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Temperature pretreatment is one of the most important factors which signifcantly afects the postharvest quality of citrus fruit. In
this study, late-ripening Valencia orange (citrus sinensis) fruits were used to investigate the efect of short-term treatment at low
(6°C), room (20°C), and high (40°C) temperatures on fruit quality. Our results revealed that both low and room-temperature
treatments maintained the content of sugars and organic acids, whereas high-temperature treatments elevated the accumulation
of sugars but decreased the content of citric acid. In fruit peel (favedo and albedo), the accumulation of sugars and organic acids
responding to temperatures was diverse and mostly diferent from that in the pulp. Meanwhile, GABA and several amino acids
were upregulated under short-term high-temperature treatment but downregulated in response to low-temperature treatment in
both peel and pulp. Furthermore, PCA and correlation analysis revealed that the short-term temperature treatments changed the
metabolic fow, and GABA was positively correlated with sugars and organic acids. Our study analyzed the metabolic changes of
fruit peel and pulp in response to short-term temperature treatments and revealed that GABA may act as a signaling molecular
involved in temperature-controlled quality changes.

1. Introduction

Citrus is one of the most popular and important fruits in the
world because of its high nutritional and commercial value.
Citrus fruits are rich in organic acids (particularly citric acid
and malic acid), solute sugars (such as sucrose and fructose),
and multiple amino acids that give them excellent favor [1].
With the development of the citrus industry, the im-
provement and maintenance of fruit quality have been
attracting more and more attention. Postharvest treatments
are considered important strategies to maintain the fruit
quality and extend the shelf life of citrus fruit [2].

To date, various preservation methods, including
physical preservation and chemical preservation, have been
widely used in the industry [3–5]. Physical preservation

methods, such as temperature treatments, show excellent
efects on the maintenance of nutrition and natural favors
and are more environmentally friendly and safe approaches
compared with chemical preservation methods [6].

Temperature treatments have been widely used as a pre-
harvest and postharvest strategy in fruit preservation. Low-
temperature (LT) treatment can efectively repress quality
deterioration and delay fruit senescence, thereby extending the
shelf life of fresh fruit [7–9]. Short-term LT, or precooling
treatment, is a typical method to remove the respiratory heat
and regulate fruit metabolism and has a good efect on
maintaining fruit quality during postharvest [10, 11]. Recently,
transcriptomic and metabolomic analyses revealed that ap-
propriate LT or cold storage improved the inner and external
quality via modulating multiple metabolic pathways [12, 13].
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On the other hand, short-term high temperature (HT)
treatment, such as hot water, hot steam, and hot air treat-
ment, is another important physical preservation method
and has become a necessary and efective pretreatment
method before the long-term storage of fresh fruit. It has
been reported to play an important role in maintaining
postharvest quality and extending the shelf life of fresh fruit
[14, 15]. HT treatment can not only repress postharvest
respiration and water loss but also maintain the content of
favor metabolites such as sugar and organic acid [16–21].

Delaying the quality deterioration of citrus fruit is the
primary goal throughout the storage. As is known, the late-
ripening citrus fruit will reach commercial maturity in the
spring or summer seasons of rising temperatures. Te
metabolic activity of citrus fruit is very high, which causes
difculty in maintaining the postharvest quality of fruit [22].
Meanwhile, preharvest treatments (such as heat treatment)
have been determined to efectively maintain or improve
fruit quality during long storage [20, 23]. However, the
information about the quality changes and direct efects of
short-term temperature treatments on late-ripening citrus
fruit is limited. Terefore, this study aimed to evaluate the
efects of diferent temperature treatments on the fruit
quality of late-ripening citrus and provide more information
on the improvement of physical preservation.

2. Materials and Methods

2.1. Plant Materials. Valencia orange (citrus sinensis) fruits
were harvested at the commercially mature stage (April)
from the orchard of Zigui Country in Yichang City, Hubei
Province, China. After the harvest, the fruits with obvious
damage were removed.

2.2. Experimental Design and Treatments. Valencia orange
fruits of uniform size and homogeneous color were selected
for experiments. For cold or heat shock treatments, Valencia
orange fruits were stored in storage chambers (LRH-70F,
Yiheng, China) with diferent parameters (relative humidity,
85%–90%; temperature, 6°C (low temperature, LT), 20°C
(room temperature, CK), and 40°C (high temperature, HT)).
Te storage chambers with low and high temperatures were
used to simulate the cold and heat shock treatments, re-
spectively. Te samples treated with diferent temperatures
were conducted at 6 and 24 hours after treatment (HAT),
respectively. 80 fruits of uniform size and color and free of
visible injury or blemishes were used in each treatment.Tree
replications, each containing 10 fruits, were analyzed and
measurements were performed. Te favedo (outer colored
part of the peel), albedo (inside colorless part of the peel), and
pulp were, respectively, sampled, frozen, and homogenized in
liquid nitrogen, and kept at −80°C for later analysis.

2.3. Extraction of the Primary Metabolite. Te primary
metabolites of diferent tissues in citrus fruit were detected
with the approach of GC-MS analysis according to the
method as described previously with minor modifcations
[24]. Fruit tissues were grounded in liquid nitrogen, and

then 0.3 g of diferent samples were used for the following
metabolite extraction. Te primary metabolites were
extracted with 2700 μL precooled methanol and 300 μL
ribitol (2mg·mL−1, as an internal standard).

2.4. Derivatization of the Primary Metabolite. Te extracts
(100 μL) were vacuum-concentrated at 30°C for 180min.Te
concentrated extracts were incubated with 80 μL methox-
amine hydrochloride (20mgmL−1 in pyridine) at 37°C for
90min, followed by 80 μL MSTFA (N-methyl-N-(trime-
thylsilyl) trifuoroacetamide) at 37°C for 30min.

2.5. GC-MS Analysis of Primary Metabolite. After derivati-
zation, each sample was analyzed by GC-MS with the
programs described previously [23]. Briefy, each sample was
injected into the gas chromatograph onto a fused-silica
capillary column (30m× 0.25mm i.d., 0.1 μm, Agilent
Technologies) with a split ratio of 20 :1. Te injector tem-
perature was 230°C, and the carrier gas was at a fow rate of
1.2mL/min. Te column temperature was held at 100°C for
1min, increased to 184°C with a temperature gradient of
3°C/min, increased to 190°C at 0.5°C/min for 1min, and
increased to 280°C with a temperature gradient of 15°C/min.
Te column temperature was held at 280°C for 5min. Te
fow rate of carrier helium (99.999%) gas was 1mL/min.
Total ion current spectra were recorded over a mass range of
m/z 45–600 in a scan mode. Te fnal concentration of the
metabolite was qualifed using the internal standard (mg/g).

2.6. Statistical Analysis. All data are shown as the (mean
±SD) of one representative experiment. Signifcant difer-
ences between treatments were determined using an
ANOVA followed by a Tukey’s test. Te partial least squares
discriminant analysis (PLS-DA) was performed using the
mixOmics package. Te heatmaps and hierarchical clus-
tering were performed using the pheatmap package. Te
correlation analysis was performed using R studio software.
Figures were drawn using a GraphPad Prism (GraphPad
Software, CA, USA).

3. Results

3.1. Efect of Short-Term Temperature Treatments on the Total
Sugar and Organic Acid in Fruit Pulp. Te late-ripening
orange fruits, namely Valencia orange fruits, were treated at
diferent temperatures. After 24 hours of treatment, no sig-
nifcant diferences were observed in fruit appearance be-
tween diferent treatments (Figure 1(a)). As shown in
Figure 1(b), after 6 hours of treatment, the content of total
sugar in the pulp of all treated fruits was similar (35mg/g to
42mg/g). After 24 hours, the sugar content in the pulp treated
at relatively high temperatures (CK, 44mg/g; high, 53mg/g)
was higher than that of low (34mg/g).Meanwhile, the content
of total organic acid in the pulp treated at relatively high
temperatures (CK and high) was much higher than that
treated at low temperatures after 6 and 24 hours. Te content
of total organic acid was observed to be lower after 24 hours of
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treatment with high temperature (HT) compared with that
after 6 hours. Besides, the ratio of sugar to acid in fruit treated
with HT was much higher at 24 hours but lower at 6 hours
compared with other treatments (Figure 1(b)).

3.2. Efect of Short-Term Temperature Treatments on Sugar
Content in Fruit Tissues. Te three main forms of soluble
sugar in fruits, namely fructose, glucose, and sucrose, were

further analyzed. As shown in Figure 2, the content of these
sugars in the pulp shared similar trends with the total sugar,
and the content of those treated with HT (high temperature)
after 24 hours was signifcantly higher than other treatments.
In the favedo, fructose and glucose showed the highest
content in CK after 6 hours of treatment and the lowest
content in CK after 24 hours of treatment. Besides, the
content of fructose and glucose in LT treatment was ob-
served to increase over time, while that of them in CK

CK -24 Low-24 HIgh-24

1Cm

1Cm

(a)

0

20

40

60

80

To
ta

l s
ug

ar
 (m

g/
g F

W
)

0

1

2

3

4

5

To
ta

l a
cid

 (m
g/

g F
W

)

10

15

20

25

Ra
tio

n 
of

 S
ug

ar
/A

cid
 (%

)

bc bc
bc c

b
a

c

ab a

c
a

b

b

b

c

b
b

a

C
K

-2
4

H
ig

h-
24

H
ig

h-
6

Lo
w

-2
4

C
K

-6

Lo
w

-6

Time (Hours afer treatment)

C
K

-2
4

H
ig

h-
24

H
ig

h-
6

Lo
w

-2
4

C
K

-6

Lo
w

-6

Time (Hours afer treatment)

C
K

-2
4

H
ig

h-
24

H
ig

h-
6

Lo
w

-2
4

C
K

-6

Lo
w

-6

Time (Hours afer treatment)

(b)

Figure 1: Content of total sugar and organic acid in the pulp of Valencia orange fruit. Te vertical bars represent the standard errors of the
mean. (a)Te appearance of fruits with diferent treatments. (b) Content of total sugar, total organic acid, and the ratio of sugar to acid under
diferent treatments. Te vertical bars represent the standard errors of the mean. Values with diferent letters within the same fgure are
signifcantly diferent according to the ANOVA test at p< 0.05.
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decreased. In albedo, the content of fructose and glucose was
lower after 24 hours of LT treatment than that after CK and
HT treatments (Figures 2(a) and 2(b)). Notably, the content
of sucrose in diferent fruit tissues shared similar trends, and
it was highest after 24 hours of HT treatment (Figure 2(c)).
Tese results indicated that the efect of diferent temper-
atures on the three main sugars in the pulp was similar, as
well as the sucrose in the peel (favedo and albedo).

3.3. Efect of Short-Term Temperature Treatments on the
OrganicAcidContent inFruitTissues. As the most important
organic acid in fruit pulp, citric acid was observed to sig-
nifcantly increase under the relatively high temperature (CK

and high) and showed an unchanged content under LT
treatment (Figure 3(a)). Meanwhile, the malic acid showed
similar trends with a total organic acid content, but its
content in CK after 6 hours of treatment was signifcantly
lower than in the other treatments (Figure 3(b)).Te content
of quininic acid was observed to be elevated by HT in the
pulp of the fruit (Figure 3(c)). In favedo, citric acid had a
lower accumulation (0.01mg/g to 0.02mg/g), compared
with that in the pulp (more than 2mg/g to 3mg/g)
(Figure 3(a)). As the main organic acid in favedo, malic acid
showed decreased content over time under diferent tem-
perature treatments and had the highest content under LT
treatment after 6 hours (Figure 3(b)). Te content of qui-
ninic acid was much higher in favedo (0.1mg/g to 0.2mg/g)
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Figure 2: Efects of short-term temperature treatments on sugar contents ((a) fructose; (b) glucose; and (c) sucrose) in the pulp, favedo, and
albedo of Valencia orange fruits. Te vertical bars represent the standard errors of the mean. Values with diferent letters within the same
fgure are signifcantly diferent according to the ANOVA test at p< 0.05.
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than that in other tissues (less than 0.03mg/g). In albedo, all
these organic acids showed low accumulation (less than
0.1mg/g). Citric acid and malic acid were observed to be
decreased under LT treatment after 24 hours. Besides, the
content of quininic acid decreased signifcantly over time in
the albedo of fruit (Figure 3(c)). In summary, the changes in
the content of citric acid almost accounted for the changes in
total organic acid in the pulp. Besides, HTtreatment induced
the decline of major organic acids in diferent tissues.

3.4. Efect of Short-Term Temperature Treatments on Amino
Acid Content in Fruit Tissues. In total, 11 amino acids were
detected in this assay, as well as 3 other metabolites. As
shown in Figure 4(a), most of these metabolites (particularly
glycine, GABA, and Myo-inositol) were signifcantly re-
duced in the pulp under LT treatment after 24 hours. In the
pulp under CK, the contents of aspartic acid, oxoproline,
palmitic acid, and stearic acid were observed to accumulate
after 24 hours, while GABA and asparagine were decreased.

After HT treatment, valine, alanine, glycine, and Myo-
inositol showed higher accumulation than those under other
treatments. Meanwhile, the content of GABA, proline, and
threonine was increased after 24 hours of treatment
(Figure 4(a)). In favedo, oxoproline, palmitic acid, and
stearic acid were signifcantly accumulated 24 hours under
relative higher temperature treatments (CK and high) after
whereas, aspartic acid, asparagine, and glutamic acid had
high content after 6 hours of treatment followed by obvi-
ously decreasing after 24 hours’ treatment under LTand CK
treatments (Figure 4(b)). Additionally, valine, GABA, and
proline showed higher content after 24 hours of HT treat-
ment (Figure 4(b)). In albedo, the of content oxoproline,
Myo-inositol, palmitic acid, and stearic acid highly accu-
mulated after 6 hours of HT treatment; however, aspartic
acid, asparagine, and glutamic acid shared similar content
trends with that in favedo (Figure 4(c)). Te content of
several amino acids (such as serine, glycine, and threonine)
was much higher than that in other treatments. Notably,
GABA was found to signifcantly accumulate after 24 hours
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Figure 3: Efects of short-term temperature treatments on the organic acid contents ((a) citric acid; (b) malic acid; and (c) quininic acid) in
the pulp, favedo, and albedo of Valencia orange fruits. Te vertical bars represent the standard errors of the mean. Values with diferent
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of HT treatment, while decreasing after 24 hours of LT
treatment (Figure 4(c)). Together, the LT treatment caused
the decline of most amino acids, while the HT treatment
contributed to the accumulation of them (particularly
GABA and proline) in diferent tissues.

3.5. PLS-DA and Correlation Analysis. To better understand
the efect of short-term temperature treatments on fruit
metabolites, partial least-squares discrimination analysis
(PLS-DA) was used to investigate the diferences in me-
tabolites among diferent treatments. As shown in
Figure 5(a), PC1 and PC2 accounted for 24% and 12% of the
total variance, respectively. Most samples under the same
treatment were clustered together, while the favedo after 6
hours of HT treatment (High_6_FL) and the favedo after 24
hours of LT treatment (Low_24_FL) were found to be
clustered with tissues under CK treatment. Besides, there
was an obvious time-specifcity under the same temperature
treatment. Furthermore, Pearson correlation analysis was
constructed to analyze the relationships between diferent
metabolites. As shown in Figure 5(b), fructose was positively
related to glucose (R2 � 0.9), and sucrose was closely related
to several amino acids. Besides, GABA was observed to be
positively related to citric acid and malic acid, which were
negatively related to Myo-inositol (Figure 5(b)). Tese re-
sults indicate that temperature treatments have a signifcant
efect on the metabolic fow of citrus fruit.

4. Discussion

Te preharvest or postharvest treatments have become
crucial parts of the citrus industry and contribute to the
annual supply of citrus fruit. To date, various strategies have
been developed and demonstrated to efectively maintain the
fruit quality and extend the shelf life [25–28]. It is worth
noting that temperature acts as an essential environmental
factor and modulates the respiration and metabolic activities
in various metabolism pathways [2, 29, 30].

As it is known, the temperature has been indicated to be
a fundamental factor infuencing the quality of citrus fruit.
Maintaining storage temperature or removing feld heat
from fresh fruit will decrease the deterioration and senes-
cence processes, which obviously preserves fruit quality
[29, 31]. Previously, the sweating treatment, which was used
to remove the feld heat of fruit, was also found to contribute
to maintaining fruit quality and increasing disease resistance
[23]. In the present study, short-term LT treatment was also
found to maintain the content of main quality components,
including solute sugars and organic acids, in the pulp of
Valencia orange fruit (Figures 2 and 3).Te slight changes in
the content of sugar and organic acid may be mainly due to
the low activity of primary metabolism caused by low
temperatures [32, 33]. Whereas, multiple amino acids
(particularly GABA and proline) were observed to show
decreased content after short-term LT treatment compared
with that after HT treatment (Figure 4). Te degradation of
amino acids modulated by LTmay account for the changes
in amino acid metabolic enzymes and transporters [34, 35].

Similar to short-term LT treatment, HT treatment is
usually applied as a pretreatment method to treat fresh fruits
(such as citrus and apples) before long-term storage
[14, 36, 37]. Recent studies have revealed that HT treatment
can modulate metabolic fow by regulating lots of genes and
enzyme activity [15, 18, 38]. Herein, HTtreatment was found
to elevate the accumulation of three main sugars and several
amino acids (such as GABA) in fruit pulp (Figure 2).
Whereas, the content of citric acid and malic acid signif-
cantly decreased after 24 hours of HT treatment (Figure 3).
Similarly, the content of soluble solids in mandarin fruit and
persimmon fruit treated with HT also increased, but citric
acid showed decreased content [39, 40]. As reported pre-
viously, the HT treatment stimulated sugar metabolism and
induced the accumulation of sugars; meanwhile, it activated
the transcription of many genes related to citric degradation
[23, 38]. Besides, our results showed that HT treatment
resulted in a higher sugar-to-acid ratio after 24 hours of
treatment and a lower ratio after 6 hours (Figure 1(b)). As
reported previously, the diferent efects of HT treatment on
fruit quality may account for the treatment duration, the
temperature, handling, or even the fruit species [14, 41, 42].
Hence, to investigate the treatment duration or number of
handlings on citrus fruits will maximize the efect of HT
treatment on quality improvement and maintenance.

Our study found that several amino acids accumulated in
the peel (favedo and albedo) after HT treatment but de-
creased with LT or CK treatment. Notably, the nonprotein
amino, namely GABA, showed the highest content after 24
hours of HT treatment but the lowest content after LT
treatment (Figure 4). In mandarin and peach fruit, GABA
was also found to be upregulated after sweating or hot water
treatment [23, 43]. However, GABA in longan fruit showed
increased accumulation after precooling treatments, which
was diferent from our results [44]. Studies have shown that
GABA is mainly metabolized via the GABA shunt, which is
one of the pathways involved in citric acid degradation
[45, 46]. Hence, the up or downregulated GABAmay be due
to the specialized primary metabolic activity response to
temperature treatments. Notably, GABA has been investi-
gated to be an important signal molecule involved in the
regulation of fruit preservation, disease resistance, and plant
development [47, 48]. Exogenous GABA treatments were
also found to improve fruit quality and delay postharvest
senescence [24, 49, 50]. Terefore, it is worth investigating
the regulation mechanism of GABA in response to tem-
perature and its potential functions in fruit quality control.

5. Conclusions

Temperature treatments have a signifcant efect on the
citrus fruit quality. In this study, short-term LT treatment
contributes to themaintenance of sugars (including fructose,
glucose, and sucrose) and citric acid, but decreases the
content of several amino acids in the pulp of citrus fruit. HT
treatment signifcantly promotes the accumulation of sugars
and lots of amino acids but decreases the content of organic
acids. Meanwhile, the signaling molecular GABA was
upregulated after HT treatment but downregulated after LT
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treatment. Our results indicated that the short-term tem-
perature treatments afected the metabolic activity in dif-
ferent tissues of citrus fruit, and GABAmay play a part in the
regulation of fruit quality. Te content of metabolites,
metabolic activity, and activation of signal pathways are
important factors afecting the fruit’s storage quality before
long-term storage. Our results provide new insights for the
study of temperature-regulated fruit quality.
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