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For the quality inspection of brown rice, the segmentation of connected brown rice and the identification of germ integrity are
very important. However, there is no better traditional algorithm to achieve better segmentation and recognition results. -is
paper improves the brown rice (BR) segmentation algorithm based on background skeleton. -e candidate matching points are
obtained by the background skeleton method, and the optimal matching points are found by the ant colony algorithm. Ex-
perimental results show that the proposed segmentation algorithm achieves 96% accuracy, indicating that it can effectively
suppress the interference from the endosperm surface. After segmentation is complete, identification of embryo integrity is
performed. Firstly, a convolutional neural network (CNN) is built to identify the germ direction; then, the germ direction is
normalized; finally, an improved Inception-v3 network is built to identify the germ integrity. On the basis of the Inception-v3
network, additional branches are added to improve the detection accuracy of small objects. In addition, mutual-channel loss and
mlpconv are added to enable the model to better approximate the abstraction of the latent space. -e experimental results show
that the comprehensive recognition accuracy of the proposed algorithm is as high as 94.83%, which is significantly higher than the
current mainstream recognition algorithms.

1. Introduction

Brown rice (BR), which is high in nutrients, is currently very
popular; as a result, ensuring the quality of BR production is
critical [1]. During production and processing, BR germ
integrity is primarily manually and subjectively determined,
which is a low-efficiency process, and the BR germ integrity
cannot be quantitatively analyzed [2]. -e BR quality is
determined by how well the germ portion can be preserved.
-e amount of germ preserved in each BR grain has a direct
impact on BR processing quality. -e less the germ is
preserved, the greater the loss of nutrients in BR is [3].
-erefore, it is necessary to not only preserve the germ of BR
but also maximally increase the preserved extent of the germ
of each BR grain during processing. -us, it is necessary to
examine the BR germ integrity during processing.

Machine vision is being increasingly applied in agri-
culture. An increasing number of studies have focused on
the use of machine vision to examine rice quality. Machine

vision can improve rice quality testing efficiency while also
overcoming the effects of subjective factors, reducing test
errors, and increasing test speed and accuracy. In recent
years, Courtois et al. [4] proposed the use of image analysis
techniques to assess the breakage of and cracks in parboiled
rice grains. Lin et al. [5] proposed a method for splitting
touching rice grains based on their contour curvature. Using
a support vector machine, Sun et al. [6] evaluated and
analyzed the chalkiness of connected rice grains. Payman
et al. [7] developed a rice quality index test system based on
expert vision.

In this study, BR germ integrity is comprehensively
examined by image segmentation and identification. Wang
et al. [8] improved the watershed algorithm to address the
problem of oversegmentation of targets in image segmen-
tation involving small connected targets. Jia et al. [9]
inhibited the effects of noise on segmentation by bitmap
cutting and region merging. Some researchers used various
edge detection operators in the segmentation and extraction
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of images with targets and backgrounds that have signifi-
cantly different features [10–13]. In a fully convolutional
network (FCN), fully connected layers (in a conventional
network) are treated as convolutional layers, and decon-
volutional layers are connected. An FCN can generate a pixel
segmentation map by upsampling [14, 15].

Another method of detection is to use a target detection
algorithm to directly identify and classify the targets in the
original image, rather than using an image segmentation
algorithm to extract single targets. Progress has been made
since Krizhevsky et al. [16] proposed AlexNet [17]. At
present, in computer vision tasks, convolutional neural
networks are used to segment and classify targets [18–20]. In
2012, a major improvement was made to ImageNet [21–23].
Various deep learning methods, represented by convolu-
tional neural networks (CNNs), have been used extensively
well in terms of numerous vision tasks, including object
detection. -e single shot multibox detector (SSD) [23–25]
performs exceedingly well in terms of detection accuracy
and speed. In computer vision tasks, the use of multi-
resolution processing data will improve the overall level of
image segmentation and classification [26, 27]. -e SSD was
proposed in 2016 to address the problem of you-only-look-
once (YOLO) algorithms in target positioning having in-
sufficient detection accuracy [28–30]. -e main idea of the
SSD is the dense and uniform sampling of an image at
various locations. -e SSD was established on the concept of
anchor points in faster region-CNNs (R-CNNs) [31, 32]. In
the SSD, various prior frames are used to predict the pro-
portion and length-to-width ratio (LWR) of the boundary
frame of an object during sampling. -e features are then
extracted, classified, and regressed using a CNN. -ere is
only one step in the entire procedure. In order to detect
targets, the SSD employs a pyramidical feature layer group.
-e shallow feature map has a smaller receptive field, so it
can predict a small target, while the deep feature map has a
larger receptive field, so it can predict a large target. In the
SSD, however, feature layers of various scales are unrelated
to one another, and feature complementarity between fea-
ture layers is lacking. As a result, the SSD is relatively in-
efficient in detecting general and small targets. In August
2020, Li et al. [33] investigated a deep learning based al-
gorithm for marine target detection and segmentation with a
32.7% improvement in detection accuracy. In July 2021,
Krishnamoorthy et al. [34] used the Inception ResNetV2
model to identify infectious organisms in rice plant leaves
with a detection accuracy of 95.6%. In August 2021, Yang
et al. [35] proposed a temporal feature-based segmentation
(TFBS) model for accurate crop mapping using time-series
SAR images. In October 2021, Lan et al. [36] proposed two
improved recognition models MobileNetV2-UNet and FFB-
BiSeNetV2 for the identification of rice weeds with an ac-
curacy of 93%. In the samemonth,Wang et al. [37] proposed
a small target detection algorithm based on Mask R-CNN
model with a detection accuracy of 66.5%. In December
2021, Guo et al. [38] proposed an image segmentation and
deep learning based method to automatically identify rice
grains and calculate rice fructification rate with good results.
In the same month, Wang and Qiu [39] used an

unsupervised classification method for fast localization of
small targets to improve detection efficiency.

In the process of processing, the quality testing of brown
rice is of great significance for retaining nutrients and re-
ducing food waste. Among them, the segmentation of
connected BR and the detection of germ integrity are ex-
tremely important. However, the above algorithms are
unable to effectively identify all the rice grains in an image
and have difficulties with the connected rice grains in
particular.

-e main contributions of this study are summarized as
follows:

(1) -e BR germ integrity is classified by image seg-
mentation combined with image identification.
Single rice grains are extracted from connected rice
grains using the proposed segmentation algorithm.
-en, the BR germ integrity is classified based on an
improved Inception-v3 model.

(2) -e background skeleton-based segmentation algo-
rithm is improved [40]. -e region growing algo-
rithm and ant colony algorithm [41–44] are
integrated into reference-point matching to improve
the matching accuracy for skeleton endpoints.

(3) Two neural network (NN) models are used to
identify BR germ integrity. First, the visual geometry
group (VGG) model is used to identify and classify
the directions of the BR germs. -en, the Inception-
v3 model is structurally improved to increase the
identification accuracy.

2. Proposed Work

2.1. Preprocessing. -ere are two steps to preprocessing a BR
image. (1) After binarization, small, scattered white areas are
often generated in an image due to the miscellaneous items
on the platforms where the husks, bran, and rice are placed
during production and processing as well as noise from
some image processing procedures. -ese small areas may
subsequently affect the identification of the effective con-
nected areas and thus need to be eliminated. (2)-e training
set is image preprocessed to enhance the features of the germ
portion in the images in order to improve subsequent
training performance for the germ integrity of single rice
grains.

2.1.1. Image Preprocessing. In the first step of image pre-
processing, conventional spatial and frequency domain fil-
ters cannot simply and effectively eliminate the small areas,
whereas a morphological filter can easily eliminate them. To
eliminate the small areas, a structural element with a suitable
dimension can be used to erode the original image. After
erosion, these small areas can be eliminated. An erosion
operation, on the other hand, enlarges the voids and sep-
arates the previously connected regions. A rice area can also
be reduced by an erosion operation. To eliminate the neg-
ative effects of an erosion operation, a dilation operation can
be subsequently performed. -e combination consisting of
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first an erosion operation and a subsequent dilation oper-
ation is referred to as an opening operation. -e “。” in the
following equation is the operator of an opening operation
and signifies that a structural element is first used to erode
the image and then dilate the results of the erosion oper-
ation. We have

X ∘B � (X⊖B)⊕B. (1)

A morphological filter is used to remove the small white
area in the following left image. A 5× 5 square is used as a
structural element. -e comparison image shows that the
small white area is removed. -e results are shown in
Figure 1.

2.1.2. Image Segmentation Preprocessing. In the second step
of image segmentation preprocessing, the training set is
subjected to top-hat transformation to enhance the germ
features in the image. -is step involves reducing the
grayscale levels of the dark regions and increasing the
grayscale levels of the bright regions using the following
equation to increase the contrast:

h � f − (f ∘ b). (2)

Figure 2(a) shows the original image. Figure 2(b) shows
the result of politeness transformation. As a result, after the
contrast stretching process, there is a sharper contrast be-
tween the germs and other parts of rice. -is is beneficial to
the subsequent germ integrity identification training.

2.2. Image Segmentation. To segment small targets, this
paper uses an improved image segmentation algorithm
based on background skeleton features. In addition, the
endpoint matching process in this algorithm is improved. To
facilitate the analysis of BR grain features, it is necessary to
separate the BR and the background based on image pre-
processing. -e background in the image is black, and its
grayscale level differs relatively significantly from that of the
BR in the image. To segment the BR grains, this study first
uses a threshold segmentation algorithm. -e image is
segmented using the threshold segmentation algorithm
based on the grayscale level. -is method is applied to
distinguish the BR foreground image from background
image and then converts the grayscale image into a binary
image. -e segmentation equation is shown as follows:

g(x, y) �
1, m(x, y)>N,

0, m(x, y)≤N,
 (3)

where m(x, y) is the grayscale image, g(x, y) is the binary
image, and N is the segmentation threshold (N is calculated
using a classic and highly robust algorithm—the maximum
between-class variance (Otsu) algorithm). A threshold is
calculated using the Otsu algorithm primarily on the basis of
maximum between-class difference between grayscale levels
on the BR and the background. Based on the grayscale
probability distribution, the Otsu algorithm for digital im-
ages is represented by the following equations:

w0 � 
z

i�0
Pi,

w1 � 
L− 1

i�z+1
Pi,

(4)

μ0 � 
z

i�0

iPi

w0
,

μ1 � 
L− 1

i�z+1

iPi

w1
,

(5)

μ � w0μ0 + w1μ1, (6)

σ2 � w0 μ0 − μ( 
2

+ w1 μ1 − μ( 
2

 , (7)

where z is the set grayscale segmentation threshold
(grayscale levels are classified into classes A and B), Pi is the
probability of each gray level, w0 and w1 are the probability
sums of grayscale levels for classes A and B, respectively,
the probability measures of classes A and B grayscale levels
are μ0 and μ1, respectively, and σ2 is the between-class
variance. -e optimum segmentation threshold T that
leads to a maximum σ2 is calculated by traversing
z � [0, 255].

-e segmentation threshold for the grayscale BR image is
calculated using the Otsu algorithm. Grayscale levels greater
and less than the segmentation threshold in the image are set
to 1 and 0, respectively. -us, a binary BR image is obtained.
Figure 3 is a binary BR image obtained by processing a
grayscale BR image.

Background segmentation is followed by region seg-
mentation. Based on the similarities between the spatial
regions, in the region segmentation process, the regions are
merged according to the similarity criteria. Below, the region
growing algorithm is primarily used to segment the regions
in the binary BR image to complete the marking and
characterization of the regions.

In region marking, the same connected components in
an image are assigned the same mark, and different con-
nected regions are differentiated with different marks. A
binary image is used to mark the connected regions. -e
background is labeled with the same label (generally 0).
Finally, the image is transformed into a mark matrix.

-e main algorithm used in region marking is region
growing, which was originally used in grayscale image re-
gion segmentation.-e idea of this algorithm is as follows. A
seed pixel is set or found in the region that needs to be
segmented. -e region is expanded with this seed pixel as its
initial point. Subsequently, the pixels within the neighbor-
hood of the seed pixel are examined to determine their
similarities to the seed pixel. -e pixels that meet the
similarity criteria are merged into the seed region. After that,
until no more pixels meet the similarity criteria, the newly
formed region is used as a seed for the similarity judgment
and region merging steps. Finally, the merged region is one
connected region that is independent.
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After subjecting the binary BR image to the background
segmentation and region marking procedures, it is necessary
to further segment different regions by marking their geo-
metric properties. A method for describing the region
features, which is involved in the extraction of the shape
features from the binary BR image, is described by the
following. -e BR features include the perimeter, area, di-
rection of the long axis, and center of gravity. -e perimeter
of a BR grain is the length of the boundary of the region. On
a two-dimensional plane, the perimeter of a region can be
approximately calculated by counting the number of pixels

of its boundary. Sometimes, to obtain a more accurate
representation, pixels are treated as points, and the bend and
linear boundaries of a right angle are distinguished by chain-
code representations. When the chain-code value is an odd
number (i.e., bend boundary), the length is denoted by

�
2

√
.

When the chain-code value is an even number (i.e., linear
boundary), the length is denoted by 1. -us, the perimeter p

is represented by the following:

p � Ne +
�
2

√
No, (8)

where Ne is the number of chain codes with even-number
values and No is the number of chain codes with odd-
number values.

-e area of a region is its basic property. For the region R

in the BR image, its area is calculated based on the number of
pixels contained within it. -e area of the region R is
represented by the following:

SR � 
(x,y)∈R

1.
(9)

-e above equation calculates the cumulative number of
pixels in all the regions plus 1.

-e position of a target region in the image is charac-
terized by its center of gravity. In the binary BR image, all the
pixels within the region have a value of 1 and thus follow a

Figure 3: Binary image of brown rice.

(a) (b)

Figure 1: Comparison of images before and after morphological filtering. (a)-e original image. (b)-e image processed by morphological
filter.

(a) (b)

Figure 2: Image comparison after segmented transformation. (a) -e original image. (b) -e image processed by top-hat transformation.
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uniform distribution. Let (xi, yi) be the coordinates of the
position of a pixel in the image. -e equation for calculating
the center of gravity is as follows:

x �
1
SR



xi,yi( )∈R

xi,

y �
1
SR



xi,yi( )∈R

yi,

(10)

where x and y are the coordinates of the position of the
center of gravity and SR is the area of the region.

During BR identification correction, the direction of
each BR grain plays an important role and is themain feature
parameter for extraction correction. Under normal cir-
cumstances, for a long and narrow region, the direction of
the long side of its minimum bounding rectangle is selected
as the direction of its long axis.

μpq �  
R

(x − x)
p
(y − y)

q
f(x, y),

θ �
1
2
arctan

2μ11
μ20 − μ02

 ,

(11)

where μpq is the central moment of the region, f(x, y) is the
pixel value of the point (x, y) in the region, and θ is the angle
of the direction of the long axis.

-e connected regions in the binary BR image are
marked using the region growing algorithm, as shown in
Figure 4. In this paper, the connected regions of the image
after binarization are numbered, and each number is at the
center of each connected domain.

-e connected rice grains are segmented after the BR
image has been subjected to the background threshold
segmentation and region segmentation procedures. To
segment the connected rice grains in the image, it is
necessary to first determine the positions of the connected
regions. -e connected regions in the BR image are
marked and described during the region segmentation
procedure. Two of them were selected as examples for
analysis. -e original image is shown in Figure 5(a). First,
the image is binarized, as shown in Figure 5(b). -en,
according to the calculation, the minimum convex hull
(MCH) (i.e., minimum convex polygon) of each con-
nected domain image is obtained. -e MCH image is
shown in Figure 5(c). Furthermore, the MCH region’s
area is calculated using the region marking method.
Equations (12) and (13) can be used to determine the
connected regions.

f(i) �

1, S(i)< 0.85 andA(i)>H,

0, else,

⎧⎪⎨

⎪⎩
(12)

solidity �
area

convex
, (13)

where i ∈ [1, m], f(i) is applied to judge the region con-
nection condition (f(i) � 1 means that the current region is
a connected region; f(i) � 0 means the current region is a
nonconnected region), A(i) is the area of the region, convex
is the area of the MCH in the region, S is the ratio of the area
of the region to the area of the MCH, and H is the area
threshold (H is set based on the area of a single rice grain in
the binary image; in this study, H is set to 2,400, which is a
little bit smaller than the area of a single rice grain in the
binary image).

After determining the connected regions, it is necessary
to calculate the segmentation endpoints. -us, an operation
is performed on the binary image and the MCH image using
equation (14). A binary image of the background image for
connected rice grains within the MCH region is thus ob-
tained, as shown in Figure 5(d).

C(x, y) � A(x, y) − B(x, y), (14)

where A(x, y) is the binary image of the MCH in the
connected region, B(x, y) is the binary image of connected
BR grains, and C(x, y) is the binary image of the back-
ground of the image of the connected BR grains.

In the binary image, the connected features between BR
grains images have been completely extracted, so the
background image is represented by a curve. -e topo-
graphic and connection features in the background image
are preserved in the skeleton image, as shown in
Figure 5(e). -e following shows the calculation of the
skeleton:

S(A) � 
N

n�0
Sn(A), (15)

Sn(A) � (A⊖ nB) − [(A⊖ nB) ∘B], (16)

A⊖ nB � ((· · · (A⊖B)⊖B)⊖ · · ·)⊖B, (17)

where ⊖ is defined as the morphological erosion operator,
the background image is represented by A, the skeleton of
the background image is represented by S(A), the structural
element is represented by B, N is the value in (A⊖ nB)≠∅
and (A⊖ (n + 1)B) � ∅, Sn(A) is the subset of nth skeleton,
and A⊖ nB signifies the use of B to erode A for an n number
of consecutive times.

-e skeleton image endpoint look-up table function is
used to generate a neighborhood pixel value look-up table
Lut. Subsequently, the segmentation endpoints are
searched for in the look-up table for the background
skeleton feature image in Figure 5(e). -e segmentation
points in the image’s coordinates are calculated. -e seg-
mentation endpoints in Figure 5(f ) are the white and
shaded endpoints. -e skeleton image endpoint look-up
table function is described by the following: in terms of a
binary image, if there is one and only one pixel with the
value of 1 within the 3 × 3 neighborhood of a pixel with the
value of 1, the function returns the value of 1; otherwise, the
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Figure 4: Rice area marker image.

(a) (b)

(c) (d)

(e) (f )

Figure 5: Schematic diagram of feature segmentation endpoints. (a) Original image. (b) Binary image. (c) MCH. (d) Background image.
(e) Skeleton image. (f ) Skeleton endpoints.
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function returns the value of 0. Detailed calculationmethod
is shown as follows:

M(x, y) �

A(x− 1,y− 1) A(x,y− 1) A(x+1,y− 1)

A(x− 1,y) A(x,y) A(x+1,y)

A(x− 1,y+1) A(x,y+1) A(x+1,y+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

SumM(x, y) � 
x+1

i�x− 1


y+1

j�y− 1
A(i,j), (19)

fM(x, y) �
1, SM(x, y) � 2 andA(x,y) � 1,

0, other,
 (20)

where M(x, y) is a 3 × 3 neighborhood with A(x,y) as the
center, A(x,y) is a pixel with the value of 1 in the background
skeleton feature image, SM(x, y) is totaled elements in
M(x, y), and the skeleton endpoint extraction function is
represented by fM(x, y).

-e background skeleton endpoints are fixed in binary
image. Because some skeleton endpoints are formed by the
MCH boundary, not all of these skeleton endpoints can be
defined as segmentation endpoints. -us, the edges of the
minimum convex image are detected based on the Sobel
operator equations (21)–(23) to extract its boundary curve.
-en, the minimum Euclidian distance between the
boundary curve of MCH and each skeleton endpoint is
calculated. -e results form a minimum Euclidian distance
set.-e nonsegmentation endpoints are then removed based
on

Gx �

− 1 0 1

− 2 0 2

− 1 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A,

Gy �

− 1 − 2 − 1

0 0 0

1 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A,

(21)

|G| �

���������

G
2
x + G

2
y 



, (22)

ϕ � arctan
Gx

Gy

 , (23)

J � d1, d2, . . . dN , (24)

Tdi �
1, di > th,

0, other,
 (25)

where A is the binary image of the MCH, G is the gradient of
the image, Gx and Gy are, respectively, represented by the
gradient of the image in x-axis and y-axis direction. ϕ is
defined as the direction angle of gradient, J is defined as the
set of the minimum Euclidian distances between endpoints

and MCH, N is defined as total of endpoints, th is the
segmentation endpoint distance judgment threshold (th is
set to 4), Tdi � 1 means that the point is a segmentation
endpoint, and Tdi � 0 means that the point is not a seg-
mentation endpoint. In Figure 5(f), the minimum distances
between shaded endpoints and boundary contours are no
more than th. -us, these shaded endpoints need to be
removed. In comparison, the white endpoints are deter-
mined to be segmentation endpoints.

2.3. Feature Point Matching Steps

(1) Select a segmented end point as the reference end
point in the calculated segmented end point library,
and confirm the segmented matching area in ac-
cordance with the position characters of the refer-
ence end point in image. First, perform
morphological expansion operation in the skeleton
area where the segmentation endpoints are located.
-en, the boundary features of the image are
extracted (dotted line T in Figure 6). In order to
more distinctly show the spatial positional rela-
tionship in the image, an original contour curve of
the background region of binary image is plotted
(solid line T′ in Figure 6). In Figure 6, X is the
selected segmentation endpoint as reference.
-rough traversal of the pixels of the boundary curve
T, the boundary point (X2) closest to the reference
segmentation endpoint is determined between the
vector XX2. -en, the boundary curve where the
boundary point X2 is located is smoothed by filtering
boundary spike noise, as shown in equation (27).
Based on smooth handling of contour curve, the
points (X1 and X3) near X2 are selected. -us,
matching direction angle of the reference endpoint is
determined on the basis of X1, X2, and X3. -e
specific algorithm of matching angle is calculated by
the following equations:

Ax � A⊕B, (26)

Xi �
A(i− 2) + A(i− 1) + A(i) + A(i+1) + A(i+2)

5
, (27)

Xmid � xmid, ymid(  �
x1 + x3

2
,
y1 + y3

2
 , (28)

θ � arctan
y2 − ymid

x2 − xmid
  + mπ, (29)

m �

1, y2 − ymid ≥ 0& x2 − xmid < 0,

0, x2 − xmid ≥ 0,

− 1, y2 − ymid < 0& x2 − xmid < 0,

⎧⎪⎪⎨

⎪⎪⎩
(30)

where AX is defined as dilated skeleton image, A is
original skeleton of binary image, B is defined as a 2-
radius circular structural element, A(i) is defined as
coordinates of the contour boundary, Xi is defined as
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coordinates of boundary points after smooth han-
dling of boundary curve, Xmid is defined as the
midpoint between X1 and X3, and θ is defined as the
angle of the vector XmidX2

��������→
and the horizontal x-axis

(i.e., the direction angle of the reference point; θ�

[− π, π)).
(2) -e selected reference point is matched with the

corresponding segment end point, referring to the
angle of the end point, and ±45° is selected as the
matching radiating region (the shaded region in
Figure 7). In Figure 7, the shaded region shows the
search area for the points to be matched.

During the matching process, a seed image is first
generated using the region generation algorithm. -e seed
image can be obtained by eroding the binary image multiple
times with structural elements differing in shape and size.
-e seed image, unlike the binary image obtained during the
background threshold segmentation process, does not place
a premium on BR contour integrity. In the generation of the
binary image needed for the seed image, there is no need to
reduce the contrast, because this also reduces the clarity of
the boundaries and, thereby, causes the boundaries to
connect with one another. To avoid insufficiently clear gaps
between the BR grains during binarization due to uneven
lighting, the image can be subjected to a top-hat transfor-
mation with a relatively large structural element first. -e
following equation shows the top-hat transformation
equation (31), where f is the input image, B is the structural
element, and g is the output image. Figure 8(a) shows the
binary image of connected BR grains. Figure 8(b) shows the
obtained seed image.

g � f − (f ∘B). (31)

Afterwards, a reference point randomly selected is
considered as the center of the circle and the length of rice
grain is regarded as the radius with the purpose of searching
all reference points in the circle. Meanwhile, the image is
considered as the grid map and the pixels of reference points
are treated as coordinates; then the routine is planned by the
ant colony algorithm. -e shortest path of all reference
points in the ergodic circle is calculated (the starting point
and the ending point are not connected).

-e ant colony algorithm is constructed by a kind of
biological heuristic optimization algorithm with regard to
cooperative behaviors of ant colony in foraging, because its
significant globally researching capability is widely applied
in combinational optimization problems. Based on distance
matrix D, the ant colony algorithm is used to calculate a
group of patrol order X for minimization of patrol distance
function V(X).

-e number of patrol points δ and the number of ants
in its colony m and distance matrix D are known; then all
points passed by ant K are recorded in tabu list tk. After
the first loop, the tabu list is reset to zero; then ants are free
to select again. Based on pheromone and the distribution
of heuristic information, the state transition probabilities
of ants are identified in its movement process, as
expressed in

p
k
ij �

ταij(t)ηβij(t)

s∈αk
ταis(t)ηβis(t)

, j ∈ αk( ,

0, (other),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

ηij(t) �
1

dij

. (33)

Here, pk
ij is state transition probability, the larger

number indicates the greater probability of selecting the next
point for ants. i and j indicate, respectively, the current node
and the next node. τij(t) is the amount of pheromone on the
line of i and j at t moment. ηij(t) is heuristic function. ak is
searchable nodes collection not in tabu list. a is pheromone
index of relative importance. β is visibility index of relative
importance. dij is the data of line i and line j in distance
matrix D. According to equations (1) and (2) to execute the
choice of next node until all patrol points are traversed, the
length of motion path for each ant is recorded as
Lk(k � 1, 2, . . . m); meanwhile, the current shortest path
Lmin and patrol orderX are recorded.-en the pheromone is
updated pursuant to following equation andΔτij is reset to 0,
as expressed in

O

T′T

x

y

X
X1

Xmid X3

X2

θ

Figure 6: Matching angle diagram.
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Figure 7: Baseline endpoint matching diagram.
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τij(t + 1) � (1 − ρ)τij(t) + Δτij(t), (34)

Δτij(t) � 
m

k�1
Δτk

ij(t), (35)

Δτk
ij(t) �

ϑ
Lk

, The kth ant passes through node(i, j)( ,

0, The kth ant doed not passes through node(i, j)( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

Here, pheromone concentration τij(t) is pheromone
concentration in previous t time. Δτij is the increasing
number of pheromone in the node within unit interval.
Δτk

ij(t) is the increasing number of pheromone ant K. ρ is
volatility coefficient of pheromone. Lk is the distance from
the starting point to the end walked by ant K. θ is en-
hancement coefficient of pheromone. When iterations are
up to its maximum Ncmax, jump out of the loop and then
output the optimal patrol path X at this time as the final
result. -e shortest path planned by ant colony algorithm is
as shown in image.

After shortest-distance path planned, the first step is to
identify which two consecutive points are matching end-
points in the path and then select two points according to the
order planned by the ant colony algorithm. -rough the
shortest distance between the reference endpoint and seed
image, the nearest seed from two endpoints is judged
whether it is the same one or not. If the seeds are the same
one, then they are matched endpoints. Otherwise, they are
unmatched endpoints. -e specific judgment method is as
expressed in Figure 9.

-e result as shown in Figure 10 is concluded from the
path planning and distance judgment of seeds. In the image,
the endpoints of black line are matched endpoints. -en the
rest of endpoints are reused to execute endpoint matching
through ant colony algorithm until the endpoints are finally
matched.

2.4. Image Identification. -is study presents a CNN model
for identifying BR germ positions as well as a CNN model
for classifying BR germ integrity. In addition, these two
models are used in combination to calculate the BR germ
integrity.

2.4.1. Identification of the Germ Direction. After grain image
segmentation, the images of the single BR grains show that
the germ is generally located in the upper left, upper right,
lower left, or lower right corner of the grain.-e direction of
the germ is relatively notable. Furthermore, the images of
single BR grains have already been corrected horizontally
along the long axis. As a result, the germ can only go in four
different directions. -us, there are only four types of VGG
network outputs. -erefore, no complex feature parameters
are needed, as shown in Figure 11.

2.4.2. Germ Integrity Identification. By position identifica-
tion, the images of the BR germs are rotated to ensure that
they are in the same direction. -en, the germ integrity is
identified using an optimized Inception-v3 model. -e
simplest method for improving a network is to increase its
depth and breadth and increase the numbers of hidden
layers and neurons in each layer. However, there are some
problems with this method. -is method leads to a larger
parameter space, renders fitting easier, and requires more
computational resources. -e deeper the network is, the
easier it is for the gradient to vanish, and the more difficult it
is to optimize the network. -e core of the Inception-v3
model involves the use of 1× 1, 3× 3, and 5× 5 small
convolutional layers to replace the large convolutional layers
of the network. -is can significantly reduce the number of
weighting parameters. Figure 12 shows the results obtained
using the Inception-v3 model.

During the training process, the activation input value of
the deep NN deepens prior to nonlinear transformation,
resulting in the movement of the NN distribution. -e
convergence is slow during training because the overall
distribution gradually becomes a nonlinear function. -is

(a) (b)

Figure 8: Baseline endpoint matching diagram. (a) -e binary image. (b) -e obtained seed image.
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results in the vanishing of the gradient of the low-level NN
during backpropagation.

-e batch normalization method normalizes each data
output (mean: 0; variance: 1) as well as the mean and
standard deviation of the data after the convolution pool, as
shown in the following equation:

x
(k)

�
x

k
− E x

k
 

�������

Var x
k

 

 . (37)

-e Inception-v3 model is used in combination with a
proposed loss function, which is referred to as the mutual-
channel loss (MC-loss) function, to distinguish the features
of different channels. In addition, the MC-loss function is
used to limit the distribution of the channels. -e MC-loss
function contains two channel-related components, namely,
a discriminality component and a diversity component [28].
Figure 13 shows the overall model framework.

-e input image X ∈ RW×H is used as the input of the
basic network. -e depth feature F ∈ RN×W×H corre-
sponding to the image is extracted, whereN is the number of
channels of the depth feature and W andH are the width and

height of each feature map, respectively. In addition, it is
required that N equal c× ξ, where c is the total number of
classes in the training dataset and ξ is the number of feature
maps allocated to each class. -erefore, the nth-dimensional
feature map of the depth feature F can be represented by
Fn ∈ RWH, n� 1, 2, ... , N. Moreover, the depth feature of the
class i can be represented by Fi ∈ Rξ×WH, i� 0, 1, 2, ... , c-1, as
expressed in the following equation:

Fi � Fi×ξ+1,Fi×ξ+2, . . . , Fi×ξ+ξ, . (38)

Inputting two optimization objectives with different
purposes into two different branches facilitates their cal-
culation and optimization. In Figure 13, the cross-entropy
loss branch treats the feature as input. -rough a fully
connected layer, the conventional classification loss LCE is
calculated. -e cross-entropy loss can drive the network to
extract the meaningful discriminality information and focus
on the global discriminality region. In addition, the MC-loss
branch supervises the network, allowing it to learn features
and focus on different local discriminality regions. Subse-
quently, an ultimate loss function is obtained by adding the
MC-loss weighted by μ and LCE. -us, the loss function of
the whole network is as follows:

Loss(F) � LCE(F) + μLMC(F). (39)

In addition, the MC-loss is obtained by a weighted
addition of a discriminality component loss Ldis and a di-
versity component loss Ldiv. -us, the MC-loss is defined as
follows:

LMC(F) � Ldis(F) + λLdiv(F). (40)

-e left boxes in Figure 14show the procedure for the
distinguishability component. -e diversity component is
used to measure the similarities between the feature chan-
nels. As shown by the right side of Figure 14, the diversity
component can drive the feature channels of the same group
to become different, as shown in Figure 14.

-e orthogonal classification layer adds an improved
dropout, which reduces unnecessary link items of various
categories, as shown in the following equation:

r � softmax((M•W)v). (41)

M is a mask matrix of W, constant diagonal matrix, as
expressed in the following equation:

M �

M1,1 01,2 · · · 01,k

02,1 M2,2 · · · 02,k

⋮ ⋮ ⋱ ⋮

0k,1 0k,2 · · · Mk,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

Based on Inception-v3 model, two branches are added.
-e first branch is the original germ rice image branch. -e
second branch is adding mlpconv to the Inception-v3 model
which can help the model to better approximate the abstract
representation of the potential space. -e simple convolu-
tional neural network cannot extract the abstract features of
the germ well, and the inception structure is too

1

2 3

2

Figure 11: Image of the germ position.

Figure 9: Match verification diagram.

Figure 10: Ant colony algorithm path planning image.
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complicated, due to the small size of the brown rice germ.
-erefore, mlpconv is used to effectively extract the germ
characteristics through the subsequent 1∗ 1 convolution.
Figure 15 shows the structure.

At the same time, ResNet is added into the second
branch [45–47]. -ese residual connections allow us to have
a deeper network structure without increasing parameters.
-e second branch is multiple MBR connection including
mlpconv, batch normalization, and ReLU. -e integral
structure is as shown in Figures 16 and 17.

-e input image is divided into three parts. -rough
the improved Inception-v3 loss function, the first part
becomes the original part (the input image is 299∗ 299).
In the second part (the input image is 35∗ 35; after
upsampling it becomes 225∗ 225), the BR germs are
extracted based on the position direction. As the germ
portion is too small in size, the number of pixels is in-
creased by upsampling. Subsequently, the germ image is
transferred to 7-layer MBR network. -rough the MBR
network, the deeper abstract features of the germ can be
extracted. It is beneficial to improve the detection accu-
racy of embryo integrity. -e upper part of the network
focuses on the extraction of the overall features of brown
rice, and the lower part of the network focuses on the
feature extraction of the germ part of brown rice. Com-
bining the two parts not only preserves the overall in-
formation of the rice, but also accurately detects the
integrity of the germ. Finally, the first two parts are
combined with the original germ image by global average
pooling and input into a complete connection layer.
Figure 18 shows the network structure.

During the production and processing of BR, all the
processing procedures are completed by experienced
workers through visual assessment, which ensures pro-
cessing quality and facilitates the adjustment of the equip-
ment. Human visual assessment is based on a general feeling
and cannot accurately determine the germ integrity. Tomore
accurately describe the germ integrity of BR and improve its
quality, BR grains are classified by observation into eight
types, ranging from germ-free BR to whole-germ BR. -e
classification of each type of BR is based on the germ in-
tegrity. Figure 19 shows the results.

Filter concat Filter concat Filter concat

3*3 con

3*3 con 3*3 con 1*1 con

1*1 con1*1 con 1*1 con Pool

Pool

Pool

Base

Base
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1*7 con 1*7 con 1*1 con

1*1 con 1*1 con 1*1 con

1*3 con 3*1 con

1*1 con
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1*3 con 3*1 con3*3 con

Figure 12: -e Inception-v3 model (Block1, Block2, and Block3 from left to right).
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Figure 14: Overview of the MC-loss.
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3. Experimental Method

3.1. Segmentation Experiment. Connected BR grains were
segmented using the improved background skeleton-based
segmentation algorithm proposed in this study. Figure 20
shows the segmentation results.

In view of the limitations of the background skeleton-
based segmentation algorithm for single rice grains, the
original endpoint matching method was improved in this
study. A segmentation experiment on multiple connected
BR grains was performed by integrating the region growing
algorithm. In addition, the image of the most complex BR
grain connection condition was used in a comparison ex-
periment. Figures 21 and 22 show the experimental results
for the segmentation of randomly distributed BR grains.

Images are of various types of cereals in which rice grains
are connected on a small scale. -ese images were processed
using the classic range-transformation watershed algorithm,
the edge detection algorithm with different operators, the
region growing algorithm, a fully convolutional NN
(FCNN), and the proposed algorithm. -e ultimate seg-
mentation results obtained using these four algorithms are
shown in Figures 23–27.

During the extraction of single BR grains, operations,
such as image rotation, were performed. As a result, the BR
grains were horizontal throughout the process. Figure 28
shows the results for single rice grains.

To examine the segmentation performance for various
BR grains, 2000 grain samples were collected for three types
of BR grains differing in LWR. -e connected BR grains
were segmented (25 images were collected for each 2000
grains). For the range-transformation watershed algorithm,
the edge detection algorithm with different operators, the
region growing algorithm, the FCNN, and the proposed
algorithm, the number of correctly segmented BR grains and
the segmentation time were determined. In addition, the
accuracy of each algorithm was calculated. Correct seg-
mentation should ensure that single BR grains are com-
pletely segmented and that there are no oversegmentation
lines in the BR grains. Tables 1–6 summarize the results.

Tables 1–6 summarize the results. -e average segmen-
tation accuracies of the classic range-transformation watershed
algorithm, the edge detection algorithm, the region growing
algorithm, the FCNN, and the proposed algorithm for the three
types of BR grains differing in LWR (long, short, and inter-
mediate) were 72.6%, 83.67%, 90.9%, 91.3%, and 94.96%, re-
spectively. -e segmentation accuracy of the proposed
algorithm was higher than those of the other segmentation
algorithms. With regard to the computational time for the
segmentation operation, of the three algorithms, the proposed
algorithm required the longest computational time. -is is
mainly because the proposed algorithm involves a relatively
large number of steps in the segmentation operation and is
more complex, thus requiring more computational time in
processing. Because of this, the proposed algorithm effectively
inhibited erroneous segmentation, had a higher segmentation
accuracy, and provided more valid images of BR grains for the
subsequent extraction of single BR grains.

3.2. Identification Experiment

3.2.1. Germ Direction Identification Experiment. -e 6,000
BR grains obtained after image segmentation were used as a
training set. A total of 500 training iterations using the VGG

M B R M B R

Figure 16: -e scheme of a possible residual connection in a CNN.

Base

5x5 con

1x1 con

1x1 con

Relu activation

pool

3x3 con

1x1 con

1x1 con

pool

Figure 17: -e overall structure of MBR.

Figure 15: mlpconv layer.
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model were performed. In addition, the accuracy of the VGG
model was examined by k-fold cross-validation. -e accu-
racy of the VGG model was found to be 98.6%, meeting the
accuracy requirements for germ position and direction
identification.

3.2.2. Germ Integrity Identification Experiment. First, the
position of the germ of each single BR grain was determined
using the germ position identification model. -en, the BR

grains were rotated so that their germs were in the same
direction.

A total of 500 training iterations were performed using
the improved Inception-v3 model. Afterwards, training was
performed in intervals of 10. -e accuracy of the improved
Inception-v3 model was examined based on the test set.

Input VGG19
rotate

+
cut

3*Conv2d
(ReLU.BN) Max_pool 2*Conv2d

(ReLU.BN) max_pool 3*Block1 5*Block2 3*Block3
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avg_pool dropout Fully
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Figure 18: Improved Inception-v3 network structure diagram.
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Figure 19: Rice germ integrity classification standard.

(a) (b)

Figure 20: (a) Binary image after segmentation. (b) Germ rice
image after segmentation.

(a) (b)

Figure 21: (a) -e unimproved endpoint matching effect picture.
(b) -e improved endpoint matching effect picture.

(a) (b)

Figure 22: (a)-e unimproved segmentation effect picture. (b)-e
improved segmentation effect picture.

Figure 23: -e classic range-transformation watershed algorithm.
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Ultimately, the error rate on the test set converged to 5.9%.
After 80 training iterations, there was a significant decrease
in the rate of convergence. After 500 training iterations,
k-fold cross-validation showed that the identification ac-
curacy of the optimized Inception-v3 model was 95.3%.

First, an experiment was conducted to examine the germ
integrity of single BR grains. In the experiment, Daohuax-
iang-2 BR grains with various levels of germ integrity were

used as samples. -e whole batch of BR grains was first
classified by visual observation according to the eight-type
BR classification standard. For each type, 700 grains were
selected for testing. A total of 5600 BR grain samples were
used. -e number of BR grains that could be collected from
each image was limited. -erefore, after manual identifi-
cation, the samples were divided into eight groups. Each
group consisted of 25 BR grains. -ese samples were then
subjected to image collection analysis. Image collection was

Figure 24: -e region growing algorithm.

sobel edge check roberts edge check prewitt edge check

log edge check canny edge check gasussian&canny edge check

Figure 25: -e edge detection algorithm with different operators.

Figure 26: Fully convolutional neural network segmentation.
Figure 27: -e proposed algorithm.
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performed a total of five times. Finally, the manual classi-
fication and identification results were compared with the
BR test results. Table 6 summarizes the experimental
comparison results.

In this section, the optimized Inception-v3 model was used
to identify the germ integrity. To demonstrate its advantages,

the optimized Inception-v3 model was compared with several
currently popular deep network identification models
(VGGnet16, VGGnet19, Inception-v3, and ResNet50). -e
performance of these models was evaluated. In addition, a
comparison with the original dataset was performed. Table 7
summarizes the experimental comparison results.

Table 1: -e classic range-transformation watershed algorithm segmentation result.

Types of rice Number of rice grains/grain Number of correctly segmented grains/grain Accuracy (%) Segmentation total time/s
Long 2000 1396 69.8 44.28
Short 2000 1532 76.6 42.21
Intermediate 2000 1428 71.4 45.22

Table 2: -e region growing algorithm segmentation result.

Types of rice Number of rice grains/grain Number of correctly segmented grains/grain Accuracy (%) Segmentation total time/s
Long 2000 1578 78.9 68.10
Short 2000 1706 85.3 72.52
Intermediate 2000 1736 86.8 76.63

Table 3: -e edge detection algorithm segmentation result.

Types of rice Number of rice grains/grain Number of correctly segmented grains/grain Accuracy (%) Segmentation total time/s
Long 2000 1056 52.8 90.76
Short 2000 1244 62.2 99.21
Intermediate 2000 1276 63.8 92.61

Figure 28: Single grain rice extraction image after segmentation.

Table 4: Fully convolutional neural network segmentation result.

Types of rice Number of rice grains/grain Number of correctly segmented grains/grain Accuracy (%) Segmentation total time/s
Long 2000 1752 87.6 42.36
Short 2000 1828 91.4 45.69
Intermediate 2000 1874 93.7 47.54

Table 5: -e proposed algorithm segmentation result.

Types of rice Number of rice grains/grain Number of correctly segmented grains/grain Accuracy (%) Segmentation total time/s
Long 2000 1842 92.1 76.31
Short 2000 1906 95.3 72.95
Intermediate 2000 1950 97.5 71.44
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A comparison of the models in Table 7 shows that the
identification accuracy (94.97%) of the optimized Inception-
v3 model was higher than those of the other models. As the
initialization parameters for training the BR identification
model, this model learned domain knowledge from large
amounts of easily accessible same-domain data. -is
addressed the problem of insufficient training data for the
BR identification task and further improved the identifi-
cation accuracy.

Finally, an overall and comprehensive image segmen-
tation and identification experiment was performed to ex-
amine the germ integrity. -e segmentation algorithm was

used to determine the position of each BR grain (first
segment according to the background skeleton, and then
recognize through the improved Inception-v3 network
(BSF)). -e BSF network was compared with faster R-CNN,
SSD, and YOLO-v3 in terms of accuracy. Table 8 summa-
rizes the experimental comparison results.

A comparison of the methods in the above table shows
that the identification accuracy (94.83%) of the BSF network
was higher than those of the other algorithms. As a result, the
BSF network performed relatively well in image segmen-
tation.-e recall rate of the BSF network was far higher than
those of the other detection algorithms.

Table 6: Test results.

Germ integrity class Result/grains -e results of the algorithm/grains Germ integrity accuracy/% Average accuracy (%)
0% ∼ 12.5% 700 667 95.2

95.53

12.5% ∼ 25% 700 671 95.8
25% ∼ 37.5% 700 661 94.3
37.5% ∼ 50% 700 666 95.1
50% ∼ 62.5% 700 675 96.3
62.5% ∼ 75% 700 668 95.3
75% ∼ 87.5% 700 677 96.6
87.5% ∼ 100% 700 670 95.6

Table 8: Contrast test results.

Types of rice Network Recall Precision Accuracy Training samples

Long

Faster R-CNN 77.59 91.23 92.16 2000
YOLO v3 88.18 91.79 91.56 2000

SSD (VGG-16) 90.16 92.34 92.09 2000
BSF network 92.10 94.16 94.69 2000

Short

Faster R-CNN 79.38 91.52 91.36 2000
YOLO v3 89.49 91.92 91.55 2000

SSD (VGG-16) 90.26 92.71 92.69 2000
BSF network 95.30 94.16 94.25 2000

Intermediate

Faster R-CNN 79.81 92.22 92.39 2000
YOLO v3 89.57 92.66 92.91 2000

SSD (VGG-16) 90.86 92.89 93.21 2000
BSF network 97.50 94.87 95.53 2000

Table 7: Contrast test results.

Types of rice Experiment method Recall Precision Accuracy Training samples

Long

VGGnet16 83.69 82.34 82.91 2000
VGGnet19 90.54 90.32 89.98 2000
Inception-v3 92.21 92.55 91.88 2000
ResNet50 92.11 92.34 91.86 2000

Optimized Inception-v3 93.73 94.16 94.83 2000

Short

VGGnet16 83.56 83.24 83.18 2000
VGGnet19 91.21 91.48 91.33 2000
Inception-v3 92.79 93.12 91.93 2000
ResNet50 89.15 90.44 89.87 2000

Optimized Inception-v3 95.56 94.97 95.53 2000

Intermediate

VGGnet16 83.86 83.16 83.54 2000
VGGnet19 86.85 87.66 86.82 2000
Inception-v3 92.77 91.68 91.72 2000
ResNet50 91.36 92.63 92.49 2000

Optimized Inception-v3 94.87 93.69 94.56 2000
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4. Conclusions

In this study, the background skeleton-based algorithm for
image segmentation is improved. Besides, segmented end-
points are obtained by detecting skeleton features of the
background images of connected BR grains. Meanwhile,
adopting segmentation endpoint matching algorithm is ben-
eficial for achieving segmentation successfully. -is paper
addresses image problems of connected BR grains. And the
algorithm accuracy applied to image segmentation of con-
nected BR grains in various shapes is above 96% as presented in
this paper. In addition, this algorithm is suitable for segmenting
images with large regions of connected BR grains and is highly
robust. Moreover, compared to the classic segmentation al-
gorithm, this algorithm is suitable for relatively wide BR grains.

In addition, two networks are proposed to identify germ
integrity. A position network model is used to unify the
directions of BR germs. Furthermore, an algorithm based on
an improved Inception-v3 model is proposed for deter-
mining BR germ integrity. -e network outputs are divided
into eight categories based on their germ integrity. -e
accuracy of the proposed algorithm is higher than those of
other NN algorithms. -e comprehensive accuracy of the
proposed algorithm is 94.83%.-is algorithm can effectively
suppress interference from the endosperm surface of BR.

Finally, an overall detection function is achieved based on
background skeleton features and the deep learning network
algorithm. First, identifying a large number of connected BR
grains can ensure high accuracy performance. Second, this can
also help rapidly and accurately determine the positions of BR
grains. In the experiment, this method was found effective in
identifying the germ integrity of a large number of BR grains.
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