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Background. Although Zuojin Pill (ZJP) is widely used in China as a traditional prescription to treat gastroesophageal reflux
disease (GERD), its exact mechanism of action is still unknown. -erefore, we employed network pharmacology (NP), molecular
docking (MD), and molecular dynamics simulation (MDS) to investigate the pharmacological mechanisms of ZJP against GERD.
Methods. Active compounds and target genes corresponding to ZJP and target genes related to GERD were identified through
analysis of publicly available datasets. Subsequently, the obtained data were subjected to further network pharmacological analysis
to explore the potential key active compounds, core target genes, and biological processes (BPs) associated with the effect of ZJP
against GERD. Finally, the prediction results of NP were validated by MD, and MDS of the optimal core protein-ligand for each
component obtained by MD were performed using Gromacs 2020 software. Results. Twelve active components of ZJP were
identified to act on 82 target genes associated with GERD, and ZJP might exert an anti-GERD effect through the regulation of BPs
such as reactive oxygen species (ROS) metabolism, response to oxidative stress (OS), and ROS, as well as the activation of signaling
pathways such as apoptosis, p53 signaling, chemical carcinogenesis-ROS, and HIF-1 signaling pathways. Furthermore, quercetin,
kaempferol, and coptisine, the three key components of ZJP were shown to stably bond with the 14 core target genes, including
AKT1, MMP2, TP53, EGFR, JUN, CASP3, CXCL8, HIF1α, IL-1β, MYC, PPARG, MMP9, PTGS2, and FOS. Results from MDS
showed that PPARG-quercetin and MMP2-quercetin bound more stably. Conclusions. -e findings suggest that ZJP alleviates the
symptoms of GERD and improves the prognosis by regulating ROS metabolism, thereby reducing the secretion of proin-
flammatory cytokines like IL-1β, COX-2, CXCL8, and MMPs, regulating the expression of oncogenes such as JUN and FOS, and
maintaining the normal expression of tumor suppressor genes such as TP53 and MYC. However, whether the effect of this
modulation of ROS metabolism is positive or negative needs to be further verified by pharmacological experiments.

1. Introduction

Gastroesophageal reflux disease (GERD) is a digestive dis-
order with typical symptoms of reflux and heartburn caused
by the reflux of gastroduodenal contents into the esophagus
[1]. Globally, the prevalence of GERD is estimated to be
between 5.2% and 51.2%, with the number of affected in-
dividuals on the rise annually [2]. In addition to gastroin-
testinal discomfort, patients with GERD often exhibit mood

changes, such as anxiety and depression, which reduces the
quality of life to a great extent [3]. Moreover, GERD is
associated with a significant economic burden, with annual
healthcare costs for GERD amounting to $1520 billion in the
United States [4]. Currently, proton pump inhibitors (PPIs)
such as omeprazole and pantoprazole are used as first-line
drugs for GERD treatment; however, these drugs are as-
sociated with side effects. For example, some studies have
pointed out that the use of PPI is correlated with small
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intestinal bacterial overgrowth and Clostridium difficile in-
fection [5–7]. -erefore, it is imperative to search for better
therapeutic strategies against GERD.

Zuojin Pill (ZJP) is made up of Rhizoma coptidis and
Evodia rutaecarpa, two functional foods that not only give
consumers energy and nourishment but also improve their
body’s defenses against viral andmetabolic disorders.-e usage
of the famous Chinese drug ZJP was originally documented in
the classic text of traditional Chinesemedicine (TCM) known as
Danxi’s Experiential -erapy. In recent years, ZJP has been
extensively used in the treatment of GERD inChina, and several
clinical trials have confirmed its efficacy in improving symp-
toms, relieving anxiety, and reducing disease recurrence [8, 9].
However, the mechanism of action of ZJP remains unclear.

Network pharmacology (NP) is an emerging scientific
method based on the theory of systems biology, integrating
pharmacology, and computer technology, which explores the
interaction between the nodes of the network and the disease
by constructing a “drug-target-disease” network. In the past 15
years, NP has been used by an increasing number of re-
searchers to explore the mechanism of action of herbal
components in various diseases [10–13]. Under such inspi-
ration, we analyzed the underlying mechanism by which ZJP
works against GERD using a NP approach and validated the
results by molecular docking (MD) and molecular dynamics
simulation (MDS).-e specific workflow is shown in Figure 1.

2. Methods

2.1. Screening for Active Drug Components and Targets.
-e TCM Systems Pharmacology (TCMSP) [14] was used to
retrieve the compounds and targets of R. coptidis and
E. officinalis, with oral bioavailability ≥30% and drug-like
property ≥0.18 as screening parameters [14]. Gene symbols
were normalized for extracted targets using UniProt [15].

2.2. Screening for Disease Targets. -e GERD-related targets
were retrieved from GeneCards (https://www.genecards.
org/), PharmGKB (https://www.pharmgkb.org/), Drug-
Bank (https://www.drugbank.ca/), and TTD (https://db.
idrblab.net/ttd/). A correlation score ≥10 was set as the
screening criterion for GeneCards targets [16].

2.3. Construction of Drug-Compound-Target Gene Network.
By screening and extracting common targets of ZJP and
GERD through a Venn diagram, the extracted results were
employed as potential targets of action for ZJP in GERD.-e
drug-compound-target gene network was constructed using
Cytoscape 3.7.2 software [17].

2.4. Biofunctional Enrichment Analysis Using Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes. To further
explore the mechanisms of action of ZJP in GERD, Gene
Ontology (GO) enrichment analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analysis
of common targets [18] were executed using the Cluster-
Profiler software package in R 4.0.5.

2.5. Protein-Protein Interaction Analysis and Core Target
Identification. Common targets of ZJP and GERD were
uploaded to the STRING (https://string-db.org/) website,
with confidence >0.4 as the target screening parameter [19].
-en, information on the screened targets was imported into
Cytoscape to obtain a protein-protein interaction (PPI)
network graph [20]. -e degree centrality (DC), closeness
centrality (CC), betweenness centrality (BC), network
centrality (NC), eigenvector centrality (EC), and local av-
erage connectivity (LAC) were calculated to obtain core
target genes.

2.6. Molecular Docking. To verify the correlation between
compounds and targets, the results of NP were validated by
MD in Discovery Studio 2019. -e structures of ZJP and
macromolecular protein targets associated with GERD re-
ceptors were retrieved from PubChem (https://pubchem.ncbi.
nlm.nih.gov/) and PDB (https://www.rcsb.org/) [21, 22]. -e
LibDock docking conditions were set as follows: docking
preference, high quality; conformational method, fast; other
parameters, default values. -e higher the LibDock score was,
the more likely the target binding prediction was.

2.7. Molecular Dynamics Simulation. A simulation of MDS
was conducted for the optimal core protein-ligand obtained
for each compound of ZZP by molecular docking using
Gromacs 2020 software. -e conditions were set as follows:
force field, Charmm 36; water model, TIP3P; cubic solvent
box, side length, 1.2, concomitant type cycle boundary
condition, and 1 ns. Subsequently, a 100 ps NVT and 100 ps
NPTequilibrium was performed to stabilize the system, and
a 100 ns MDS was performed for the whole system. -e
nonbonded interaction cutoff value was set to 1.2 nm, and
the PME algorithm was used to calculate the long-range
electrostatic interaction. -e time step was set to 2 fs, and
one conformation was saved every 10 ps.

3. Results

3.1. Active Components and Targets Associated with ZJP.
By searching the compounds and targets of ZJP in the
TCMSP database, we obtained a total of 12 active compo-
nents: 10 for R. coptidis and 2 for E. officinalis. Subsequently,
162 targets related to these 12 active components were re-
trieved and uploaded to UniProt for gene symbol normal-
ization. -e 12 active compounds and 162 targets are
detailed in Supplement A.

3.2. Targets Associated with GERD. A total of 4,399 targets
associated with GERD were retrieved from the databases
Drug-Bank, TTD, PharmGKB, and GeneCards, 118 from
Drug-Bank, 12 from TTD, 200 from PharmGKB, and 4,069
from GeneCards. For further analysis, 2,786 targets from
GeneCards with scores ≥10 were selected. Subsequently, by
merging and eliminating duplicates from the four databases,
we finally obtained 1,476 targets. -e 1,476 target genes are
detailed in Supplement B.
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3.3. Construction of Drug-Compound-Target Gene Network.
As shown in the Venn diagram (Figure 2), 82 common target
genes of GERD and ZJP were identified. Based on these 82
common target genes, a drug-component-target gene net-
work consisting of 12 components, 82 target genes, 97 nodes,
and 165 edges was constructed. Details of this network are
shown in Figure 3.

3.4. GO and KEGG Bifunctional Enrichment Analyses.
Results of GO analysis (Figure 4) revealed that common
targets of ZJP and GERD were mainly enriched in biological
processes (BPs) such as cellular response to chemical stress,
oxidative stress (OS), reactive oxygen species (ROS), and
reactive ROS metabolic process and. Furthermore, KEGG

analysis showed that ZJP mainly affected GERD by inhib-
iting apoptosis, -17 cell differentiation, chemical carci-
nogenesis-ROS, p53, HIF-1, TNF, and IL-17 signaling
pathways.

3.5. PPI Network and Core Gene Analyses. -e PPI network,
consisting of 81 nodes and 2498 interactions, was con-
structed using the STRING website, as shown in Figure 5(a).
In Cytoscape Plugin cytoHubba, the PPI network was
subjected to two rounds of screening, and BC, CC, DC, EC,
NC, and LAC were calculated (Figures 5(b) and 5(c)). -e
PPI network in Figure 5(b) contains 31 nodes and 418 in-
teractions, while that in Figure 5(c) contains 14 nodes and
182 interactions. -e following target genes corresponding
to these 14 nodes were identified: AKT1, MMP2, TP53,
EGFR, JUN, CASP3, CXCL8, HIF1A, IL-1β, MYC, PPARG,
MMP9, PTGS2, and FOS.

3.6.MolecularDocking. MDwas performed to validate NP’s
results, which are shown in Table 1. -e LibDock docking
scores of all key active ingredients with corresponding core
targets were greater than 80 points (two- and three-di-
mensional models of them are shown in Figures 6 and 7,
respectively), thus indicating a good docking score.

3.7. Molecular Dynamics Simulation. According to the re-
sults of MD, MDS was performed for PPARG-quercetin,
MMP2-quercetin, AKT1-kaempferol, and PTGS2-coptisine.
Results of root mean square deviation, root mean square
fluctuation, radius of gyration, and Hbond from MDS
showed that PPARG-quercetin, and MMP2-quercetin
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Figure 1: Workflow of the study.
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Figure 2: Venn diagram of targets from ZJP and GERD.
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bound more stably, while AKT1-kaempferol, and PTGS2-
coptisine did not form stable complex. Details are presented
in Figure 8.

4. Discussion

-e increasing prevalence of GERD, combined with a
greater understanding of the side effects of PPI drugs
[2, 23, 24], has led to an active search for better treatment
modalities against GERD. As a traditional Chinese pre-
scription drug, ZJP has been widely used in the treatment of
GERD with a remarkable efficacy. However, due to the
complexity of herbal compounds, the mechanism of action
of ZJP in the treatment of GERDs is still unclear. -erefore,
in this study, we applied NP, MD, and MDS to analyze the
mechanism of action of ZJP in GERD.

-e drug-target-disease network of ZJP and GERD in-
cluded 12 compounds, 82 targets, and 165 pathways of action.
Results of GO analysis revealed that these genes were associated
with BPs such as cellular response to chemical stress, response
to OS, ROS metabolic process, and other aspects related to OS
reaction and ROS metabolism. In recent years, ROS has also
been found to regulate apoptosis, expression of tumor sup-
pressor genes (such as p53), induction of HIF-1 activation, and
synthesis of proinflammatory factors (such as IL-1β) [25–28],
which overlapped with the results of KEGG analysis. To dig
deeper into these mechanisms, we constructed a PPI network

and screened out 14 core targets, namely, AKT1,MMP2, TP53,
EGFR, JUN, CASP3, CXCL8, HIF1A, IL-1β, MYC, PPARG,
MMP9, PTGS2, and FOS. Subsequently, the good docking
relationship between quercetin, kaempferol, coptisine, the key
active components of ZJP and the 14 core targets was per-
formed by MD. In the 60ns MDS, quercetin formed the most
stable complex with the MMP2 and the second most stable
with the PPARG.

-e pathogenesis of GERD is relatively complex. GERD
is characterized by transient relaxation of the subesophageal
sphincter, elevated abdominal pressure, decline in the
esophageal clearance ability, and high sensitivity of the
esophagus. Moreover, the mechanisms of GERD patho-
genesis include the release of gastric and duodenal contents
such as gastric acid, protease, bile salts, and other chemicals,
which can cause esophageal mucosa stimulation [29].
Gastric acid reflux is widely recognized as a symptom of
GERD. However, the severity of GERD symptoms and the
amount of acid reflux do not strictly correlate with one
another, as evidenced by improvements in clinical trials and
basic experiments [30]. Moreover, the pathological changes
related to nonerosive reflux disease may occur in the
proximal esophageal mucosa without contact with gastric
contents. Additionally, 10–40% of patients with GERD do
not exhibit the desired outcome after PPI treatment [30, 31],
suggesting that the pathogenesis of GERD still needs to be
explored. Studies over the past 20 years have demonstrated
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that reflux can induce an esophageal inflammatory reaction,
causing the inflammatory cells in the esophageal epithelium
to release inflammatory factors and trigger OS response,
thus leading to a loss of the dynamic balance between ox-
idant and antioxidant activities. -erefore, ROS accumulate
in large quantities in the esophageal mucosa, damaging the
membrane structure and causing esophageal mucosal injury
[32–34]. -erefore, these results indicate that OS plays a
nonnegligible role in GERD pathogenesis. -us, inhibition
of OS or reduction of tissue damage by OS may be a key
therapeutic strategy against GERD. In GO analysis, the
terms OS and ROS appeared more frequently, which was in
agreement with the results of previous studies. Meanwhile,
many previous studies have confirmed that ROS plays an
important role in regulating apoptosis, tumor suppressor
gene expression, induction of HIF-1 activation, and syn-
thesis of proinflammatory factors (such as IL-1β) [25–28],
which were consistent with the results of KEGG analysis.
-erefore, ZJP may play a therapeutic role in GERD by
regulating ROS metabolism and OS response.

Quercetin, kaempferol, and coptisine were analyzed as
key active components of ZJP action in GERD. Previous
reports have indicated that quercetin reverses the expression
of antioxidant enzymes during the OS response and induces
the expression of heme oxygenase-1 [35]. Meanwhile, several
derivatives of quercetin such as quercetin-3-O-glucoside can
regulate the active site of oxidative damage in vivo and
protect primitive cells from acute OS [36]. Kaempferol, a
natural flavonol, could reduce the lipase-induced overpro-
duction of TNF-α, IL-1β, and IL-6 by reducing intestinal
inflammation, thereby playing a negative regulatory role in
the progression of intestinal inflammation [37]. In addition,
kaempferol could reduce cellular damage caused by OS
through its antioxidant activity and antiapoptotic function
[38], and this antioxidant effect was enhanced by its reac-
tivity with metal ions [39]. Coptisine, a major component of
R. coptidis, can inhibit the AMP-activated protein kinase
(AMPK) pathway and mitogen-activated protein kinase
(MAPK) by inhibiting AMPK in macrophages and the
MAPK signaling pathway. Moreover, coptisine can reduce
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Table 1: Results of molecular docking.

Query Core genes PDB ID Ingredients LibDock score
1 IL1B 5MVZ Quercetin 105.093
2 EGFR 2EB2 Quercetin 93.095
3 TP53 6WQX Quercetin 113.076
4 MYC 1EE4 Quercetin 105.596
5 JUN 1A02 Quercetin 85.964
6 HIF1A 4H6J Quercetin 95.596
7 CASP3 1CP3 Quercetin 84.239
8 CXCL8 1QE6 Quercetin 115.326
9 PPARG 1K74 Quercetin 126.302
10 MMP9 1GKC Quercetin 112.681
11 MMP2 1QIB Quercetin 130.113
12 FOS 1FOS Quercetin 98.384
13 AKT1 3MV5 Kaempferol 105.962
14 PTGS2 5ikq Coptisine 101.335
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the inflammatory response by downregulating the expres-
sion of inflammatory factors such as TNF-α, IL-1β, MCP-1,
and MMP-9 [40–42] and inhibit the inflammatory and OS
responses by activating the Nrf2 pathway [43]. -ese results
provide further evidence that ZJP is an effective therapeutic
agent against GERD.

-is study has clearly highlighted some of the multiple
components found within ZZP and found some of its targets
which may be involved in its beneficial effects upon GERD.
However, limited by the deficiencies of systems biology,
multidirectional pharmacology, computational biology, and
network analysis, this study provided only preliminary
predictions, further validation by clinical and basic exper-
iments is still necessary.

5. Conclusions

-is study revealed the possible targets and pathways of ZJP
in the treatment of GERD, reflecting the characteristics of
multicomponent, multitarget, and multipathway mode of
action of ZJP, a Chinese herbal compound, and provided
new ideas for further discussion.
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[39] I. Túnez, P. Montilla, M. Del Carmen Muñoz, M. Feijóo, and
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