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In order to explore spectral standardization methods for spectra collected by different NIR spectrometers, to reduce spectral
differences, and to realize model sharing among different instruments, the crude protein content of 154 wheat flour samples was
measured using one grating and three Fabry-Perot tunable filter NIR spectrometers in wavelength. At the same wavelength range
and wavelength interval, three algorithms, namely, direct standardization (DS), piecewise direct standardization (PDS), and
simple linear regression direct standardization (SLRDS), were used to standardize spectra collected by different instruments from
the same samples. Spectral standardization error rate (SSER), principal component score error rate (PCSER), and other indicators
were employed to analyze the spectral differences between the master and the target spectra, and the effect of model sharing was
evaluated using parameters including prediction correlation coefficient (Rp), root mean square error of prediction (RMSEP), and
relative prediction deviation (RPD). )e results show the following: (1) )e difference between spectra can be quantitatively
evaluated through analyzing SSER and PCSER. (2) After standardization by the three algorithms, the spectral difference between
the three target and the master spectrometers is significantly reduced and the prediction effect of the master model is greatly
improved. (3) Among the three algorithms, DS algorithm had the smallest error rate in standardizing spectra from three target
spectrometers. After standardization by the DS algorithm, the master model had the best effect. Its prediction accuracy was greatly
improved compared with that before standardization. (4) )e standard model established based on the S450 spectrometer can be
applied to the same spectrometer as the N500 spectrometer with the same resolution and different wavelength ranges, so as to
achieve model sharing.)erefore, DS, PDS, and SLRDS algorithms can effectively reduce the spectral differences between different
instruments and realize the sharing of NIR calibration models for wheat flour crude protein measurement.

1. Introduction

1.1.General Process ofModelTransfer. Modern near-infrared
spectroscopy analysis is an indirect analysis technology,
which combines spectrometry measurement technology and
chemometrics theory [1–4]. It has the advantages of non-
destructive, fast, efficient, and multicomponent simulta-
neous detection and can realize online detection [5–9]. At
present, near-infrared spectroscopy analysis technology is
widely used in food, medicine, agriculture, petrochemical

industry, and other fields. However, in the application
process of NIR spectroscopy, due to differences in spec-
troscopic systems, light sources, detectors and other com-
ponents, assembly process, and detection environment
among different NIR spectrometers, the same samples ex-
hibit different spectral features when analyzed with different
spectral instruments. )us, when a calibration model setup
for one instrument is applied to another instrument, the test
results could have a large deviation or even the model may
become nonfunctional. Nevertheless, it takes a lot of
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manpower andmaterial resources to reestablish a model that
can be applied in actual production. )erefore, the reali-
zation of model sharing between different instruments is of
great significance for practical application and promotion of
NIR spectroscopy analysis technology [10–15].

In recent years, many researchers in China and other
countries have conducted in-depth studies on model
transfer of NIR spectroscopy and achieved great progress
[16–19]. )e methods to realize model transfer can be di-
vided into three categories: )e first is to correct the pa-
rameters of the prediction model, such as the two-step
partial least squares method. )e second is to correct the
prediction results of the model, such as the slope/deviation
algorithm.)e third is to correct spectral data, such as direct
standardization algorithm [20]. To correct the parameters of
the predictionmodel is to enhance the predictive effect of the
model by adding a series of sample spectra measured under
new environmental conditions and/or with new instru-
ments, so that the model can adapt to the sample spectra
collected under new testing conditions. To correct the
predicted results of the model assumes that the predicted
results of the master spectrometer and the target spec-
trometer are linearly related, and model transfer is realized
through reducing systematic error of the prediction results.
However, the above assumption is not valid in most cases.
)erefore, it has a poor effect on model transfer and is only
applicable under special conditions. To correct spectral data
is to standardize spectra, which makes spectra of the same
sample collected by different instruments and under dif-
ferent testing conditions as consistent as possible [21, 22].
)us, the differences between spectra are reduced, so that the
established model can be shared between different instru-
ments. )e methods of correcting parameters of the pre-
diction model and correcting prediction results of the model
are generally called the transfer of the calibration model, and
the latter realizes sharing of the calibration model [23].

In this experiment, the crude protein content of wheat
flour was taken as the detection index and two NIR spec-
trometers with different spectroscopic principles, namely,
grating scanning type and Fabry–Perot interferometer type,
were used to collect NIR spectral data of wheat flour samples.
At the same wavelength range and wavelength interval,
direct standardization (DS), piecewise direct standardization
(PDS), and simple linear regression direct standardization
(SLRDS) algorithms were employed to standardize sample
spectra. After analyzing the error rate of spectral stan-
dardization, the error rate of principal component score was
put forward to quantitatively describe the spectra difference
between master and target spectrometers of the same sample
before and after standardization. )e smaller the error rate,
the smaller the spectra difference of samples. )ese two
evaluation indexes can preliminarily evaluate the advantages
and disadvantages of spectral standardization methods
without completing a whole set of model prediction work,
which can save time and provide convenience for model
sharing.

1.2. Model Sharing Based on Principal Component Score
Evaluation. In the NIR calibrationmodel established by the
partial least squares (PLS) method, principal component
decomposition of the spectral data matrix and variable
matrix is required. After obtaining the loading matrix and
the score matrix, the number of selected principal com-
ponents is determined according to the principle of min-
imum predictive residual error sum of squares (PRESS)
cross-verified by the leave-one-out method, based on which
the calibration model is established. )erefore, the effect of
spectral standardization can be evaluated by the principal
component error of the same group of samples after
standardization treatment to spectra collected by master
and target spectrometers. Specifically, the standardized
spectra of target spectrometers are put into the principal
component matrix of the calibration model for calculating
the score of each principal component. )en, the obtained
principal component scores are compared with those of the
master spectrometer. )e smaller the difference, the better
the effect of spectral standardization on the target spec-
trometer (otherwise, vice versa). On this basis, the principal
component error rate (described in Section 2.3.2) was
proposed to quantitatively evaluate the difference of
principal components so as to realize sharing of the wheat
flour crude protein model among different instruments.
)e main algorithm flow is shown in Figure 1. (1) On the
basis of proper spectral pretreatment, PLS is used to es-
tablish the master model and determine the principal
component number, loading matrix, and score matrix. (2)
Representative samples are selected from the master and
target sample calibration sets as standard sample sets for
elaboration of spectral standardization methods (DS, PDS,
and SLRDS algorithms). )e optimal standard sample
number is decided according to the SSERave minimum
principle of master and target sample calibration sets. (3) A
variety of spectral standardization methods are used to
standardize the target spectral data by using the master
spectra of calibration sample sets not involved in spectral
standardization as a standard. (4) )e standardized spectra
of the target spectrometer are put into the principal
component matrix of the established calibration model,
and the principal component scores are calculated. )e
differences of principal component scores between the
corrected target spectra and the master spectra are eval-
uated. )e similarity of the spectral score matrix of the
master and target spectra is quantitatively evaluated by
using the principal component score error rate as the
evaluation index. If the error is fairly large, the standard
sample set should be reselected and the spectral data should
be recorrected to enable selection of the optimal stan-
dardization method with the minimum error for correcting
the spectra of the target prediction set. (5) Finally, the
standardized target spectra are put into the master model
for prediction and evaluation, so as to realize the sharing of
the calibration model established on the master spec-
trometer with other instruments.
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2. Materials and Methods

2.1. Samples. Wheat flour samples used in this experiment
are of different commercial brands including Golden Dragon,
Jinshahe, Zhanyi, Anqi, etc., from different regions of China.
)ey belong to five categories: low-gluten flour, medium-
gluten flour, high-gluten flour, whole wheat flour, and flour
with yeast. A total of 154 samples were collected, tightly sealed
and refrigerated for later use. )e crude protein content of all
samples was measured according to the methods and test
conditions mandated in GB/T 31578–2015 of China, detailed
in “Grain and Oil Testing: Dumas Combustion Method for
Determination of Crude Protein in Grains and Grain
Products.” )e crude protein of each sample was tested 3
times in parallel (the relative error was not over 4%), and the

average value of the three test results was taken as the
measured value of the sample index. )e samples were di-
vided into a calibration set (92) and a prediction set (62) in a
ratio of 6 : 4 with the SPXY (sample set partitioning based on
jointX-Y distance) algorithm.)e test results of crude protein
content in wheat flour of each set are shown in Table 1.

2.2. Instruments and Test Methods. Absorbance measure-
ments were performed using a benchtop S450 NIR spec-
trometer (manufactured by Shanghai Lengguang
Technology Co., Ltd.) as the master instrument (denoted as
M) and three identical protable N500 NIR spectrometers
(manufactured by Jinan Hanon Future Technology Co.,
Ltd.) as the target instruments (denoted as T1, T2, and T3).
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Figure 1: )e flow chart of model sharing based on principal component score evaluation.
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)e wavelength range and sampling interval of the NIR
spectrometers are shown in Table 2.

For the S450 NIR spectrometer, 16 scans were accu-
mulated and the wavelength interval was 2 nm. A total of 801
data points were collected. For the N500 NIR spectrometers,
3 scans were accumulated and the wavelength interval was
also 2 nm. A total of 201 data points were collected.

At a room temperature of 25°C, dark and reference
spectra were collected before sample spectra were collected.
S450 used Teflon inside the instrument as standard reference
spectra, and N500 used a rough-faced gold-plated white-
board inside the instrument as reference. Sample spectra
were repeatedly measured 3 times, and the average of the
three collected measurements was taken as the original
spectral data of the sample. In order to ensure the consis-
tency of wavelength range in subsequent tests, we selected
the spectral data of the 1,550 ∼ 1,950 nm wavelength of the
S450 spectrometer for future study of spectral standardi-
zation methods. )e average spectra of samples collected by
the master and target spectrometers are shown in Figure 2.

2.3. Analysis Method

2.3.1. Spectral Standardization Methods. DS, PDS, and
SLRDS algorithms were used to standardize spectra for re-
alizing model sharing among different NIR spectrometers.
)e DS algorithm is based on the mathematical relationship
between the spectra of the master standard sample set and the
spectra of the target standard sample set to establish the
spectral standardized transfer matrix, which is then used to
correct the spectra collected from the target spectrometers
and reduce spectral differences of the same sample measured
between different instruments. )e principle of PDS algo-
rithm is similar to DS. Yet, PDS separates continuous
wavelengths from spectra, calculates transformation coeffi-
cients in each wavelength window, establishes a spectral
standardized transfer matrix according to the transformation
coefficients of each wavelength window, and uses the transfer
matrix to correct the spectra of the target spectrometers to
achieve maximum similarity between master and target
spectra [12]. )e width of the left and right wavelength
window region (ω) was set to 3 in the test. )e SLRDS al-
gorithm assumes that the absorbance of different wavelength
points is independent of each other and uses linear regression
to correct spectra from the target spectrometers.

2.3.2. Evaluation Methods of Spectral Differences

(1) Difference of Spectral Data. Spectral standardization error
rate (SSER) was used to characterize the standardized ac-
curacy of spectra standardization between different instru-
ments and to quantitatively describe spectral differences

between the target spectra after standardization and the
master spectra of the same sample.

)e spectral standardization error rate for a sample is
defined as

SSERi � 
K

j�1

Mij − Tij





Mij + Tij




× 100%, (1)

in which {Mij, i� 1,. . .,N, j� 1,. . .,K} is the sample spectral
matrix of the master spectrometer; {Tij, i� 1,. . .,N,
j� 1,. . .,K}is the sample spectral matrix of target spec-
trometers after standardization; N is the number of samples;
and K is the number of wavelengths in the spectra.

For all sample sets, the average error rate SSERave and
maximum error rate SSERmax are defined as

SSERave �
1
N



N

i�1
SSERi,

SSERmax � max SSERi( .

(2)

(2) Error of Principal Component Scores. Principal compo-
nent score error rate (PCSER) was used to characterize the
similarity of principal component score matrices. A lower
PCSER means that the principal component score matrix of
master and target spectra is more similar and the spectral
difference is smaller. )e calibration model based on
principal component analysis or the partial least square
method has a better sharing effect.

)e PCSER formula of the first n principal component
scores between master and target spectra of a sample is as
follows:

PCSER �
1
n



n

i�1
Wi

�����������

Tm,i − Tt,i 
2



, (3)

in which Tm, i is the score rate of the ith principal component
of the master spectrum; Tt, i is the score rate of the ith
principal component of the target spectrum after stan-
dardization of the corresponding spectrum; and Wi is the
contribution rate of the ith principal component.

For all sample sets, the average error rate PCSERave and
maximum error rate PCSERmax are defined as

PCSERave �
1
N



N

i�1
PCSERi,

PCSERmax � max PCSERi( .

(4)

2.3.3. Evaluation of Model Performance. In the process of
model establishment, corrected correlation coefficient (Rc),
root mean square error of calibration (RMSEC), and root

Table 1: Distribution of crude protein content in wheat flour of different sample sets.

Sample set Number Scope/% (w/w) Average/% (w/w) Standard deviation Coefficient of variation
Total set 154 6.71∼14.83 10.16 1.78 0.18
Calibration set 92 6.71∼14.83 10.20 1.92 0.19
Prediction set 62 7.02∼14.40 10.17 1.57 0.15
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mean square error of cross validation (RMSECV) were used
to evaluate performance of the model and the optimal
calibrationmodel was established. After establishment of the
model, the prediction performance of the model is evaluated
comprehensively using indicators such as prediction cor-
relation coefficient (Rp), root mean square error of pre-
diction (RMSEP), and relative prediction deviation (RPD).
)e smaller the RMSEC, RMSECV, and RMSEP are and the
closer Rc and Rp are to 1, the better the stability and pre-
diction performance of the established model will be. And,
RPD is used to evaluate the accuracy of the model. When
RPD <1.75, the prediction accuracy of the model is too low,
meaning that the model is not applicable. When RPD ＞3,
the prediction accuracy of the model is high [24].

2.4. Data Processing and Analysis. )e NIRSA 5.8.8 system
(with computer software copyright registration number of
2007SR06801), IBM SPSS Statistics 25, and Excel 2016 were
adopted for data analysis. )e NIRSA 5.8.8 system was
independently developed by the NIR Laboratory of Jiangsu
University.

3. Results and Discussion

3.1. Model Building for the Master Spectrometer. )e PLS
method was used to establish a calibration model for the
correlation between NIR spectra and crude protein content
of 92 calibration set samples collected on the master spec-
trometer M. In order to fully extract effective information

from the spectra, various pretreatment methods were
employed to process the original spectra for eliminating
irrelevant information and interference information such as
noise in the spectral data. )e optimal pretreatment method
was selected based on predictive effect of the established PLS
analysis model. Evaluation results of the calibration model
under different pretreatment methods are shown in Table 3.

It can be clearly seen from Table 3 that, after comparing
the modeling effects of different pretreatment methods,
when the principal component number is 7, the crude
protein calibration model after Normalization +MSC pre-
treatment has the best effect. At this condition, the PLS
model has an Rc of 0.97, an RMSEC of 0.46, an Rp of 0.96, an
RMSEP of 0.43, and an RPD of 4.22. RPD� 4.22 indicates
that the calibration model is strong enough for accurate
predictions of future unknown samples. )e regression
coefficient of this model is shown in Figure 3.

Ainara López used the AOTF-NIR Analyser (Brimrose)
to predict the crude protein content of potatoes in the 1,100
∼ 2,300 nm. )e correlation coefficients of 0.95 and 0.88
were obtained for calibration and validation. )e standard
errors of calibration and validation were 0.52 and 0.75 [25].
Jing Chen used a diode array analyzer (DA 7200, Perten
Instruments, Sweden) to predict the crude protein content of
foxtail millet, and the Rp and RMSEP were 0.94 and 0.28
[26].)e Rp and RMSEP of the obtained optimummodels in
this research were 0.96 and 0.43 for predicting crude protein
content, meaning that the model has high prediction ac-
curacy and realized the rapid nondestruction of crude
protein content in wheat flour.

3.2. Spectral Standardization. DS, PDS, and SLRDS algo-
rithms belong to supervised algorithms. Hence, a standard
sample set needs to be selected first, and the selection of
sample number in the standard sample set has an important
impact on the effect of spectral standardization. Too few
samples will lead to insufficient information, while too many
samples will increase the difficulty of data processing,
resulting in illusion of overfitting. Using the Kennard–Stone
(K–S) algorithm, 10, 20, 30, 40, 50, and 60 samples were
selected from the master and target calibration sets, re-
spectively, as the standard sample set for spectral stan-
dardization and the standardized transfer matrix was
established. )ree spectral standardization methods were
used to calibrate spectra from the target calibration sets, and
the SSERave of the master and target spectral data after
calibration was calculated. Under the three algorithms, the
relationship between the number of standard samples and
the SSERave value is shown in Figure 4.

As can be seen intuitively from Figure 4, with the in-
crease in the number of standard samples, the effective

Table 2: Spectral wavelength range and sampling interval of NIR spectrometers.

NIR spectrometers Manufacturer Spectroscopic principle Wavelength/
nm Wavelength interval/nm

S450 Shanghai Lengguang Technology Co., Ltd. Dispersive scanning 900 ∼ 2 500 2
N500 Jinan Hanon future Technology Co., Ltd. Fabry–Perot interferometer 1 550 ∼ 1 950 2
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Figure 2: Average spectra of all samples collected by themaster and
target spectrometers.
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information contained in the standard sample set increases
as well. Meanwhile, the SSERave value decreases, meaning
that the spectral difference between the master and target
decreases as well. As can be seen from Figure 4(a), in DS
algorithm, SSERave of the three target spectrometers de-
creases with increase in the number of standard samples to
varying degrees. When the number of standard samples is
50, the SSERave is the lowest. When the number of standard
samples is greater than 50, SSERave from T1 increases, whilst
that from T2 and T3 remains largely unchanged. Here, the
increase in SSERave from T1 is due to overfitting caused by
too many samples. As can also be seen from Figure 4(b), in
PDS algorithm, SSERave of the three target spectrometers is
the lowest when the standard sample number is 50. When
the standard sample number is greater than 50, SSERave
remains largely unchanged. Similarly, it can be seen from
Figure 4(c) that, when SLRDS algorithm is used, SSERave of
T1 decreases significantly with the increase in the standard
sample number. Yet, when the standard sample number is
greater than 50, SSERave decreases gently with the standard
sample number. )erefore, 50 samples were selected to
constitute the standard sample set for spectral
standardization.

3.3. Analysis of Spectral Differences. Fifty samples were se-
lected to constitute a standard sample set, and DS, PDS, and
SLRDS algorithms were used to establish a transfer matrix
between the spectra of the standard sample set collected by
the master and the target spectrometers. With the help of an

established transfer matrix, the spectra of the calibration
sample set from the target spectrometers were standardized.
)e SSER and PCSER of the master and target spectra before
and after standardization were calculated, and the average
error rate and maximum error rate of SSER and PCSER were
compared (Table 4).

As can be seen from Table 4, SSER and PCSER of un-
treated target spectra with the master spectra are high, in-
dicating that the master spectra and the target spectra have
great differences. )is may be due to different NIR spec-
trometers selected in the test, which could yield significantly
different spectra from the same sample. After standardiza-
tion with DS, PDS, and SLRDS algorithms, the SSER and
PCSER of the target spectra with the master spectra are
largely reduced and spectral differences between the master
and target are reduced to different degrees. In the three
target spectrometers, the effect after standardization by the
DS algorithm is the best.

3.4. Model Sharing. Using the spectral standardization
methods and parameters identified in Section 3.2, the spectra
of the target prediction set samples (62) were calibrated. )e
spectra before and after standardization were input into the
established optimal master model of crude protein (Section
3.1) for prediction. )e predictive scatter diagram of each
spectrometer is shown in Figure 5, and the predictive effect
of model sharing is shown in Table 5.

It can be clearly seen from Figure 5(a) that, compared
with Y�X, there is a big difference in the intercept of the

Table 3: Evaluation of the PLS calibration model for sample protein under different pretreatment methods.

Pretreatment method Number of principal components
Calibration set Prediction set

RPD
Rc RMSEC Rp RMSEP

None 7 0.96 0.50 0.93 0.61 3.38
SNV 8 0.97 0.48 0.94 0.51 4.09
Normalization 6 0.97 0.49 0.93 0.57 3.97
MSC 9 0.97 0.48 0.93 0.57 3.97
Normalization +MSC 7 0.97 0.46 0.96 0.43 4.22
1st derivative 5 0.96 0.54 0.94 0.54 3.59
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Figure 3: Regression coefficient diagram of the optimal crude protein model.
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Table 4: Differences between the target and master spectra before and after standardization.

Spectrometer Algorithm
SSER PCSER

SSERave SSERmax PCSERave PCSERmax

T1

None 81.02 90.61 88.50 106.04
DS 0.54 7.33 3.67 15.43
PDS 0.77 13.19 4.57 17.99

SLRDS 1.41 14.56 4.94 18.84

T2

None 48.73 57.16 21.32 38.12
DS 0.59 2.92 3.65 16.13
PDS 0.81 3.11 3.90 17.00

SLRDS 0.81 3.11 3.90 16.99

T3

None 47.30 51.10 8.43 22.72
DS 0.50 2.34 4.15 15.98
PDS 0.97 2.66 4.77 14.83

SLRDS 0.99 2.80 4.48 15.00

Pr
ed

ic
te

d

8 10 12 14 166
Actual value

-120

-100

-80

-60

-40

-20

0

20

M
T1

Y=X T2
T3

(a)

Pr
ed

ic
te

d

8 10 12 14 166
Actual value

6

8

10

12

14

16

DS
Y=X PDS

SLRDS

(b)

Figure 5: Continued.

DS Algorithm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

SS
ER

av
e

20 30 40 50 6010

Number of standard samples

T1

T2

T3

(a)

PDS Algorithm

0.8

1.0

1.2

1.4

1.6

1.8

SS
ER

av
e

20 30 40 50 6010
Number of standard samples

T1

T2

T3

(b)

SLRDS Algorithm

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

SS
ER

av
e

20 30 40 50 6010
Number of standard samples

T1

T2

T3

(c)

Figure 4: Variation of SSERave of the three target spectrometers with the number of standard samples from three spectral standardization
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original spectra predicted by the master model for the three
target spectrometers on the vertical axis, which means that
there is a large systematic error in the predictive results. As
can be seen from Figures 5(b)–5(d), the predictive effect of
the model is improved after standardized target spectra are
input again to the master model.

As shown in Table 5, when target spectra without al-
gorithm standardization are input to the master model,
RMSEP is high and RPD <1.75, which indicates that the
master model has a poor predictive effect on the original
target spectra and cannot be directly applied for prediction
of target spectra. Instead, when target spectra after stan-
dardization by DS, PDS, and SLRDS algorithms are input to
the master model, the prediction correlation coefficient
increases (all are over 0.8), RMSEP decreases sharply, and
RPD also has a certain improvement. )is shows that the
spectral standardization algorithm greatly reduces the
spectral difference between the master and target spec-
trometers, having achieved satisfactory model sharing.
Among the three algorithms, the predictive effect of the

target spectra after standardization by the DS algorithm is
the best, being consistent with the conclusion from Section
3.2. Based on the DS algorithm, the correlation coefficient of
target instruments is greater than 0.9 and RMSEP is less than
1.0, and this model can be used to predict the crude protein
content of wheat flour. )ese results demonstrate that the
proposed two evaluation indexes (i.e., SSER and PCSER) can
effectively analyze spectral differences, accurately evaluate
the performance of various spectral standardization
methods, and greatly facilitate model sharing between dif-
ferent spectrometers.

4. Conclusion

Taking wheat flour as sample and crude protein NIR spectral
calibration model as example, this study explores spectral
standardization methods between different NIR spectrom-
eters, seeks the best spectral standardization method, and
aims to realize sharing of calibration model among different
instruments. )e main conclusions are as follows:
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Figure 5: Predictive scatter plot of the crude protein calibration model. (a) Before standardization. (b) After standardization of T1. (c) After
standardization of T2. (d) After standardization of T3.

Table 5: Effect of model sharing.

Spectrometer Algorithm
Model sharing

Rp RMSEP RPD

T1

None 0.49 113.04 1.15
DS 0.90 0.82 2.34
PDS 0.83 1.24 1.80

SLRDS 0.82 2.29 1.76

T2

None 0.67 92.64 1.35
DS 0.95 0.57 3.16
PDS 0.86 1.03 1.95

SLRDS 0.87 1.03 2.02

T3

None 0.71 76.65 1.41
DS 0.91 0.75 2.43
PDS 0.88 1.06 2.09

SLRDS 0.86 1.07 1.94
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(1) Spectral standardization error rate and principal
component score error rate were proposed for
evaluating effect of spectral standardization, which
enabled quantitative evaluation of spectral differ-
ences and improvement of accuracy in spectral
standardization. )e spectral standardization error
rate and principal component score error rate pro-
posed can effectively analyze the spectral difference.
Compared with traditional spectral standardization
and model transfer evaluation methods, these two
evaluation indexes can preliminarily evaluate the
advantages and disadvantages of spectral standard-
ization methods without completing a whole set of
model prediction work, which can save time and
provide convenience for model sharing.

(2) DS, PDS, and SLRDS algorithms all belong to su-
pervised spectral standardization algorithms. With
the increase in the sample number, effective infor-
mation contained in the standard sample set in-
creases and SSERave values of three algorithms show
a downward trend. Yet, too many samples could lead
to overfitting. Our comparative tests revealed that
when 50 samples were selected as the standard
sample set for spectral standardization, the error of
the NIR calibration model sharing for wheat flour
crude protein was the lowest.

(3) After standardization by three algorithms, the
spectral difference between the three target and the
master spectrometers is significantly reduced and the
predictive effect of the master model is greatly im-
proved. After standardization by the DS algorithm,
the error rate of three target spectrometers was the
lowest and the master model had the best effect. Its
prediction accuracy was greatly improved compared
with that before standardization.
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