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Water contamination, temperature imbalance, feed, space, and cost are key issues that traditional fsh farming encounters. Te
aquaculture business still confronts obstacles such as the development of improved monitoring systems, the early detection of
outbreaks, enormous mortality, and promoting sustainability, all of which are open problems that need to be solved. Te goal of
this study is to provide a machine learning (ML)-based aquaculture solution that boosts prawn growth and production in ponds.
Te study described a proposed framework that collects data using sensors, analyses it using a machine learning framework, and
provides results like a preferred list of water quality (QOW) variables that afect prawn development and yield, as well as pond
categorization into low, medium, and high prawn-producing ponds. In this study, we use eight distinct machine-learning
classifers to discover the driving elements that infuence the development and yield of aquatic food products in ponds in terms of
QOW variables, as well as three feature selection approaches to identify the aspects that have the largest impact on the pond’s total
harvest performance. To validate and obtain satisfying results, the suggested system was installed and tested. Te average F score
and accuracy when yield is employed as a harvest parameter are determined to be 0.85 and 0.78, respectively. Te average merit
ratings of temperature, dissolved oxygen, and salinity are signifcantly higher than those of the other QOW components. Te
temperature variations are greatest during the second, fourth, and seventh weeks. Temperature, salinity, and dissolved oxygen are
the three QOW variables that have the largest infuence on overall pond harvest performance, according to the data. Additionally,
it has been discovered that a key QOW factor in separating high-yielding ponds from low-yielding ponds is the temperature
change following stocking.

1. Introduction

Water quality monitoring is considered crucial for fsh
farming. Several studies have found that measuring dis-
solved oxygen is crucial to sidestep high values of water
quality, which may result in serious harm to fsh such as

anoxia, hyperoxia, as well as hypoxia [1]. Te term “water
quality monitoring” refers to the process of collecting
samples of water and analysing them. In order to assess if we
are succeeding in cleaning up our waterways, it is crucial that
we monitor the quality of the water. It indicates the con-
dition and make-up of streams, rivers, and lakes both in the
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present and over the course of days, weeks, and years. Te
fve parameters of dissolved oxygen, pH, temperature, sa-
linity, and nutrients are used to gauge the quality of water. In
aquaculture, it is unavoidable to be more intelligent in terms
of 24× 7 monitoring of water quality and precise feeding.
However, the bacterial balance in the aquaculture envi-
ronment may be disrupted as a result of 24× 7 monitoring of
water quality, thereby reducing the disease-resistant capa-
bilities of fsh [2]. Traditional aquaculture farming relied on
experienced aquafarmers’ observation and empirical
judgement to identify and forecast farm health risks.
Monitoring changes in water quality factors, namely dis-
solved oxygen, pH, temperature, and salinity, as well as
others that are known to have a negative impact on the
aquaculture environment is one element. For optimum fsh
farming, lakes and fsheries must maintain ideal amounts of
dissolved oxygen. Fish producers should concentrate on
steps to guarantee that sufcient amounts of dissolved ox-
ygen are maintained in addition to feeds and fertilizer. Keep
the pond free of undesirable things, sprinkle clean water
from the upper reaches, and take other precautions. Until
the condition improves, prevent feeding and using fertilisers.
Use oxygen-boosting medications as directed by fshing
specialists. Te temperature and pH of the water pond must
be measured to ensure the balance between hazardous and
nontoxic nitrogen molecules such as ammonia and am-
monium, thereby creating the need to monitor the tem-
perature and pH of the water pond [3]. As a low-lying
nation, natural disasters such as foods, cyclones, and other
natural disasters have a substantial impact on aquaculture in
both ponds and marine areas. Even little fuctuations in
water quality parameter values above or below the typical,
ideal range can cause physiological stress in aquatic life,
afecting eating, breeding, and disease susceptibility [4].
Aquaculture and fshing are two of the most well-liked
activities in coastal areas around the world. Additionally,
given their vulnerability to climatic factors that endanger the
economic stability of fshing communities that depend on
fsh for food security and money production, these activities
are regarded as greater in the context of climate change.
Recent research has shown proof of the harmful conse-
quences of climate change on corals, including coral
bleaching and changes to organism variety and composition,
as well as on fsh populations and aquaculture production
[5–7].

In recent times, the use of AI in the felds of health,
manufacturing, agriculture, and academia domain has
grown in many folds [8–10].Te role of blockchain, IoT, and
WSAN is well-known and popular among researchers due to
their reasonably good advantages available at low cost
[11–13]. Industry 4.0 and 5G/6G telecommunication have
revolutionized the applications in the felds of health,
manufacturing, agriculture, and academia. Te domain of
aquaculture has not remained untouched by the efects of the
industry’s 4.0/5.0 and 5G/6G revolutions [14]. Industry 4.0 is
transforming how businesses produce, enhance, and sell
their goods. Te Internet of things (IoT), cloud computing,
statistics, AI, and machine learning are among the cutting-
edge technologies that companies are incorporating into

their manufacturing processes. People will experience the
efects of the 5G revolution as it spreads. 5G, which is
planned to ofer faster speeds, more capacity, and lower
latency, is anticipated to be the driving force behind de-
velopment in the future. Increased speeds, in particular, can
provide new opportunities for commerce and community
security. In the feld of integrated AI and smart fsh farming,
especially ML and deep learning (DL), presents both new
potential and obstacles for information and data processing
[14]. Using the Internet of things (IoT), big data for data
storage, cloud computing for remote processing, and arti-
fcial intelligence, as well as other current information
technologies, aquaculture was able to make better use of
resources and improve long-term sustainability [15]. Tra-
ditional freshwater fsh farming practices are still use vast
ponds with no water movement, no drainage, and no bottom
silt treatment, which frequently create circumstances that
encourage disease. Te close quarters of millions of fsh in
their enclosed environment are the root of a lot of worries
regarding fsh farming. Solid wastes, such as feces, kitchen
waste, and jellyfsh, are dumped (often unprocessed) into the
nearby waters, where they contribute to the water supply’s
pollution. It is now possible to collect real-time data, make
quantitative decisions, use intelligent controls, make exact
investments, and provide tailored service. For the devel-
opment of water quality parameter prediction models,
several types of ML approaches and methodologies have
been investigated. In recent years, reliable ML models for
estimating variables like nitrites and ammonia, as well as
forecasting variables like dissolved oxygen, pond tempera-
ture, and pH, have been developed. Te issues faced by
diferent companies, including the agricultural sector, in-
cluding harvesting of crops, irrigation, soil composition
sensitivity, crop scouting, weeding, harvesting, and foun-
dation, are managed by AI-based technology, which also
helps to increase productivity across all sectors. On the
felds, AI technology aids in the diagnosis of pests, illnesses,
and malnutrition. AI sensors can also detect and identify
weeds. Te mythology that is used to classify diseases,
segment the afected areas, and diagnose ailments.

Te current study aims to determine the impact of 5
QOW factors in distinguishing high- and low-performance
ponds ( in terms of harvesting performance), as well as how
fuctuations in QOW variables occur or are observed
throughout the growing season, which infuences fnal
harvesting factors such as growth and yield. Neural networks
(NN), support vector machines (SVM), k-nearest neigh-
bours (kNN), logistic regression (LR), Gaussian Naive Bayes
(NB), decision trees (DT), random forests (RF), as well as
AdaBoost are some of the machine learning techniques used
to categorise ponds [16]. By taking into account both linear
and nonlinear correlations among QOW components to-
gether with the result of prawn production, QOW variables
during the course of the prawn-growing season as well as
their value for prawn production are examined. Te fve
QOW variables are temperature, DO, salinity, pH, turbidity,
and salinity. Mutual information feature selection ap-
proaches, interlinked-based attribute selection, and ReliefF
have all been utilised to discover factors impacting water
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quality for better animal development and productivity in
ponds. Various applications, advantages, and drawbacks of
machine learning and deep learning have been shown in
Figure 1.

Te body of the paper is organised as follows: Section 2
provides a quick review of the literature onmachine learning
applications in agricultural systems. Te third section gives
an overview of the dataset that has been used. Te ML
techniques we used are described in Section 4. Te exper-
imental framework has been presented and discussed in
Section 5. Finally, Section 6 summarises the key fndings and
concludes the work with recommendations for further
research.

2. Related Work

Te toxicity levels of pond water are linked to nitrogen com-
pounds, electric conductivity, and alkalinity. Te occurrence of
hazardous ions that afect the pH of the pond’s water. Many
studies have focused on predicting dissolved oxygen, one of the
most essential factors in ensuring the minimal levels of QOW
necessary in fsh farming practices. For aquaculture forecasting
of dissolved oxygen (DO), Huan et al. [17] recommend com-
bining GBDT and LSTM. Te computation time of the whole
method is decreased by picking characteristics with highly
correlated data for dissolved oxygen as input data. When
compared to DL-based prediction models such as BP, GBDT-
LSTM, ELM, and PSO-LSSVM, as well as single LSTM pre-
diction models, the suggested model has demonstrated a greater
prediction efect and accuracy.

Shi et al. [18] propose a new Clustering-based Soft-
plus Extreme Learning Machine approach (CSELM) for
the purpose of forecasting dissolved oxygen variation
from time series data with high accuracy and efciency.
CSELM enhances efciency despite having a high tol-
erance for some data loss and unclear outliers in sensor
time series, demonstrating that CSELM outperforms
PLS-ELM and ELM models in terms of high accuracy and
better efciency in predicting real-world dissolved ox-
ygen content when compared to other models. Using the
clustering technique, CSELM may endure sensor issues
with data quality and still obtain good accuracy and
efectiveness. Another beneft of CSELM is that the
Softplus ELM has better-optimised network perfor-
mance, which increases predictive performance. For
aquaculture, which demands sophisticated supervision
and operation, reliable and efcient dissolved oxygen
prediction from time series data is essential. Te current
prediction techniques are, nevertheless, put to the test by
nonlinear, continually generated data streams of dis-
solved oxygen [18]. Csábrági et al. [19] created a non-
linear ANN for forecasting and predicting dissolved
oxygen content concentration in the Hungarian part of
the Danube in another comparable study. It was also
discovered that when evaluating dissolved oxygen levels,
pH is the most critical element.

A precise forecast of dissolved oxygen can aid farmers
in taking the required actions to sustain dissolved oxygen
echelons suitable for healthy prawn growth, according to
Rahman et al. [20] presents a novel strategy in which a set
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Figure 1: Application, advantage, and drawback of ML and DL in aquaculture practices.
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of predictors is created, each of which forecasts a certain
time stamp in the future. On the other hand, Liu et al.
[21] investigated the efciency of attention-based re-
current neural networks (RNN) in predicting dissolved
oxygen in the short and long term. Te author also
proposes two attention-based RNN architectures for
capturing temporal correlations independently and
learning spatiotemporal relationships concurrently that
outperform state-of-the-art approaches. Te fndings of
the proposed model reveal that attention-based RNNs
can predict dissolved oxygen more accurately in both
short- and long-term predictions.

In recirculating aquaculture, the level of dissolved ox-
ygen is a vital indication of control; its content as well as
dynamic fuctuations have been found to have a signifcant
infuence on the healthy growth of aquatic live feedstock. It is
vital to forecast the levels of dissolved oxygen concentration
in advance to ensure the safety of aquaculture operations.
Ren et al. [22] suggested a forecasting model on the basis of
deep belief networks to achieve dissolved oxygen content
prediction. To analyse the original data space, a variational
mode decomposition (VMD) data processing approach was
used. Te suggested model can predict DO concentration in
temporal series rapidly as well as reliably, and its forecasting
performance is equivalent to that of existing frameworks like
AdaBoost, decision trees, CNN, and other similar models.

In fsh farming, Zambrano et al. [23] introduced an ML
model for manually observed water quality prediction. In
cases where the number of measurements was restricted, the
author used RF, MLR, and ANN to assess data from water
quality indicators that are regularly recorded in fsh growth
and farming. Te suggested model achieves the goals of
predicting and estimating unseen factors based on observ-
able data. When the water pond variables are examined only
two times per day, the model employs random forests to
anticipate DO, the temperature of the pond, pH, and am-
monia, as well as ammonium. In contrast to earlier studies in
the literature, we use machine learning to detect primary
driving elements (for the measurement of QOW), which
impact aquatic livestock development and productivity in
commercial freshwater ponds. Grow-out period (in this
study, the grow-out period was 190–210 days). Te desire to
reduce the cost of fsh farming grows as the price of fsh meal
and inorganic fertilisers rises. Tis can be partially resolved
by implementing a comprehensive farming system. To
improve plant nutrient uptake, promote native fsh devel-
opment, and eventually boost fsh production, fertilisers are
added to fsh ponds. Te availability of natural food in pond
water lowers the demand for synthetic feeds among fsh,
which in turn lowers productivity [24]. We use a series of
fltering and attributes extraction methods to examine the
efect of QOW variables throughout the growing season of
prawns, as well as their value for prawn production, by
taking into account both linear and nonlinear correlations
among QOW factors along with the outcome of prawn
production.

3. Data Collection and ML Framework

Te data for this study was gathered during a grow-out
season at a well-known prawn farm in Australia. Te
amount of time spent in culture (DoC) varied between
190 and 200 days. Te water quality data has been taken
from various ponds, each of which was set to a constant
area of 10,000 square metres. DO, salinity, pH, and
turbidity and temperature are among the fve QOW
variables that were measured twice a day. For 135 days,
turbidity and salinity were monitored one time each day.
Each QOW variable’s weekly averages are considered
over the last 135 days. For diferent ponds, growth (such
as average prawn mass along with yield at harvesting
time) was measured to categorise them into low-, me-
dium-, and high-producing ponds. Te classifcation
process entails separating the ponds’ performances based
on all measured QOW characteristics. Te ML technique
used to solve this problem is depicted in Figure 2.

Te pond’s weekly averages of QOW variables have been
taken as input, while the pond’s performance considering
the pond’s class, growth, and yield have been used as output
(target). Classifer models, which have been a series of
complementary ML models exhibiting distinct patterns and
treated as learning skills, employed the input and output
data. Diferent models have been employed to increase
variety in learning the linking attributes between QOW data
and pond performance, with a focus on reducing over-ftting
issues. Using 10-fold cross-validation, the classifcation
performance of the various prediction models has been
assessed.

Figure 2 depicts the attribute extraction and selection
approach that has been used to assess the value of each QOW
characteristic individually and to produce a relative rating
for pond performance diferentiation. Correlation-based
Feature Selection (CFS), mutual Information (MI), and
ReliefF (RLF) fltering feature selection techniques were used
to refne and fne-tune time series data for every QOW
variable of all ponds independently. Based on data fuctu-
ations, these algorithms calculate the relevance of every
QOW variable. Te capacity of every QOW variable to
predict and diferentiate between high- and low-performing
ponds is shown in merit scores. All QOW factors have been
ranked according to their merit score. Overall harvest
performance is linked to QOW factors at various points
during the growing season. Te dataset has been used to
assess the impact of each QOW variable during each week of
the prawn growth season. Te QOW variable’s time series
data has been incorporated into MI, CFs, and RLFmodels. A
10-fold cross-validation approach was used to calculate the
weekly infuence. Te aggregate merit score for each week
aids in distinguishing between ponds that perform poorly
and those that perform well. Characteristic features for
QOW variables were defned as feature merit scores over 95
percentiles. Tis procedure was carried out independently
for each QOW variable.

4 Journal of Food Quality



4. Results

Te experimental fndings of identifying ponds as high- or
low-performing as a function of the observed QOW factors
are shown in Figure 3. A total of 5 runs of the tests have been
completed for each model independently. F scores were used
to assess the performance of many models along with ac-
curacy metrics, with the main weighting given to the F score.
When the yield is utilised as a performance indicator, NNs,
SVMs, and NBs deliver the highest accurate forecast. Using
growth as a performance indicator, high- and low-
performing ponds have been identifed. For growth met-
rics, a larger number of training data sets were employed,
resulting in improved classifcation results. It may be
inferred that all of the QOW factors have a signifcant impact
on prawn production and that these QOW variables can be
used to discriminate between ponds with high and poor
production outcomes.

When growth is used as a harvest parameter, the average
F score and accuracy found to be 0.86 and 0.84, respectively.
When yield has been used as a harvest parameter, however,
the average F score and accuracy have been found to be 0.85
and 0.78, respectively, as shown in Figure 4. Other algo-
rithms are outperformed by DT, NNs, and SVM, which
produce the most accurate forecast that is also independent
of the harvest metric. Te temporal series data for each
QOW variable has been supplied independently into the
attribute selection algorithms such as MI, CFS, and RLF in
order to evaluate the signifcance of the harvest result for
both prawn growth and yield. Figure 5 and Figure 6 depict
the merit score of all QOW factors as well as their ranking
based on both harvest measures. When growth is used as
a harvest measure, the two most relevant QOW factors have
been found to be temperature and salinity.

Temperature, dissolved oxygen, and salinity have much
higher average merit scores than the other QOW factors,

Water Quality (WQ) Variables

Dissolved oxygen pH Temperature Salinity Turbidity

Data Acquisition framework

Multiple variable
time series data
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Single variable
dependent

time series data
Acquisition for every
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Figure 2: Schematic diagram of the proposed framework for pond classifcation, water quality ranking, and water quality parameter efect
on prawn yield and growth.
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making them the most impactful QOW variables. When
yield is used as the harvest parameter instead of growth, the
most signifcant QOW factors are found to be temperature
and salt. Te three QOW factors revealed have a strong
predictive capacity to distinguish between poor and high-
performing ponds, which aids in keeping them within in-
dustry standard levels and so enhancing yield output. Te
infuence of organism exposure on QOW factors has not
been investigated in this study. Even though organisms’

growth and survival may be afected by exposure, the focus is
on the infuence of QOW factors on growth and yield under
ideal conditions.

Te infuence of each QOW variable at every point of the
time series data during the prawn growth season, from
stocking to harvesting time, has been evaluated individually
and is indicated in Figure 7. As it is observed, the merit score
has been found to be greater than 0.90 for temperature for
the 2nd and 7th weeks, whereas salinity for the 19th and 20th
weeks is considered as performance metrics. On the other
hand, DO was found to have a higher metric score on the
17th week along with temperature on the 4th week when yield
is accounted for as a performance parameter.

Figure 8 depicts the merit score for every week of the
grow-out season, which has been refecting the relevance of
top-ranked QOW factors. Te salinity diference between
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high- and low-performing ponds became increasingly no-
ticeable towards the end of the season, thereby allowing
high- and low-performing prawn-cultivating ponds to be
distinguished. Temperature is related to metabolism in
general, and higher levels indicate more development, as
shown in Figure 8. Te temperature variations are greatest
during the 2nd, 4th, and 7th weeks; hence, they have been
chosen via feature selection algorithms to contribute the
most in distinguishing between high and low prawn culti-
vating performance ponds. Te maximum temperature
(harvest matric yield) has been observed during the 4th and
13th weeks, and the minimum temperature (harvest matric

yield) has been detected in the 10th and 15th weeks. Whereas
the maximum temperature (harvest matric growth) has been
identifed in the 7th week and the minimum maximum
temperature (harvest matric growth) was experienced
during the 15th week.

5. Discussion

Diferent QOW factors have a big impact on the develop-
ment and survival of aquatic cattle. Despite the fact that
earlier studies in the literature had not focused on defning
the signifcant QOW factors or exploring how their fuc-
tuations impact the development along with the survival of
various aquatic livestock species, the machine learning al-
gorithms provided here were tested on prawn development
and yield, but they may readily be applied to other com-
parable biosystems. Changes in QOW characteristics and
their impact on catfsh, tilapia, and other livestock devel-
opment and survival described in the present study on
greenhouse ponds and the longer duration of a culture
diferent species of prawn are distinguishable and novel from
other reported work. Forecasting QOW is also a critical
responsibility for aquaculture farm managers. Te fndings
of the presented study may be combined with QOW pre-
dictions from other studies to help in establish an early
warning system to aid farm managers in making better
decisions.

Ponds that perform well and those that don’t have been
identifed using growth as a performance measure. A con-
clusion that can be drawn is that all QOW variables have
a signifcant impact on prawn output and can be utilised to
distinguish between ponds with high and low production
results. Temperature and salinity have been determined to be
the two most important QOW parameters when growth is
considered as a harvest indicator. Te three QOW param-
eters can efectively discriminate between ponds that per-
form poorly and those that perform well, helping to keep
them within acceptable ranges for the industry and so in-
creasing yield production. Te salinity diference between
ponds with good and poor performances became more
apparent as the season progressed.

6. Conclusion

We introduced a series of machine learning (ML) algorithms in
this research to study howQOWfactors infuence the harvesting
season outcome of aquatic livestock (prawn) in freshwater
ponds. Te proposed model outperforms other similar existing
models in terms of pond classifcation accuracy, QOW variables
ranking in terms of afecting yield, and growth of prawns in
pond. A data set obtained from a prawn harvesting farm has
been used to achieve experimental results. Using the provided
data-driven ML technique, it is feasible to properly distinguish
high- and low-performing ponds. DO and Salinity along with
temperature, are determined to have the most impact on the
performance of all the QOW factors during the harvesting
season. Because optimum growth in the frst few months might
have a substantial impact on the fnal harvesting outcome, the
temperature efect has been anticipated to directly afect the
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harvesting season. Te most crucial component in diferenti-
ating high- and low-performance ponds is determined to be the
diference in DO and salinity in the fnal third of the grow-out
season. In conclusion, machine learning techniques showed
great promise for producing decision support for aquaculture
producers in order to stimulate scenarios that lead to higher-
performing ponds and avoid the circumstances leading to low
harvest results for the prawn cultivating sectors. Depending on
the natural conditions, individual farms have distinct growth
seasons, QOW requirements, customer requirements, and
market concerns that infuence management standards. Te
methods given in this presented work are data-oriented, and
they can be used to run experiments and create fndings using
farm-specifc data. For predicting changes in dissolved oxygen
content from time series data, we will propose the prediction
model CSELM, which combines two novel techniques: the k-
method clustering based onDTWfor efciency and precision by
sensibly grouping input data and utilizing their common trends,
and the Softplus input vector based on PLS for enhancing ELM.
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