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Tiegun yam is a typical food and medicine agricultural product, which has the efects of nourishing the kidney and beneftting the
lungs.Te quality and price of Tiegun yam are afected by its origin, and counterfeiting and adulteration are common.Terefore, it
is necessary to establish a method to identify the origin and index component contents of Tiegun yam. Hyperspectral imaging
combined with chemometrics was used, for the frst time, to explore and implement the identifcation of origin and index
component contents of Tiegun yam. Te origin identifcation models were established by partial least squares-discriminant
analysis (PLS-DA), support vector machine (SVM), and random forest (RF) using full wavelength and feature wavelength.
Compared with other models, MSC-PLS-DA is the best model, and the accuracy of the training set and prediction set is 100% and
98.40%. Partial least squares regression (PLSR), random forest (RF), and support vector regression (SVR) models were used to
predict the contents of starch, polysaccharide, and protein in Tiegun yam powder.Te optimal residual predictive deviation (RPD)
values of starch, polysaccharide, and protein prediction models selected in this study were 5.21, 3.21, and 2.94, respectively. Te
characteristic wavelength extracted by the successive projections algorithm (SPA) method can achieve similar results as the full-
wavelength model. Tese results confrmed the application of hyperspectral imaging (HSI) in the identifcation of the origin and
the rapid nondestructive prediction of starch, polysaccharide, and protein contents of Tiegun yam powder. Terefore, the HSI
combined with the chemometric method was available for conveniently and accurately determining the origin and index
component contents of Tiegun yam, which can expect to be an attractive alternative method for identifying the origin of
other food.

1. Introduction

Yam is the feshy underground tuber of Dioscorea. In China,
yam is a typical food and medicine agricultural product. It is
not only a common vegetable, often used for fresh eating,
fresh stir-fry, steaming, making vermicelli, and potato chips,
but also a traditional Chinese medicine which can invigorate
the spleen and stomach, beneft the lung, generate saliva, and
beneft the kidney [1]. Yam contains many nutrient me-
tabolites which include starch, polysaccharide, and protein

[2]. Because of its nutritional content, it is widely used in
traditional Chinese medicine to treat chronic diseases such
as indigestion [3]. China is an important center of yam
cultivation, with more than 90 varieties [4]. Tiegun yam
(D. opposite Tunb.) is mainly produced in Wen County,
Henan Province of China, has the best quality, and is
considered to be the representative of Chinese yam (Dio-
scorea opposite Tunb.). In recent years, Tiegun yam has
been planted in most areas of China, such as Inner Mon-
golia, Shaanxi, Jiangsu, Shandong, Hebei, and other places,
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and there have been many problems with fake Tiegun yam
from other origins in the market. Te fake Tiegun yam not
only damages the interests of consumers but also has a great
diference from that of the Wen County Tiegun yam in
nutrient substance. Starch is the most abundant ingredient,
which also afects the taste of Tiegun yam, while poly-
saccharides and proteins are the main pharmacological
components.Te content of these three components has also
become an important index to evaluate the quality of Tiegun
Yam. Terefore, it is necessary to establish an analytical
method to identify the origin and index component contents
of Tiegun yam.

At present, the traditional nutrient content evaluation
methods include enzymatic hydrolysis [5] and the un-
derwater weight method [6] to determine the starch content.
Te content of polysaccharides was determined by in-
ductively coupled plasma mass spectrometry (ICP-MS) [7],
spectrophotometry [8], and liquid chromatography-tandem
mass spectrometry (LC-MS) [9], and the content of protein
was determined by the Kjeldner method [10], spectropho-
tometry, and combustion [11]. However, most of the tra-
ditional content determination methods are destructive,
time consuming, and environment polluting with few other
shortcomings and only applies to small samples and cannot
meet the requirements of online monitoring [12]. In addi-
tion, the traditional methods of origin identifcation include
liquid chromatography-mass spectrometry [13], gas
chromatography-mass spectrometry [14], molecular biology
techniques [15], stable isotope [16], and chemical fnger-
printing [17]. However, traditional chemical methods have
high accuracy but also have some disadvantages, such as
high detection cost, difcult operation, and time consuming.
Terefore, the establishment of a rapid and accurate de-
tection method has an urgent market demand.

Hyperspectral imaging (HSI) technology is a non-
destructive detection method that integrates image in-
formation and spectral information [18]. Compared with
traditional spectral analysis technology, HSI can not only
obtain two-dimensional spatial and one-dimensional spec-
tral information that corresponds to internal and external
features [5] but also collect data from multiple samples
simultaneously. Compared to single-point measurement
technologies, HSI is capable of performing spatial substance
content analysis [19]. It has been widely used in the rapid
identifcation of corn [20], sorghum [21], wolfberry [22],
chrysanthemum [23], and other samples due to its char-
acteristics of simultaneously obtaining spectral and spatial
information. At the same time, HSI is also used for detecting
the content of various substances, such as starch content in
sorghum detection [19], corn grain oil content [24], total
content of favonoids in the cherry prediction [12], analysis
of protein content in rice [11], and prediction of total fa-
vonoids and polysaccharides in Anoectochilus formosanus
[25]. All these studies have achieved satisfactory results.
However, as far as we know, no studies have been published
on using HIS to identify the origin and determine the
contents of starch, polysaccharide, and protein in
Tiegun yam.

In this study, we discussed the feasibility of the HSI
method to identify the origin and determine the contents of
starch, polysaccharide, and protein in Tiegun yam. An ef-
fcient and accurate method based on the graph segmen-
tation algorithm was developed to achieve the rapid
automatic identifcation and information extraction of the
hyperspectral information of Tiegun yam powder samples.
In addition, it combined with the chemometric method that
can establish diferent models to realize the rapid identif-
cation of diferent regions of Tiegun yam and the accurate
prediction index of its composition.

2. Materials and Methods

2.1. Sample Preparation. Tiegun yam samples were collected
from late October to November 2019, from six producing
areas, including Inner Mongolia (NM) (n� 7), Shaanxi (SX)
(n� 6), Jiangsu (JS) (n� 6), Shandong (SD) (n� 11), Hebei
(HB) (n� 13), and Henan (HN) (n� 17) provinces, and
fnally a total of 60 batches of Tiegun yam samples was
collected. All batches of samples were purchased from the
local medicinal herbs market, and each batch consisted of
10–20 Tiegun yam. Te specifc information of the sample is
shown in Table 1. Te collected Tiegun yam samples were
cleaned, peeled, and cut into 10 cm sections and dried for
approximately 36 hours in an oven at 50°C. Finally, all dried
Tiegun yam samples were ground into powder and sifted
through 50mesh. Te powder was sealed in a polyethylene
bag and stored at 4°C.

2.2. Hyperspectral Imaging Systems. Te HSI system con-
sisted of an imaging spectrograph, a high-performance
charged couple device (CCD) camera, a pair of 150W
halogen lamps (150W/12V, H-LAM Norsk Elektro Optikk,
Norway), a mobile platform (Standa Translation Stage,
Lithuania) driven by a stepper motor, and a computer with
data acquisition and analysis software (HySpex Ground,
Norsk Elektro Optikk, Norway). Te imaging spectrograph
consisted of SN0605 VNIR (H-V16, Norsk Elektro Optikk,
Norway) and N3124 SWIR (H-S16, Norsk Elektro Optikk,
Norway).

2.3. Hyperspectral Data Acquisition. First, 60 samples were
randomly selected from diferent batches of Tiegun yam
powder from each producing area, with a total of 360
samples. 15 g of each Tiegun yam samples powder sample
was selected as a hyperspectral sample and loaded into
a Petri dish with a diameter of 5 cm. Te criterion is that the
bottom of the Petri dish should not be seen when the powder
is laid fat.

When the sample was collected, the distance between the
spectrometer lens and the sample was 25 cm, the platform
moving speed was 1.5mm/s, the integration time of SN0605
VNIR lens was 3500 μs, the frame time was 18000, and the
spectral range was 410–990 nm. Te integration time of the
N3124 SWIR lens was 4500 μs, the frame time was 46928,
and the spectral range was 950–2500 nm. Te spectral
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resolution of both VNIR and SWIR lenses was 6 nm. Te
samples were arranged on a black horizontal moving plat-
form according to the matrix, and the Tefon whiteboard was
placed at the end of the sample row to collect the hyper-
spectral images. In order to reduce the infuence of natural
light on the experiment, the whole experiment was con-
ducted in a dark room. Finally, the average surface spectral
data of the powder in each Petri dish were used as a region of
interest (ROI).

2.4. Hyperspectral Image Processing. In order to eliminate
the infuence of instruments and environment on the sample
data, the raw hyperspectral image data were corrected by
software (HySpex RAD, Norsk Elektro Optikk, Norway),
followed by black-and-white plate correction. Black-and-
white plate correction is a common method in hyperspectral
image data processing, which is used to eliminate the in-
fuence of air and surrounding environment on spectral
images, so as to obtain the relative refectance of the
spectrum. Tis method is used to calculate the relative
refectivity of samples, whiteboards, and blackboards, and
the calculation formula is as follows:

R �
Rraw − Rd
Rw − Rd

, (1)

where R is the corrected refectivity image, Rraw is the
original refectivity image, Rw is the whiteboard reference
image, which is obtained by Tefon whiteboard (refectivity is
close to 1), and Rd is the blackboard reference image, which
is obtained by covering the lens cap (refectivity is close to 0).

2.5. Reference Measurement of Nutrient Substances Content

2.5.1. Evaluation of Starch Content. Te soluble sugar and
starch in the samples were separated by 80% ethanol, and the
starch was hydrolyzed into glucose by acid hydrolysis.
Glucose content was determined by anthrone colorimetry,
and starch content was calculated [26]. Glucose standard
solution of 1, 0.8, 0.4, 0.2, 0.1, and 0.05mg/mL was prepared.
Te standard curve Y� 2.9468x+ 0.2768 (R2 � 0.997) was
established with glucose concentration as abscissa and ΔA
(ΔA�A−A blank) as abscissa. Te 0.01 g Tiegun yam
powder sample was weighed, and the test solution was
confgured.Te absorbance value Awas measured at 620 nm
with a microplate reader. Te abovementioned de-
termination was completed with a total starch content

determination kit (BC0700, Solarbio, Beijing, China). Te
formula for calculating starch content is as follows:

M1 �
x∗V∗F

1.11∗W
, (2)

where M1 stands for starch content (mg/g), x is the cal-
culated concentration of starch based on the standard curve
(mg/mL), W is the sample mass (g), F stands for sample
dilution ratio, and V is the volume after extraction (ml).

2.5.2. Evaluation of Polysaccharide Content. Total poly-
saccharides were extracted by the water extraction and al-
cohol precipitation method, and the content of total
polysaccharides was determined by the phenol-sulfuric acid
method [27, 28]. Standard solution of 0.4, 0.2, 0.1, 0.05,
0.025, and 0.0125mg/mL was prepared, and the standard
curve Y� 6.7386x+ 0.2257 (R2 � 0.998) was established with
concentration as abscissa and ΔA (ΔA�A−A blank). Te
0.025 g Tiegun yam powder sample was weighed, and the test
solution was confgured. Te absorbance value A was
measured at 490 nm with a microplate tester. Te above-
mentioned determination was completed with a total
polysaccharide content determination kit (YX-W-ZDT,
HEPENGBIO, Shanghai, China). Te formula for calculat-
ing the polysaccharide content is as follows:

M2 �
5∗Y

W
, (3)

whereM2 stands for polysaccharide content (mg/g), Y is the
calculated concentration of polysaccharide based on the
standard curve (mg/mL), andW stands for sample mass (g).

2.5.3. Evaluation of Protein Content. Protein concentration
was detected by the Bradford method. Te standard protein
solution of 0.0625, 0.125, 0.25, 0.5, 0.75, 1, and 1.5mg/mL
was confgured to establish the standard curve
Y� 0.5676x+ 1.4197 (R2 � 0.994). Te 0.025 g Tiegun yam
powder sample was weighed with the test solution, and the
absorbance was measured at 595 nm. Te Bradford protein
Assay kit (P0006C, Beyotime Biotechnology, Shanghai,
China) was used to detect protein concentration. Te for-
mula for calculating protein concentration is as follows:

M3 �
Y

W
, (4)

Table 1: Detailed information of Tiegun yam.

Number Origin Quantity of sample
NM Dengkou County, Bayanchuer city, Inner Mongolia, China 60
SX Dali County, Weinan city, Shaanxi province, China 60
JS Fengxian County, Xuzhou city, Jiangsu province, China 60
SD Dingtao District, Heze city, Shandong province, China 60
HB Li County, Baoding city, Hebei province, China 60
HN Wen County, Jiaozuo city, Henan province, China 60
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where Y stands for protein concentration (mg/mL) and W
stands for weight of the sample (g).

2.6. Statistical and Chemometrics Analysis

2.6.1. Statistical Analysis. Te mean value and standard
deviation of starch, polysaccharide, and protein contents of
Tiegun yam from diferent origins were calculated. Te
contents of starch, polysaccharide, and protein of Tiegun
yam from diferent producing areas were compared. One-
way analysis of variance (ANOVA) (P< 0.05) was used to
analyze whether there were signifcant diferences in the
contents of polysaccharides, starch, and proteins in Tiegun
yam from diferent origins.

2.6.2. Data Preprocessing. A total of 360 hyperspectral data
were obtained from the extraction of hyperspectral regions
of interest. Te pretreatment of spectral data can reduce
errors caused by baseline changes such as background, noise,
and other physical factors and can improve the prediction
ability and stability of the model. In this study, fve methods
including multiple scattering corrections (MSCs), frst de-
rivative (D1), second derivative (D2), SG smoothing (SG),
and standard normal variable transformation (SNV) were
used to preprocess spectral data to improve the accuracy and
stability of the discrimination model.

2.6.3. Chemometric Method. Tree diferent classifcation
models, including partial least squares discriminant analysis
(PLS-DA), support vector machine (SVM), and random
forest (RF), were established to identify the origin of Tiegun
yam. Similarly, three diferent classifcation models including
partial least square regression (PLSR), support vector re-
gression (SVR), and random forest (RF) were established.

PLSR model, a classical linear regression algorithm, can
consider both matrices x (spectral data) and y (chemical
index), to fnd the maximal correlation between the new
variables of X and Y [29, 30]. PLS-DA is a supervised
classifcation algorithm adapted from PLSR. Te optimal
number of 10–12 important potential variables in diferent
prediction groups was obtained by using the leave-one cross-
validation method.

Te SVM model, which aims to obtain the best hyper-
plane by selecting the hyperplane passing through the
maximum possible gap between points of diferent cate-
gories, was used with a nonlinear radial basis function to
reduce the training complexity. In this research, the SVM
model was constructed based on the radial basis function,
and the optimal combination of two important parameters,
namely, the penalty factor (C� 12000) and the kernel pa-
rameter (c �100), was determined by a grid-search method
[31]. Support vector regression (SVR) is an important ap-
plication branch of the support vector machine (SVM).

RF is an integration algorithm based on a classifed
regression tree, which builds multiple regression trees by
constructing multiple training sets with the putback sam-
ples. Te number of trees in this study is 50.

Te successive projections algorithm (SPA) was used to
select the characteristic wavelength of the classifcation
model. SPA is a forward variable selection algorithm that
minimizes the space collinearity of vector quantity. Its ad-
vantage lies in extracting several characteristic wavelengths
of the whole band and eliminating redundant information in
the original spectral matrix. Finally, the characteristic var-
iable modeling results are compared with the full-band
modeling results.

2.6.4. Model Evaluation. Te performance of the classif-
cation model was evaluated based on the classifcation
discrimination accuracy and confusion matrix. Te confu-
sion matrix is a method to evaluate the prediction results of
the classifcation model in data analysis. Te specifc eval-
uation indexes include accuracy, sensitivity, and specifcity
[32]. Tese precision indexes refect the accuracy of model
classifcation from diferent aspects.

Accuracy �
TP + TN

TP + FN + FP + TN
,

Sensitivity �
TP

TP + FN
,

Specif icity �
TN

TN + FP
,

(5)

where TP is the number of true positive samples, TN is the
number of true negative samples, FP is the number of false
positive samples, and FN is the number of false negative
samples.

Te prediction efect of pretreatment methods combined
with regression models was evaluated based on residual
predictive deviation (RPD) and curve correlation coefcient
R2 values. Usually, the R2 value from 0.61 to 0.80 and the
RPD value ranging from 2.0 to 2.5 indicate that the model
can be used for prediction. R2 value between 0.81 and 0.90
and RPD value between 2.5 and 3.0 demonstrate high model
performance. Te model has an excellent prediction per-
formance with an R2 value higher than 0.90 and an RPD
value higher than 3.0.

2.7. DataDivision. Te samples were randomly divided into
training sets and prediction sets in a ratio of 7 : 3 for sub-
sequent modeling and analysis. 240 (2/3 samples) and 120
(1/3 samples) samples were randomly assigned to establish
prediction models for starch, polysaccharide, and protein.
Te predictive set content range should be included in the
training set content range.

2.8. Software and Program. Te image correction tool used
in this study is RAD correction software. ROI was collected
by ENVI 5.3 software (Harris Geospatial Solutions Inc., CO,
USA). ANOVA was conducted on SPSS software (22.0
version, IBM Inc., Chicago, IL, USA). Data analysis, such as
spectral data preprocessing and classifcation model con-
struction, was realized by Matlab 2020a (MathWorks, USA)
software, and scripts were written by our research group.
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3. Results and Discussion

3.1. Statistical Analysis. Te content ranges, mean, and
standard deviation (SD) of starch, polysaccharide, and
protein of Tiegun yam powder classifed into a training set
and prediction set are shown in Table 2. Te contents of
starch, polysaccharide, and protein training set ranged from
(377.4 to 638.3) mg/g, (8.06 to 36.01) mg/g, and (5.09 to
51.25) mg/g and (391.4 to 603.8) mg/g, (8.06 to 35.20) mg/g,
and (5.44 to 36.59) mg/g for the prediction set. Te pre-
dictive set content range should be included in the training
set content range. Meanwhile, at the same time, ANOVA
showed that there were signifcant diferences in starch,
polysaccharide, and protein contents of Tiegun yam beans
from 6 origins (P< 0.05). Te starch content of Tiegun yam
in JS was the highest, while that in SD was the lowest. Te
other four producing areas have little diference in starch
content. Te content of polysaccharide of Tiegun yam in
NM, SX, and JS was lower than that in SD, HB, and HN.Te
protein content of Tiegun yam was very low in NM, and
there was little diference in other producing areas. Wen
County of Henan province, as an authentic production area
of Tiegun yam, had a high content of all these three nu-
trients. In other words, starch, polysaccharide, and protein
content was signifcantly afected by the origin. Te place of
origin can be used as a grouping basis for classifcation
modeling of hyperspectral Tiegun yam.

3.2. Original Spectral Curve Analysis. Te spectral curves of
Tiegun yam powder samples from diferent origins (Fig-
ure 1) have similar variation trends in VNIR and SWIR
bands, and the mean values of spectral data have obvious
diferences in visible near-infrared (VNIR) bands, which
may be caused by the signifcant diferences in chemical
composition content of Tiegun yam powder samples from
diferent origins as shown in Table 2. Tis is related to
diferent plant base sources, environmental conditions, and
planting methods. However, the overall spectral charac-
teristics of the short wave near-infrared (SWIR) band are
similar with little diference.

Te absorption peaks near 980 nm, 1450 nm, and
1855 nm were mainly attributed to the moisture [33].
However, because 980 nm is where the VNIR band ends, the
signature is not obvious. Te absorption peak near 1210 nm
corresponded to the second stretching overtone of C-H.Tis
absorption peak was mainly attributed to carbohydrates and

fats [34]. Te absorption peak at 1290 nm and 1471 nm was
formed by the in-plane bending of C-H.Te absorption peak
at 1648 nm was formed due to the efect of amide groups
[35]. Te absorption peak at 1792 nm indicated the anhy-
dride group. Te absorption peak at 2069 nm was formed
due to the combined efect of stretching and bending of O-H.
Te absorption peak at 2101 and 2190 nm was the charac-
teristic absorption peaks of the protein. Te absorption peak
at 2101 nm might be possibly associated with the carboxyl
group. Te absorption peak at 2190 nm indicated the
combined absorption peak of C-H and C-O [11]. Compared
to VNIR, the wavelengths in SWIR could fully refect the
vibration of molecular bonds in diferent compounds.

3.3. Results of the Origin Identifcation Model of Tiegun Yam.
Te original spectral data of Tiegun yam powder samples
from diferent origins were preprocessed by MSC, D1, D2,
SG, and SNV, and the training set/prediction set was divided
into input variables to calculate the accuracy of PLS-DA, RF,
and SVM classifcation and identifcation methods (Table 3).
For the PLS-DAmodel, MSC preprocessing can improve the
accuracy of the model training set and prediction set. Te
prediction set accuracy of raw data-PLS-DA was 96.00%,
and that of MSC-PLS-DAwas 98.40%, with an improvement
of 2.40%. Te SVM model has high precision in the training
set and low precision in the prediction set, and there is a big
gap between them. Te SVM model may not be suitable for
the origin identifcation data of Tiegun yam.Te accuracy of
the prediction set of the D2-RF model is 83.33%, which is
14.44% higher than the raw data, but lower than that of the
MSC-PLS-DA model. Terefore, MSC-PLS-DA is the op-
timal model for the origin identifcation of Tiegun yam, and
this model is used for spectral modeling after feature
wavelength selection and model evaluation.

As shown in Figure 2, there are 55 feature wavelengths
selected based on SPA. MSC preprocessing and PLS-DA
algorithm are used for modeling, and the accuracy of the
training set is 99.13% and the prediction set is 97.71%. Te
results show that the extraction of characteristic wavelength
modeling can achieve almost the same results as full-
wavelength modeling.

In classifcation problems, a confusion matrix is a visual
evaluation criterion to describe the real category attributes of
sample data and to predict the performance of algorithms.
Te behavior of the confounding matrix is a true label, listed
as the predictive label. Te bottom line shows the percentage
of predicted correct or incorrect classifcation, that is,
sensitivity and error rate. Te right-most column shows the
percentage of all examples that fall into each category that
are correctly and incorrectly classifed, that is, the precision
and false negative rates. After MSC treatment of the full-
band spectrum of Tiegun yam powder samples, the con-
fusion matrix generated by the PLS-DA classifcation model
prediction results of samples from diferent sources is shown
in Figure 3(a), and the sensitivity and precision of the
classifcation and identifcation models of each origin are all
above 95. Te confusion matrix generated by the PLS-DA
classifcation model after SPA screening characteristic

Table 2: Statistical values of starch, polysaccharide, and protein
contents in Tiegun yam powder for both calibration and prediction
sets (mg/g).

Content Sets Range Mean SD

Starch Training 377.4–638.3 489.5 60.23
Prediction 391.4–603.8 490.5 60.33

Polysaccharide Training 8.06–36.01 22.41 8.13
Prediction 8.06–35.20 23.57 11.04

Protein Training 5.09–51.25 23.68 10.05
Prediction 5.44–36.59 22.37 9.62

Journal of Food Quality 5
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Figure 1: Continued.
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variables of spectral data is shown in Figure 3(b). Te
precision and sensitivity of diferent producing areas are
both above 92%, which is not diferent from full-wavelength
identifcation, thus showing a good performance.

3.4. Starch, Polysaccharide, and Protein Content Prediction.
Te prediction results of Tiegun yam powder showed that
the three models had better prediction ability for starch
content but worse prediction ability for polysaccharide and
protein content than starch. Spectral data preprocessing is
an important step in chemometrics modeling. Its purpose is
to reduce the error caused by background, noise, and other

physical factors so as to improve the prediction ability and
stability of the model. Tamburini et al. [36] have also re-
ported that MSC, SNV, D1, and D2 can improve the ac-
curacy of PLSR models. In contrast, the Caporaso study [37]
showed that the accuracy of the model was not improved
when the MSC, SNV, and D1 or D2 were applied.Te
prediction results of diferent pretreatment combined with
three models for starch, polysaccharide and protein are
shown in Tables S1, S2, and S3. MSC, D2, SG smooth, and
SNV pretreatment methods can all improve the accuracy of
the model, but the improved accuracy varies signifcantly
according to diferent components and models. Te frst
derivative does not apply to the prediction model. As shown
in Table 4, R2 values of the training set and the prediction set
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Figure 1: Raw spectra (a), spectra after pretreated byMSC (b), second derivative (c), andmean refectance spectra (d) of Tiegun yam powder
samples from diferent origins.

Table 3: Pairwise combination classifcation accuracy of the
preprocessing method and classifcation model of Tiegun yam
powder samples from diferent origins.

Models Preprocessing
Accuracy (%)

Training set Prediction set

PLS-DA

Raw data 99.57 96.00
MSC 100.00 98.40
D1 100.00 96.00
D2 97.82 95.42
SG 98.72 95.20
SNV 99.15 96.80

SVM

Raw data 98.81 61.11
MSC 97.22 61.11
D1 98.81 25.93
D2 34.52 27.78
SG 98.41 59.26
SNV 100.00 24.07

RF

Raw data 97.14 68.89
MSC 99.05 76.67
D1 99.05 52.22
D2 100.00 83.33
SG 98.09 77.78
SNV 97.14 68.89
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Selected variables
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Figure 2: Screening results of SPA characteristic variables.
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should be signifcantly diferent, and the optimal pre-
treatment method should be selected for diferent models
based on the size of the prediction model of starch RPD
value. Te optimal prediction model of starch, poly-
saccharide, and protein was D2-SVR. Among the three
models, SVR has the best prediction result, followed by
PLSR, and RF has the lowest prediction result. Te D2-SVR
prediction model of starch had a higher R2p value (0.9636)
and RPD value (5.21) and lower RMSE value
(RMSEC= 3.8399mg/g; RMSEP= 10.7103mg/g). For the
polysaccharide prediction model, the parameters of the
optimal model were R2p= 0.9275, RPD= 3.21,
RMSEC= 0.1397mg/g, and RMSEP= 2.0717mg/g. For the
protein prediction model, the parameters of the optimal
model were R2p= 0.8939, RPD= 2.94, RMSEC= 0.5219mg/
g, and RMSEP= 2.6464mg/g, indicating that the prediction
models have good accuracy and stability. Terefore, ap-
propriate spectral pretreatment is needed in the starch
prediction model to improve the regression model. Te D2-

SVR prediction model results of the three components are
shown in Figure 4.

Te characteristic variables were selected based on the
SPA method. 39 characteristic wavelengths were selected for
the starch regression model, 23 characteristic variables for the
polysaccharide regression model, and 48 characteristic vari-
ables for the proteinmodel.Temodeling results of themodel
selected above are shown in Table 5. D2-SVM was used to
model hyperspectral data selected by characteristic wave-
length. RPD values of starch, polysaccharide, and protein
models were 4.45, 2.05, and 2.18, respectively. Te results
show that the characteristic wavelength modeling of protein
extraction can obtain almost the same results as that of the
full-wavelength modeling. Te selection of SPA characteristic
wavelengths revealed the important spectral regions for
predicting the index components of Tiegun yam powder. In
addition, modeling results similar to those of full-wavelength
can be obtained, which greatly reduces the difculty of model
data processing and reduces the time of model operation.
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Figure 3: Te hyperspectral raw data (a) and hyperspectral data after characteristic wavelength selection (b) results of origin identifcation
prediction set of Tiegun yam powder samples.

Table 4: Prediction results of spectral data of Tiegun yam powder samples after diferent pretreatments.

Content Models
Training set Prediction set

R2 RMSEC (mg/g) R2 RMSEP (mg/g) RPD

Starch
PLSR 0.9598 11.0908 0.9270 13.6931 3.22
SVR 0.9948 3.8399 0.9636 10.7103 5.21
RF 0.9896 8.4654 0.9677 14.4532 3.45

Polysaccharide
PLSR 0.8684 2.6837 0.8425 2.9637 2.52
SVR 0.9996 0.1397 0.9275 2.0717 3.21
RF 0.9818 1.6933 0.9012 3.5702 1.45

Protein
PLSR 0.8933 2.4077 0.8610 2.6676 2.61
SVR 0.9943 0.5219 0.8939 2.6464 2.94
RF 0.9770 1.7388 0.9292 3.5203 1.63
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4. Conclusions

Tis study indicated that it was feasible to use hyper-
spectral technology combined with chemometric pre-
treatment and modeling to fast and nondestructive
identifcation of the origin and nondestructive detection of
starch, polysaccharide, and protein contents of the Tiegun
yam powder samples. Some spectral pretreatment methods
(MSC and SNV) can improve the accuracy of hyperspectral
data, while others (frst-order derivation) are not suitable
for the content regression model. MSC combined with
PLS-DA is the best combination for the discriminant
model, and the accuracy of the training set and the pre-
diction set is over 98%. D2-SVR was the best pretreatment
method for starch, polysaccharide, and protein prediction
models with relatively high R2P and RPD values. Te
characteristic wavelength extracted by the SPA method
can achieve similar results to the full-wavelength model,
which can greatly reduce the complexity of the model and
can reduce the operation time of the model. Tis study
demonstrates the great potential of using hyperspectral
images to quickly and nondestructively determine the
indicator components of samples, which will be helpful for
further prediction of other chemical components in Tie-
gun yam or applied to other materials with the homology
of medicine and food.
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Journal of Food Quality 9



Chinese Medical Sciences (Grant nos. CI2021A04005 and
CI2021A01809), the China Agriculture Research System of
MOF and MARA (Grant no. CARS-21), and the Shandong
Provincial Key Research and Development Program (a
Major Technological Innovation Project) (Grant no.
2021CXGC010508).

Supplementary Materials

Te supplementary materials included prediction results of
Starch, polysaccharide, and protein from diferent pre-
treatment spectral data of Tiegun yam powder samples in
Result 3.4, which are shown in table S1, S2, and S3. (Sup-
plementary Materials)

References

[1] C. G. Lyu, J. Yang, T. L. Wang et al., “A feld trials-based
authentication study of conventionally and organically grown
Chinese yams using light stable isotopes and multi-elemental
analysis combined with machine learning algorithms,” Food
Chemistry, vol. 343, Article ID 128506, 2021.

[2] L. An, Y. L. Yuan, J. W. Ma et al., “NMR-based metabolomics
approach to investigate the distribution characteristics of
metabolites in Dioscorea opposita Tunb. cv. Tiegun,” Food
Chemistry, vol. 298, Article ID 125063, 2019.

[3] S. Guo, X. Y. Zhao, Y. Ma, Y. B. Wang, and D. Wang,
“Fingerprints and changes analysis of volatile compounds in
fresh-cut yam during yellowing process by using HS-GC-
IMS,” Food Chemistry, vol. 369, Article ID 130939, 2022.

[4] S. Y. Zhou, G. L. Huang, and G. Y. Chen, “Extraction,
structural analysis, derivatization and antioxidant activity of
polysaccharide from Chinese yam,” Food Chemistry, vol. 361,
Article ID 130089, 2021.

[5] F. X. Wang, C. G. Wang, S. Y. Song, S. S. Xie, and F. L. Kang,
“Study on starch content detection and visualization of potato
based on hyperspectral imaging,” Food Sciences and Nutrition,
vol. 9, no. 8, pp. 4420–4430, 2021.

[6] P. Meise, S. Seddig, R. Uptmoor, F. Ordon, and A. Schum,
“Assessment of yield and yield components of starch potato
cultivars (Solanum tuberosum L.) under nitrogen defciency
and drought stress conditions,” Potato Research, vol. 62, no. 2,
pp. 193–220, 2019.

[7] D. D. Xu, W. Zheng, Y. Q. Zhang, Q. P. Gao, M. X. Wang, and
Y. Gao, “A method for determining polysaccharide content in
biological samples,” International Journal of Biological Mac-
romolecules, vol. 107, pp. 843–847, 2018.

[8] M. A. Galvão, M. R. Ferreira, B. M. Nunes, A. S. Santana,
K. P. Randau, and L. A. Soares, “Validation of a spectro-
photometric methodology for the quantifcation of poly-
saccharides from roots of Operculina macrocarpa (jalapa),”
Revista Brasileira de Farmacognosia, vol. 24, no. 6, pp. 683–
690, 2014.

[9] K. Raymond, J. M. Lacey, G. Dimitar et al., “Mucopolysac-
charides quantitation in serum by liquid chromatography-
tandem mass spectrometry,” Molecular Genetics and Meta-
bolism, vol. 123, p. S123, 2018.

[10] S. Pakfetrat, S. Amiri, M. Radi, E. Abedi, and L. Torri, “Te
infuence of green tea extract as the steeping solution on
nutritional and microbial characteristics of germinated
wheat,” Food Chemistry, vol. 332, Article ID 127288, 2020.

[11] C. Y. Ma, Z. S. Ren, Z. H. Zhang, J. Du, C. Q. Jin, and X. Yin,
“Development of simplifed models for nondestructive testing

of rice (with husk) protein content using hyperspectral im-
aging technology,” Vibrational Spectroscopy, vol. 114, Article
ID 103230, 2021.

[12] B. Wang, J. L. He, S. J. Zhang, and L. L. Li, “Nondestructive
prediction and visualization of total favonoids content in
Cerasus Humilis fruit during storage periods based on
hyperspectral imaging technique,” Journal of Food Process
Engineering, vol. 44, no. 10, 2021.

[13] G. Y. Deng, S. W. Guo, F. Zaman, T. Y. Li, and Y. Q. Huang,
“Recent advances in animal origin identifcation of gelatin-
based products using liquid chromatography-mass spec-
trometry methods: a mini review,” Reviews in Analytical
Chemistry, vol. 39, no. 1, pp. 260–271, 2020.

[14] A. M. Li, S. L. Duan, Y. T. Dang et al., “Origin identifcation of
Chinese Maca using electronic nose coupled with GC-MS,”
Scientifc Reports, vol. 9, no. 1, Article ID 12216, 2019.

[15] H. Nakanishi, K. Yoneyama, M. Hara, A. Takada, and K. Saito,
“Te origin identifcation method for crude drugs derived
from arthropods and annelids using molecular biological
techniques,” Journal of Natural Medicines, vol. 74, no. 1,
pp. 275–281, 2020.

[16] J. Zhang, Z. Q. Tian, Y. Q. Ma et al., “Origin identifcation of
the sauce-favor Chinese baijiu by organic acids, trace ele-
ments, and the stable carbon isotope ratio,” Journal of Food
Quality, vol. 2019, pp. 1–7, 2019.

[17] H. W. Gu, X. L. Yin, T. Q. Peng et al., “Geographical origin
identifcation and chemical markers screening of Chinese
green tea using two-dimensional fngerprints technique
coupled with multivariate chemometric methods,” Food
Control, vol. 135, Article ID 108795, 2022.

[18] G. Elmasry, M. Kamruzzaman, D. W. Sun, and P. Allen,
“Principles and applications of hyperspectral imaging in
quality evaluation of agro-food products: a review,” Critical
Reviews in Food Science and Nutrition, vol. 52, no. 11,
pp. 999–1023, 2012.

[19] H. P. Huang, X. J. Hu, J. P. Tian et al., “Rapid and non-
destructive prediction of amylose and amylopectin contents in
sorghum based on hyperspectral imaging,” Food Chemistry,
vol. 359, Article ID 129954, 2021.

[20] X. L. Bai, C. Zhang, Q. L. Xiao, Y. He, and Y. D. Bao,
“Application of near-infrared hyperspectral imaging to
identify a variety of silage maize seeds and common maize
seeds,” RSC Advances, vol. 10, no. 20, pp. 11707–11715, 2020.

[21] Z. Z. Bai, X. J. Hu, J. P. Tian, P. Chen, H. B. Luo, and
D. Huang, “Rapid and nondestructive detection of sorghum
adulteration using optimization algorithms and hyperspectral
imaging,” Food Chemistry, vol. 331, Article ID 127290, 2020.

[22] C. Zhang, W. Y. Wu, L. Zhou, H. Cheng, X. Q. Ye, and Y. He,
“Developing deep learning based regression approaches for
determination of chemical compositions in dry black goji
berries (Lycium ruthenicum Murr.) using near-infrared
hyperspectral imaging,” Food Chemistry, vol. 319, Article
ID 126536, 2020.

[23] J. He, L. D. Chen, B. Q. Chu, and C. Zhang, “Determination of
total polysaccharides andtotal favonoids in Chrysanthemum
morifolium using near-infrared hyperspectral imaging and
multivariate analysis,” Molecules, vol. 23, no. 9, p. 2395, 2018.

[24] L. Zhang, Y. Q. Wang, Y. G. Wei, and D An, “Near-infrared
hyperspectral imaging technology combined with deep
convolutional generative adversarial network to predict oil
content of single maize kernel,” Food Chemistry, vol. 370,
Article ID 131047, 2022.

[25] X. Chu, R. Li, H. Y. Wei et al., “Determination of total fa-
vonoid and polysaccharide content in Anoectochilus

10 Journal of Food Quality

https://downloads.hindawi.com/journals/jfq/2023/6104038.f1.docx
https://downloads.hindawi.com/journals/jfq/2023/6104038.f1.docx


formosanus in response to diferent light qualities using
hyperspectral imaging,” Infrared Physics & Technology,
vol. 122, Article ID 104098, 2022.

[26] I. da Silva Lindemann, C. Lambrecht Dittgen,
C. de Souza Batista et al., “Rice and common bean blends:
efect of cooking on in vitro starch digestibility and phenolics
profle,” Food Chemistry, vol. 340, Article ID 127908, 2021.

[27] H. Q. Zhao, Z. B. Wang, Y. P. Sun, C. J. Yang, B. Y. Yang, and
H. X. Kuang, “Advances in isolation, identifcation and
bioactivity of Fritillaria polysaccharides,” Chinese Traditional
Patent Medicine, vol. 44, pp. 505–510, 2020.

[28] H. Lin, S. H. Gui, B. B. Yu, X. H. Que, and J. Q. Zhu, “Analysis
of polysaccharides and monosaccharides from Rehmannia
glutinosa by diferent processing technology and efects on
ovarian granulosa cells,” Chinese Traditional Patent Medicine,
vol. 41, pp. 2958–2963, 2019.

[29] I. Baek, H. Lee, B. K. Cho, C. Mo, D. E. Chan, and M. S. Kim,
“Shortwave infrared hyperspectral imaging system coupled
with multivariable method for TVB-Nmeasurement in pork,”
Food Control, vol. 124, Article ID 107854, 2021.

[30] W. D. Zhang, A. L. Cao, P. Y. Shi, and L. Y. Cai, “Rapid
evaluation of freshness of largemouth bass under diferent
thawing methods using hyperspectral imaging,” Food Control,
vol. 125, Article ID 108023, 2021.

[31] A. Borin, M. F. Ferrão, C. Mello, D. A. Maretto, and
R. J. Poppi, “Least-squares support vector machines and near
infrared spectroscopy for quantifcation of common adul-
terants in powdered milk,” Analytica Chimica Acta, vol. 579,
no. 1, pp. 25–32, 2006.

[32] W. Lan, S. Wang, Y. Wu et al., “A novel fuorescence sensing
strategy based on nanoparticles combined with spectral
splicing and chemometrics for the recognition of Citrus
reticulata ‘Chachi’ and its storage year,” Journal of the Science
of Food and Agriculture, vol. 100, no. 11, pp. 4199–4207, 2020.

[33] J. Ma and D. W. Sun, “Prediction of monounsaturated and
polyunsaturated fatty acids of various processed pork meats
using improved hyperspectral imaging technique,” Food
Chemistry, vol. 321, Article ID 126695, 2020.

[34] L. Yang, H. Q. Gao, L. W. Meng et al., “Nondestructive
measurement of pectin polysaccharides using hyperspectral
imaging in mulberry fruit,” Food Chemistry, vol. 334, Article
ID 127614, 2021.

[35] X. Li, F. Feng, R. Z. Gao et al., “Application of near infrared
refectance (NIR) spectroscopy to identify potential PSE
meat,” Journal of the Science of Food and Agriculture, vol. 96,
no. 9, pp. 3148–3156, 2016.

[36] E. Tamburini, E. Mamolini, M. De Bastiani, M. G. Marchetti,
and W. R. Seitz, “Quantitative determination of Fusarium
proliferatum concentration in intact garlic cloves using near-
infrared spectroscopy,” Sensors, vol. 16, p. 1099, 2016.

[37] N. Caporaso, M. B. Whitworth, and I. D. Fisk, “Total lipid
prediction in single intact cocoa beans by hyperspectral
chemical imaging,” Food Chemistry, vol. 344, Article ID
128663, 2021.

Journal of Food Quality 11




