB38 2-fold increased Surfactin [128]

Genome shuffling and gene (fenA) expression B. amyloliquefaciens ES-2-
4

8.30-fold
increased Fengycin [129]

Mutagenesis (UV, nitrosoguanidine,
atmospheric, and room temperature plasma) B. amyloliquefaciens LZ-5 2.03-fold

increased Iturin A [130]

Protoplast fusion B. mojavensis JF-2 0.382 g.l−1 Lipopeptide [131]
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cells via cell cycle arrest and induction of apoptosis and
suppresses ERK (extracellular-signal-regulated kinase) and
PI3 K/Akt pathway [158]. In another study, Liu et al. [159]
reported that surfactin-like lipopeptides purified from
B. subtilis Hs0121 exert cytotoxicity towards Bcap-37 breast
cancer cells (IC50: 29± 2.4 μM). Surfactin was also docu-
mented to inhibit the LoVo colon cancer cells (IC50: 26 μM)
[158] (Figure 2). What’s more, Wang et al. [160] observed
that B. subtilis natto T-2 with crude cyclic lipopeptides
(CLPs) showed a cytotoxic effect against human K562
leukemia cells. Surfactin was also reported to exhibit the
cytotoxic effect on hepatocellular carcinoma [159, 160].
Recently, Hong et al. [161] have reported that five Surfactin
isomers produced by B. pumilus HY1 during Cheongguk-
jang fermentation markedly inhibited the growth of two
cancer cell lines (MCF-7 and Caco-2).

Fengycin, a lipopeptide produced by various strains of
B. subtilis, was reported to exert strong anticancer activity on
colon cancer cell line HT29 and human lung cancer cell line
95D [162, 163]. Similarly, Bacillus lipopeptide (iturin) was
also reported to possess a broad spectrum of anticancer
activity on several cell lines (e.g., HepG2, Caco-2, BT474,
MDA-MB-231, MCF-7, HUVEC, BIU-87, BRL-3A, A549,
and K562 cells [42, 164–171].

5.2. Hemolytic Activity. .e lipopeptide surfactants induce
the hemolysis of human erythrocytes due to their detergent
effect and membrane forming ability. .erefore, lip-
opeptide surfactants are used as potent inhibitors of fibrin
clot formation. Arima et al. [172] reported for the first time
that the surfactin potently inhibits the fibrin clot formation
via abrogating the conversion of fibrin monomer into fibrin
polymer. Bernheimer and Avigad studied the inhibition of
fibrin clot formation and hemolysis of erythrocyte by
subtilysin derived from B. subtilis since 1970 [173]
(Figure 2).

.e hemolytic activity of lipopeptide iturin A was
studied by Aranda et al. .ey documented that iturin
dependently exerts hemolytic activity on human eryth-
rocytes. .e underlying mechanism of action was that
iturin A induced hemolysis via colloid-osmotic mecha-
nism and K+ leakage followed by hemoglobin release [85].
In another study, Dehghan-Noudeh et al. [174] docu-
mented that B. subtilis ATCC 6633-derived lipopeptide
surfactant attenuated potent hemolytic effect in com-
parison with chemical surfactants such as hexadecyl tri-
methyl ammonium bromide, sodium dodecyl sulfate,
tetradecyl trimethyl ammonium bromide, and benzal-
konium chloride.

Table 2: Continued.

Strategy used Factors evaluated Strain Results BS nature Ref.

Recombinant
strains for higher
yield

Surfactin promoter THY-15 was replaced to
THY-15/pg3-srfA. .en introduced a

Vitreoscilla hemoglobin (VHb) gene into
engineered strain to obtain a novel THY-15/

pg3-srfA (VHb)

B. subtilis THY-15 10.02 g.l−1 Surfactin C15 [132]

Loc gene expressed, the fosmid N13 with
whole Loc gene screened from B. velezensis
916 genomic library, the cassette fused with
IPTG inducible promoter Pspac induced in
the fosmid N13 resulted N13+spec and
N13+PSSpec transformed to obtained
derivative strains FZBNPLOC and

FZBPSLOC

B. velezensis FZB42 15-fold
increased Locillomycins [133]

Enhanced transcription of iturin A
biosynthetic genes was implemented by
inserting a strong promoter C2up into

upstream of the itu operon, fermentation
optimization using RSM and furthermore,
overexpression of pleiotropic regulator DegQ

B. amyloliquefaciens LL3 8-fold increased Iturin A [134]

Cloning of the biosurfactant genes sfp, sfp0,
sfpA into BioS a, BioS b, BioS c, recombinant
strains after cloning of biosurfactant genes in

to E. coli. (E. coli DH5ά)

B. subtilis SK320 2-fold increased Lipopeptide [135]

Wild type, overexpression of THY-7-Pgrac-
ycxA, overexpression of THY-7-Pgrac-krsE,

overexpression of THY-7-Pgrac-yerP
B. subtilis 168 0.55, 1.15, 0.93,

1.67 g.l−1 Surfactin [136]

Using CRISPRi 20 genes were repressed,
yrpC, racE, murC genes were inhibited
individually. Furthermore, combination
inhibition of bkdAA and bkdAB genes

B. subtilis 4.69-fold
increased Surfactin [137]

Replacement of PsrfA with Pg3 B. subtilis 0.55–9.74 g l−1 Surfactin [138]
Insertion of sfp gene from Paenibacillus sp.

D9 into E. coli Paenibacillus sp. D9 3-fold increased Paenibacterin [139]
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5.3. Anti-Inflammatory. Previously, it was reported that
lipopeptides exert anti-inflammatory activities via several
pathways such as modulation of the TLR4 (Toll-like receptor
4), inhibition of lipoteichoic acid (LTA)-induced NF-κB,
activator of transcription-1 (STAT-1), interaction with cy-
tosolic phospholipase A2 (PLA2), and increase in the
phosphorylation of STAT-3 [88] (Figure 3).

Moreover, it also impairs the antigen-presenting func-
tion of macrophages, suppresses the LPS-induced expression
of cluster of differentiations (CD40, CD54, CD80), and
inhibits the activation of CD4+ T-cells [32, 88].

It was also documented that surfactin markedly inhibits
the overproduction pro-inflammatory mediators (IL-6, tu-
mor necrosis factor alpha or TNF-alpha, and interleukin
beta or IL-1β), prostaglandin E2, monocyte chemoattractant
protein-1, NO, and reactive oxygen species (ROS), and
suppresses the expression of MMP-9 (matrix metal-
lopeptidase 9), COX-2 (cyclooxygenase-2), and iNOS (in-
ducible nitric oxide synthase) [175].

5.4. Antibacterial Activity. .e demand for new antimi-
crobial agents significantly increases due to the resistance
of pathogenic microorganisms towards already present
antimicrobial drugs. Surfactin, a lipopeptide, was reported
to exert antibacterial activity against various pathogenic
bacteria. Beside surfactin, other Bacillus-related lip-
opeptides were also reported to possess well-known in-
hibitory activity towards the growth of pathogenic bacteria
[176–179].

Huang et al. [178] reported that surfactin and fengycin
produced by the strain B. subtilis fmbj effectively inactivate
endospores of B. cereus. .e lipopeptide mainly damages the
surface structure of the spores. B. velezensis strain H3-iso-
lated surfactin isoforms were reported to active against
P. aeruginosa, St. aureus, Klebsiella pneumoniae, and My-
cobacterium [179].

In another study, fengycin isoforms isolated from ma-
rine Bacillus strain markedly inhibited the growth of various
bacteria such as K. aerogenes, Citrobacter fruendii, Micro-
coccus flavus, Proteus vulgaris, Alcaligenes faecalis, E. coli,
and Serratia marcescens [180].

Lipopeptide antibiotic subtulene A isolated from the cul-
ture filtrate of B. subtilis SSE4 was reported to inhibit the
growth of Gram-positive and Gram-negative bacterial strains
such as Stenotrophomonas maltophilia, Enterobacter cloacae,
and Xanthomonas campestris [181]. Fengycin and surfactin
lipopeptides containing culture filtrate of the endophytic
B. amyloliquefaciens was reported to potently inhibited the
growth of all tested Gram-negative ones except Ochrobactrum
anthropi and all Gram-positive bacteria tested except B. [157].

Recently, a study conducted by Lv et al. [177] has also
reported that B. amyloliquefaciens C-1 fermentation su-
pernatant contains a mixture containing surfactin and
fengycin, which inactivate the growth of Clostridium difficile
(bacteria that can infect the bowel and cause diarrhoea).
Iturin analog isolated from Bacillus strain was reported to
inactivate the growth of Xanthomonas arboricola and
Pseudomonas syringae [176].

5.5. Antifungal and Biocontrol. It has been documented that
Bacillus lipopeptides exert a wide array of antifungal ac-
tivities. Briefly, iturin markedly inhibits the growth of
nematophagous fungi, wood-staining fungi, Aspergillus
flavus, Penicillium roqueforti, and Colletotrichum demiatium
[19, 182–186], whereas fengycin was reported to inhibit the
Fusarium graminearum, Botrytis cinerea, and Podosphaera
fusca [187, 188].

More detailed investigations conducted by various re-
searchers reported that lipopeptides exert morphological
changes such as hyphal swellings, changed organization of
mitochondria, decreased intracellular pH, esterases, and
mitochondria activities, and decreased hydrophobicity of the
hyphae [48, 189].

Anti-fungal

Anti-inflammatory

Anti-oxidant

Anti-bacterial

Anti-viral

wound healing

Antiviral Oral produts

Anti-diabetic

Pharmacological activities 
of Lipopeptides

Figure 2: Pharmacological activities of lipopeptides.
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Desmyttere et al. [190] conducted a study to explore the
antifungal activities of lipopeptides isolated from B. subtilis
against apple scab disease causing Venturia inaequalis strains.
.eir study results revealed that Bacillus subtilis lipopeptide
mixtures containing (fengycin, surfactin, and mycosubtilin)
markedly inhibited the growth of V. inaequalis S755 and
V. inaequalis rs552.

Han et al. [191] documented that B. amyloliquefaciens
L-H15-derived peptides (iturin A with C15β-amino fatty
acid and cyclic peptide with a molecular weight of 852.4Da)
exhibited strong antagonism against Fusarium oxysporum,
Rhizoctonia solani, and Phytophthora capsici.

Dimkić et al. [176] studied five different lipopeptide-
producing strains of Bacillus (SS-10.7, SS-12.6, SS-13.1, SS-
27.2, and SS-38.4), and their extracts were further tested
against Pseudomonas syringae pv. aptata (P16) and Xan-
thomonas arboricola pv. juglandis (301, 311, and 320). .e
results revealed that Bacillus strains mostly produced kur-
stakins, iturins, surfactins, and fengycins lipopeptides.
Moreover, they reported that ethyl acetate extracts exert
more favorable effect on phytopathogens.

Botrytis cinerea is a necrotrophic fungi, which infects more
than 200 plant species including fruits and vegetables. Toral et al.
[48] conducted a study to determine anti-B. cinerea activity of
lipopeptides isolated from Bacillus XT1 CECT 8661. .ey ob-
served that lipopeptide-rich extract mainly containing surfactin,
bacillomycin, and fengycin potently inhibits the growth of
B. cinerea. What’s more, SEM (scanning electron microscope)
and TEM (transmission electron microscope) analysis revealed
that lipopeptides alter the morphology of the phytopathogen.

5.6. Antiviral Activity. It has been well documented that
lipopeptides such as surfactin possess a broad spectrum of
antiviral activity against SARS-CoV-2, herpes simplex virus

(HSV-1 and HSV-2), Newcastle disease virus, Semliki Forest
virus, murine encephalomyocarditis virus, Simian immu-
nodeficiency virus, vesicular stomatitis virus, transmissible
gastroenteritis virus, porcine parvovirus feline calicivirus,
pseudorabies virus, and bursal disease virus, porcine epi-
demic diarrhoea virus, and viral hemorrhagic septicemia
virus. .e chemical structure of surfactin lipopeptide, for
example, length of the carbon chain, makes it fit for the
inactivation of various viruses [51, 192–194]. Moreover, it
was also observed that surfactin more significantly inacti-
vates the enveloped viruses such as herpes viruses and
retroviruses compared with nonenveloped viruses [195].
.is may be due to the physicochemical interaction among
membrane active property of surfactin and the virus lipid
membrane [196]. Surfactin permeates into the lipid bilayer
and results in the complete disintegration of the envelope
containing the viral proteins involved in virus adsorption
and penetration to the target cells [195].

5.7. Antiadhesion and Antibiofilm. Surface adhesion and
biofilm formation are the mechanisms by which most of
bacteria are used for their survival. Lipopeptides have the
potential to decrease the interfacial tension and surface of
biofilms. In numerous ways, lipopeptides disrupt the
membrane structure. For example, surfactin gets inserted
into the lipid bilayers, chelates monovalent and divalent
cations, solubilizes the fluid phospholipid phase, and
modifies the membrane permeability [197]. Surfactin may
form voltage-independent channels in biofilms, and these
channels disturb the membrane integrity and perme-
ability, leading to membrane disruption [13, 198]. Iturin
isoform (mycosubtilin) produced by B. subtilis interacts
with membranes via its sterol alcohol group and exhibits
resistance to fungi [199]. B. circulans strain showed
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Figure 3: .e proposed anti-inflammatory mechanism of Bacillus subtilis lipopeptides.
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antiadhesive property towards many bacteria species
[200]. Similarly, various Bacillus strains inhibit biofilm
formation [6, 78–80].

5.8. Others. Bacillus lipopeptides were also reported in
wound healing and oral care products [65]. Zouari et al. [29]
documented how the B. subtilis SPB1 biosurfactant sup-
plementation improves the liver function, hyperlipidemia,
and hypertriglyceridemia in high-fat-high-fructose (HFHF)
diet-fed rats. In another study, the same research group also
observed that B. subtilis SPB1 biosurfactant treatment im-
proves the renal functions and inhibits angiotensin I-con-
verting enzyme (ACE) in HFHF diet-fed rats [39].
Moreover, B. subtilis strain containing surfactin was shown
to effectively kill the larval and pupal stages of mosquito
species, for example, Aedes aegypti, Culex quinquefasciatus,
and Anopheles stephensi [195].

6. Lipopeptide Applications in Food

Lipopeptides have well-defined antiadhesive, antibacterial,
antiviral, and anticancer properties, ensuring their role in
the cosmetics, pharmaceutical, and even food industries.
Lipopeptides are mainly employed as surfactants in the food
industry. Moreover, rhamnolipids and surfactins are posi-
tively exploited in the baking industry, providing good
texture, volume, and product stability. .ey are also used to
promote the emulsification process in the fat tissue to
regulate fat globule agglomeration. Certain lipopeptides
derived from Enterobacter cloacae have recently been pre-
sented into the food market with their high emulsifying
characteristics owing to the potential to improve viscosity
even at extreme acidic conditions. In terms of economic
growth, the most significant increases in food additives have
been seen in emulsifiers and hydrocolloids that were up to
10.5% and 6.0%, respectively.

.e vulnerability of biologically active peptides as an an-
timicrobial agent in the food preservation is rare due to their
limits to proteases. .e usage of ring-structured peptides like
lipopeptides, on the other hand, can prevent this susceptibility.
.ere are two types of lipopeptides: a cyclic heptapeptide
acylated with β-amino fatty acids that have a chain length of
C14–C16, and the fengycin group containing a β-hydroxy fatty
acid with uncommon amino acids including allo-threonine
and ornithine. .ey also consisted of cyclic heptapeptide that
makes a lactone linkage with β-hydroxy fatty acids. .ey are
enzyme-insensitive (particular protease), suppressing the de-
velopment of a broad variety of pathogenic fungi (Fusarium
graminearum, Rhizoctonia solani, and Aspergillus flavus) as
well as postharvest pathogens such as Botrytis cinerea and
Penicillium expansum.

Gandhi and his coworkers revealed that the rhamnolipid
emulsifier with a concentration of 0.10% significantly im-
proved the texture, moisture content, and appearance of
muffins for longer periods. Surfactin inclusion in many
fermented food products, like natto, a Japanese soybean
meal, is extremely favorable for acceptance as an ingredient
or addition. Juola et al. [201] determined the surfactin

content of various natto types. Notably, the greatest con-
centrations discovered were close to 2.2mg/g, which cor-
responds to 80–100mg surfactin per 50 g natto. Additional
research is required to establish the surfactant’s recom-
mended daily intake (RDI) to pronounce it harmless and is
usually considered to be a generally recognized as safe
(GRAS) organism. .erefore, surfactin has strong potential
to be used in the food sector.

Zouari et al. [202] prepared the cookies using sesame peel
flour partially replaced with white wheat flour. When addi-
tional sesame peel flour was employed, the characteristics
such as toughness, water content, and spread factor had been
degraded. Interestingly, adding 0.1% B. subtilis SPB1 bio-
surfactant significantly enhanced the textural profile, even
when compared to the standard surfactant glycerol mono-
stearate [202]. In another research, the possible lipopeptides
from Bacillus spp. reduced the Ochratoxin and A. carbonarius
that were found in the processing of wine-making [203]. In
the wine-making process, the concentration of Ochratoxin
should not surpass 2.0 μg/L as it is a carcinogenic mycotoxin.
Additionally, this compound has a detrimental effect on yeast
fermentation behaviour. Lipopeptides also had higher anti-
fungal capabilities than SO2 and stimulated yeast growth as
well as the generation of esters and acids that are involved in
the olfactory profile [203].

7. Conclusion

Lipopeptides are very useful molecules due to their multiple
applications. Most Bacillus lipopeptides have been applied in
food, cosmetic, biotechnology, pharmaceutical industries,
where emulsifying, antimicrobial, and surfactant properties are
used. .e application and production of lipopeptides are very
promising trend; however, the high cost of production makes
them unfit for large-scale synthesis. Furthermore, even though
there are many reports displaying the thrombolytic, antitumor,
and anti-inflammatory activity of lipopeptides, the few num-
bers of clinical trials warrant more significant efforts. In future,
extensive studies should be carried out to verify previously
published author findings, which further help with the utili-
zation of these miracle compounds. In summary, Bacillus
lipopeptides have strong potential application in various fields
and a lot of work will be needed to formulate strategies for
improved large-scale biosynthesis of lipopeptides.
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