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Mungbean (Vigna radiata L.) is one of the major legume crops containing high carbohydrate and protein contents. In this study,
the total phenolic and favonoid contents and ABTS/DPPH radical scavenging activity of whole sprouts and seed coats were
evaluated by using 10 mungbean genotypes with diverse seed coat colors and origins. Qualitative/quantitative analysis of in-
dividual secondary metabolites was performed with ultrahigh performance liquid chromatography (UPLC). Overall, 23 poly-
phenols, including favonoids, phenylpropanoids, and anthocyanins, were identifed. Depending on genotypes, signifcant
variations in the contents of each phytochemical were identifed before/after germination. Te results indicate that the specifc
pathways of phenolic compounds, including chlorogenic acid, coumestrol, genistein, and glycitein, are activated by sprouting in
mungbean. Te neo/chlorogenic acid contents had tissue specifcity, even though it was isomeric. Te anthocyanin contents were
higher in green and yellowmungbeans than in black mungbeans.Tese fndings in this study will provide valuable information to
improve the food quality of mungbean sprouts with high polyphenolic contents.

1. Introduction

Mungbean (Vigna radiata L.) is one of the major legume
crops with a high content of carbohydrates (50%–60%) and
proteins (20%–24%) [1, 2]. Mungbeans contain high levels of
antioxidant compounds, and the amount of functional
substances varies depending on the genotype [3, 4]. In
developing countries in Asia, mungbeans are one of the
essential resources for starch and protein. Additionally, the
consumption of mungbean sprouts has been increasing as
fresh vegetables worldwide [5]. Mungbean sprouts grow fast
and can be produced all year round, regardless of the en-
vironment. During germination, dynamic changes in phy-
tochemical composition and antioxidant capacity have been
reported in mungbean [6, 7]. Te ethanol extract of
mungbean sprouts has a higher amount of antioxidant
compounds than that of seeds [8].

Most of the polyphenolic compounds of mungbeans are
concentrated in the seed coats. Especially, the seed coat has
high contents of vitexin (95.6%) and isovitexin (96.8%)
[9, 10]. Vitexin and isovitexin have been reported to have

benefcial efects on human health, such as antidiabetic, anti-
infammatory, and antioxidant efects [11]. Te seed coat
colors of mungbean vary from yellow, green, and brown to
black. Diferences in the content of functional substances
lead to diferences in seed coat colors in legumes [12]. Many
studies have reported the diversities of functional substances
and antioxidant efects in soybeans according to their seed
coat colors. A high amount of anthocyanins was detected in
the black seed coat, but no anthocyanins were detected in the
yellow seed coat [13]. Black soybeans have been reported to
have a higher antioxidant capacity than yellow
soybeans [14].

Anthocyanins belong to the favonoid family and are
responsible for pigments in plant tissues, such as black, blue,
and red [15, 16]. Cyanidin, delphinidin, malvidin, pelar-
gonidin, peonidin, and petunidin have been detected as
anthocyanins in legumes [10, 17]. Tey are known to pos-
itively afect high antioxidant capacity and anticancer ac-
tivity in the human body [18, 19]. Black mungbean is known
to have a higher antioxidant capacity than green mungbean
[20]. Te presence of anthocyanin has been proposed as
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a possible reason for the higher antioxidant capacity, but
metabolic profling has not been conducted in mungbean
seed coats [21].

Tanks to advances in techniques for metabolite
analysis, metabolomics has been applied to physiology,
pathology, biology, and food science [22, 23]. A
metabolomics-based study has achieved great success in
addressing a series of issues in biological, biomedical, and
agricultural domains. Liquid chromatography (LC) for
quantitative and qualitative analysis has become one of the
most widely used approaches in metabolomics [22, 23]. In
mungbean, there have been few studies of secondary me-
tabolites, especially in the seed coat. In the current study,
the antioxidant capacity of 10 mungbean genotypes with
diverse seed coat colors was measured. Furthermore, in-
dividual polyphenol compounds of the seed coat and whole
sprout were analyzed through ultrahigh performance liquid
chromatography (UPLC). Te results of this study will
provide nutritional information on mungbean sprouts of
diferent genotypes with diverse seed coat colors. Fur-
thermore, LC-based metabolomic data can be powerful
information to identify genetic factors mediating the
biosynthetic pathways of phenolic compounds along with
an omics approach. Tese fndings will help improve the
food quality of mungbean sprouts with a high amount of
functional substances.

2. Materials and Methods

2.1. Sample Preparation. Mungbean sprouts were grown
according to the method proposed by [24] with some
modifcations [24]. Fifty seeds were cultivated for each
genotype. Mungbean seeds were rinsed three times with
distilled water and soaked in distilled water using an in-
cubator (JEIO TECH. ISS-4075R) under dark conditions at
37°C for 17 h. Te germinated seeds were cultivated for
3 days using a plant growth chamber (Sundotcom, ST001A)
at 28°C–30°C with an irrigation interval of 4 h and an ir-
rigation time of 2min (Figure S1). Mungbean sprouts of 10
genotypes cultivated for 3 days were dried at 70°C for 24 h in
the incubator (JEIO TECH, ISS-4075R). Ten, they were
fnely grounded. Te grounded samples were extracted at
100mg/mL (w/v) with 70% ethanol (Supelco, Cat. No.
1009831011) in the dark at room temperature (25°C) after
10minutes of sonication. Te extract was centrifuged at
13,000 rpm for 2min after 24 h. Te supernatant was fltered
through a 0.22 µm syringe flter. Each extract was diluted
with 70% ethanol to 1, 5, 20, and 50mg/mL for the assay of
antioxidant activity (ABTS and DPPH), total phenols, and
total favonoids, respectively.

Te seed coat was physically separated from the 50 seeds,
and 0.05 g of seed coats were used. Ten, the seed coat was
extracted at 50mg/mL (w/v) with 70% ethanol in the dark at
room temperature for 24 h. Each extract was diluted with
70% ethanol to 1, 1, 10, and 20mg/mL for the assay of
antioxidant activity (ABTS and DPPH), total phenols, and
total favonoids, respectively. All samples and compounds
are weighed using an electronic microbalance (Ohaus,
PX224KR, NJ, USA) (resolution: 0.1mg).

2.2. Phenotype Measurement. Phenotypic traits of mung-
bean sprouts were measured on the third day after germi-
nation (DAG). Fresh and dry weights were measured using
30 sprouts. Te yield of sprouts was measured as fresh
weight/seed weight× 100 (%). Te lengths of hypocotyl and
roots and the thickness of hypocotyl were measured using
ImageJ with the straight line and freehand line
functions [25].

2.3.Content ofTotal Flavonoids. Te total favonoids content
of extracts was determined according to the method pro-
posed by [24] with some modifcations [24]. Te extract
(500 μL) was mixed with 1M potassium acetate (FUJIFILM,
169–21965) (100 μL) and 10% aluminum nitrate non-
ahydrate (JUNSEI, 37350–1201) (100 μL). Quercetin (Sigma-
Aldrich®, Q4951) (0, 50, 100, and 200mg/L) was used as the
standard compound for the total favonoid assay. After
40min in the dark at room temperature, absorbance was
measured at 405 nm using a spectrophotometer (Termo
Scientifc MIB, Multiskan FC).

2.4. Content of Total Phenol. Te total phenolic content of
the extracts was determined according to the method
proposed by [26] with some modifcations [26]. Gallic acid
(Sigma-Aldrich®, G7384) (0, 50, 100, and 200mg/L) was
used as a standard material. Samples (100 μL) were mixed
with Folin-Ciocalteu (50 μL) and maintained at room
temperature for 3min. Ten, a 20% Na2CO3 solution
(300 μL) was added to the solution, which was left in the dark
for 15min at room temperature. Te reaction solution
volume was adjusted to 1mL with distilled water after
centrifugation at 13,000 rpm for 2min. Te absorbance of
the obtained supernatant was measured at 738 nm.

2.5. ABTS Radical Scavenging Assay. Te ABTS radical
scavenging assay was conducted according to [27] with
some modifcations [27]. Te ABTS radical cation (ABTS)
was produced by reacting a 7mMABTS solution dissolved
in distilled water with 2.45mM potassium persulphate in
a 1 : 1 ratio. Te ABTS solution was diluted with
phosphate-bufered saline to an absorbance of 0.7 (±0.03)
at 734 nm. Ascorbic acid (0, 1, 5, 10, 25, 50, and 100mg/L)
was used as the standard material. All samples (20 μL)
were mixed with ABTS solution (180 μL) and stored in
a dark place at room temperature for 10min. Te ab-
sorbance at 738 nm was measured for each sample using
a spectrophotometer.

2.6. DPPH Radical Scavenging Assay. A DPPH radical
scavenging assay was performed to measure the antioxidant
activity of the mungbean sprout and seed coat extract.
Antioxidant capacity was evaluated using an OxiTec™
DPPH Antioxidant Assay Kit (BIOMAX, BO-DPH-500).
Trolox (0, 40, 60, 80, and 100mg/L) was used as a standard
material. Assay bufer (80 μL) was added to Trolox (20 μL)
and extraction (20 μL) of the mungbean sprout and seed
coat.Te solutions were mixed with DPPH solution (100 μL)
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and stored in a dark place at room temperature for 30min.
Te absorbance at 517 nm was measured for each sample
using a spectrophotometer.

2.7. Analysis of Functional Substances by UPLC-PDA. Te
UPLC was conducted using a Shimadzu UPLC system
(Nexera series equipped with MPM-40, SCL-40, SPD-M40,
LC-40, SIL-40, and CTO-40 units from Shimadzu, Kyoto,
Japan) with a photodiode array (PDA) detector. Phenolic
and favonoid compounds were separated on a ZORBAX
SB-C18 column (3.5 μm, 4.6mm× 150mm; Agilent,
PN 863953-902). Te mobile phase gradients of ultrapure
water–0.1% acetic acid solution (v/v; solvent A) and ace-
tonitrile (solvent B) were fowed at 1mL/min as follows:
0–10min 95%–90% A, 10–11min 90%–85% A, 11–15min
85%–80% A, 15–16min 80%–70% A, 16–25min 70%–65%
A, 25–28min 65%–50% A, 28–32min 50% A, and 32.1min
solvent A was increased from 50% to 95%, 32.1–40min 95%
A. Separation of anthocyanin was performed on a ZORBAX
Eclipse XDB-C18 column (5 μm, 4.6mm× 150mm; Agilent,
PN 993967-902). Te mobile phase gradients of solvent A
and solvent B were fowed at 1mL/min as follows: 0–6min
100%–95% A, 6–18min: 95%–50% A, 18–23min 50% A,
23–25min: 50%–100% A, and 25–30min: 100% A. Te
column oven temperature was set as 40°C, and the injection
volume was 2 μL.Te analysis results were determined based
on standard calibration curves (10–100mg/L) with three
replicates. Te photon wavelength of the detector scan range
was set between 190 and 800 nm.

2.8. Statistical Analysis. Statistical comparisons were con-
ducted by one-way ANOVA and Duncan’s multiple range
test using the SPSS Statistics 25 (p < 0.05). All analyses were
performed in triplicate. Te results were expressed as the
mean± standard deviation.

3. Results

3.1. Mungbean Genotypes. In total, 10 mungbean genotypes
with various origins and seed coat colors were selected;
brown (Figures 1(a) and 1(b)), black (Figures 1(c) and 1(d)),
green (Figures 1(e)–1(h)), and yellow (Figures 1(i) and 1(j))
(Table 1). Te 100 seed weights of the 10 genotypes ranged
from 1.96 to 7.86 g (Table 1). Sprout yields varied from
897.99% to 1,836.28%. Te total length of the mungbean
sprout ranged from 1.82± 0.2 to 6.49± 0.31 cm on DAG 1,
from 5.9± 1.14 to 11.26± 0.23 cm on DAG 2, and from
11.42± 1.55 to 20.23± 1.66 cm on DAG 3, respectively
(Figures 2(a) and 2(b)). Te 100 seed weight was the highest
in V03720B-G (6) with 7.86 g, followed by V01946A-Y (10)
and Vo1301 (5), with 7.8 and 6.1 g, respectively. JP103138-2
(4) and V01946A-Y (10) had the highest yields of 1,836.28%
and 1,714.74%, respectively. Tere was no signifcant re-
lationship between the weight of 100 seeds and yields. Te
thickness of hypocotyl ranged from 0.15± 0.01 to
0.26± 0.02 cm on DAG 1, from 0.19± 0.01 to 0.264± 0.01 cm
on DAG 2, and from 0.2± 0.001 to 0.31± 0.01 cm on DAG 3,
respectively (Figure 2(c)).

3.2. Contents of Biochemical Compounds and Antioxidant
Capacity in theSeedCoatsofMungbeans. Te seed coats were
isolated from seeds of 10 genotypes to determine the an-
tioxidant activity of the seed coat. Te total favonoid
contents ranged from 1.14± 0.05 to 2.5± 0.13mg/g, and total
phenol content ranged from 8.87± 0.06 to 15.79± 0.01mg/g
(Figures 3(a) and 3(b)). ABTS radical scavenging activity had
a minimum of 33%± 0.02% and a maximum of
55%± 0.002% antioxidant activity (Figure 3(c)). In the
DPPH radical scavenging activity, the minimum and
maximum values were 38%± 0.03% and 62%± 0.007%, re-
spectively (Figure 3(d)).

Te highest total favonoid content was in JP229099 (7)
(2.57± 0.13mg/g). Total phenol content was highest in
JP103138-2 (4) (15.79± 0.01mg/g) and Vo5551 (8)
(15.75± 0.03mg/g). ABTS radical scavenging activity
showed the highest values in Vo1301 (5) (53%± 0.02%) and
JP229099 (7) (55%± 0.002%). Vo555 1(8) had the highest
DPPH radical scavenging activity, reaching 62%± 0.007%.
V03720B-G (6) had the lowest antioxidant activity among
the 10 genotypes analyzed.

3.3. Content of Biochemical Compounds and Antioxidant
Capacity in Mungbean Sprouts. Te total favonoids, phe-
nolic compounds, and antioxidant capacity in whole sprouts
were measured in the 10 genotypes analyzed. Te total
favonoid content varied from 0.54± 0.02 to 0.91± 0.05mg/
g, and the total phenol content varied from 11.68± 0.1 to
14.44± 0.13mg/g (Figures 4(a) and 4(b)). ABTS radical
scavenging activity ranged from 24%± 0.004% to
35%± 0.01% antioxidant activity, and the DPPH radical
scavenging activity for measuring antioxidant activity
ranged from 16%± 4% to 25%± 3% (Figures 4(c) and 4(d)).

Te total favonoid content was 0.86± 0.02mg/g in
Tecer-Hitam (2), 0.91± 0.05mg/g in JP103138-2 (4), and
0.86± 0.03mg/g in V03720B-G (6), which was signifcantly
higher than those of the other genotypes. Tecer-Hitam (2)
had the highest total phenol content of 14.44± 0.13mg/g.
Te DPPH radical scavenging activity of JP103138-2 (4) was
25%± 3%, and the ABTS radical scavenging activity of
Tecer-Hitam (2) was 35%± 0.01%, the highest value. Tecer-
Hitam (2), a black mungbean, contained the largest amounts
of biochemical compounds and has high antioxidant ac-
tivity. Vo1301 (5) had the lowest favonoid content and
DPPH radical scavenging activity. It was shown in our re-
sults that antioxidant capacity had no signifcant association
with the seed coat color, but there were signifcant variations
among the 10 mungbean genotypes analyzed.

3.4. UPLC Analysis. Te content of the biochemical com-
ponents in the seed coat was measured using UPLC. In total,
23 secondary metabolites, including biochanin A, cafeic
acid, catechin, chlorogenic acid, coumestrol, daidzein,
daidzin, formononetin, gallic acid, genistein, genistin, gly-
citein, glycitin, isovitexin, kaempferol, myricetin, neo-
chlorogenic acid, p-coumaric acid, quercetin, resveratrol,
syringic acid, t-ferulic acid, and vitexin, were used as
standard materials. Out of 23 polyphenols, favonoids (e.g.,
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catechin, isovitexin, myricetin, quercetin, and vitexin),
isofavonoids (e.g., biochanin A, coumestrol, daidzein,
daidzin, genistein, genistin, glycitein, and glycitin), phe-
nylpropanoids (e.g., cafeic acid, chlorogenic acid, neo-
chlorogenic acid, p-coumaric acid, and t-ferulic acid), and
other phenols (e.g., gallic acid, resveratrol, and syringic acid)
were identifed and quantifed. Of the 21 polyphenols de-
tected, syringic acid and glycitin were detected only in the
seed coat, and glycitein, genistein, chlorogenic acid, t-ferulic
acid, and coumestrol were detected only in sprouts. Vitexin,
isovitexin, and myricetin were detected in much higher
concentrations than the other secondary metabolites in the
seed coat. Te ranges of each compound detected in the seed
coat were as follows: vitexin (3,812.76± 71.15
–8,390.86± 96.96mg/100 g), isovitexin (4,613.38± 50.36
–9,572.42± 25.19mg/100 g), and myricetin (454.93± 2.03
–1,031.82± 3mg/100 g) (Table S1). In whole sprouts, cate-
chin and chlorogenic acid were the most abundant sec-
ondary metabolites detected. Te ranges of each compound
in the whole sprout were as follows: catechin
(519.79± 2.45–1,415.34± 15.99mg/100 g) and chlorogenic
acid (613.73± 2.08–1,520.13± 13.42mg/100 g) (Figures 5
and S2).

3.5. AnthocyaninAnalysis. For the detection of anthocyanin
components, peonidin-3-O-glucoside (Peo-3-G), delphini-
din-3-O-glucoside (D-3-G), pelargonidin-3-O-glucoside
(Pel-3-G), and cyanidin-3-O-glucoside (C-3-G) were used
as standard materials. Only C-3-G and Pel-3-G were pre-
dominantly detected in all 10 genotypes analyzed. For C-3-G
and Pel-3-G, the minimum values were 14.72± 0.36 and
79.75± 2.78mg/100 g, respectively, and themaximum values
were 44.79± 0.87 and 297.59± 8.79mg/100 g, respectively
(Figures 6(a) and 6(b)).

4. Discussion

Legumes are popular foods in daily diets consumed
worldwide [24]. Seeds and legume sprouts are good sources
of protein, dietary fber, starch, vitamins, and antioxidant
compounds, including phenols and favonoids [26]. Flavo-
noids, powerful hydrogen-donating antioxidants, are the
single group of phenolic phytochemicals. Flavonoids, such
as daidzein and genistein, protect cells against oxidative
damage and have anticancer activity [28–30]. Large amounts
of vitexin and isovitexin have been reported in ethanol
extracts of mungbean seeds, having high antioxidant and

Figure 1: Seeds of 10 mungbean genotypes with diferent seed coat colors. (a) Damyang, Jeollanam-do-1994231, (b) Tecer-Hitam,
(c) JP229177, (d) JP103138-2, (e) Vo1301, (f ) V03720B-G, (g) JP229099, (h) Vo5551, (i) yellow gram, and (j) V01946A-Y.

Table 1: List of mungbean genotypes. Te yield was measured at 100 seed weight and the fresh weight of the sprouts.

No. Accession name Origin∗ Color Seed luster 100 seeds
weight (g) Yield (%)

1 Damyang, Jeollanam-do-1994 3231 KOR Black Dull 1.96 939.80
2 Tecer-Hitam IDN Black Dull 4.3 1,617.80
3 JP229177 IND Black Shine 3.22 1,699.90
4 JP103138-2 PAK Black Shine 3.48 1,836.28
5 Vo1301 CHN Green Dull 6.1 1,516.39
6 V03720B-G USA Green Dull 7.86 1,633.59
7 JP229099 THA Green Shine 3.79 1,514.28
8 Vo5551 IRN Green Shine 2.96 897.99
9 Yellow gram UNK Yellow Shine 5.14 1,693.75
10 V01946A-Y PHL Yellow Shine 7.8 1,714.74
∗CHN, China; IDN, Indonesia; IND, India; IRN, Iran; KOR, Korea; PAK, Pakistan; PHL, Philippines; THA, Tailand; UNK, United Kingdom; USA,
United States of America.
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antiobesity efects [31]. DPPH radical scavenging activity
was higher in mungbean sprouts than in soybean
sprouts [27].

In the present study, the chemical properties of 10
mungbean genotypes with various seed coat colors were
investigated. Several phenolic compounds were detected in
the whole sprout and the seed coat, which have been well
known to beneft human health, including catechin,
chlorogenic acid, iso/vitexin, and resveratrol. Catechin has
been reported to have antioxidant, anticancer, anti-
infammatory, and antiaging efects [32]. Resveratrol has
been reported to have antiobesity efects, and chlorogenic
acid could reduce the incidence of colorectal cancer by 70%–
80% [33, 34].

In both ethanol extracts of the seed coat and whole
sprout, the amount of individual phenolic compounds
varied signifcantly depending on genotypes. Te seed coat
extracts had much higher total phenols and favonoid
contents than whole sprout extracts, leading to a higher
antioxidant capacity. Tis result is consistent with previous
fndings that most phenolic compounds were concentrated
in the mungbean seed coat [24, 35].

Among the 21 phytochemicals detected, glycitin, iso-
vitexin, myricetin, neochlorogenic acid, syringic acid, and
vitexin were identifed mainly from the seed coat. In con-
trast, 10 chemicals were primarily detected from the whole

sprout, including biochanin A, catechin, chlorogenic acid,
coumestrol, daidzein, glycitein, genistein, genistin, t-ferulic
acid, and quercetin. As studied previously, vitexin and
isovitexin, the major antioxidants identifed in mungbean,
were identifed only in the seed coat (Figure 5) [36].
Chlorogenic acid and neochlorogenic acid were mainly
detected in the whole sprout and the seed coat, respectively,
even though they were isomeric. Neo/chlorogenic acids have
been well known to lead to the anticancer efect of cofee
[33]. In, the contents of cytokinin isomers also vary
depending on tissues [37]. Tese results indicate that iso-
mers of secondary metabolites have tissue specifcity in
mungbean.

In the isofavonoid biosynthetic pathway, glycitin was
detected only in the seed coat, whereas glycitein, a precursor
of glycitin, was identifed only in the whole sprout [38]. In
soybean, glycitin and glycitein had been reported to be
decreased and increased, respectively, during germination
[39]. Also, in mungbean, glycitin had been reported to be
decreased after germination [40]. Tese fndings indicate
that the biosynthesis of glycitin may be blocked, which is
catalyzed by isofavone 7-O-glucosyltransferase (EC:
2.4.1.170), and glycitein accumulates since germination
starts in mungbean (Figures 5 and 7) [38]. Coumestrol and
daidzin share a precursor of daidzein, which is detected on
both seed coats and sprouts. However, coumestrol was
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Figure 5: Metabolomic analysis of mungbean sprouts and seed coats. X and y axes indicate genotype and concentration of metabolites
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identifed only in the whole sprout. Additionally, the con-
tents of daidzein were much higher in the whole sprouts
than in the seeds. Mungbean sprouting may activate the
biosynthesis of coumestrol, which has not been fully un-
derstood as one of the end products of isofavonoid bio-
synthetic pathways [41]. Daidzin was detected on the seed
coat and whole sprout and had no clear trend (Figures 5 and
6). Tese fndings indicate that germination causes dynamic
changes in the metabolic pathways in mungbean and

provides information to understand the biosynthetic path-
ways of nutritionally valuable phytochemicals. For the
validation of the fndings in this study about the biosynthetic
pathways of secondary metabolites, the expression levels of
the candidate genes encoding key enzymes in the pathways
are required to be measured through quantitative real-time
PCR or RNA sequencing technology. Tere have been a few
transcriptomic studies for secondary metabolites in
mungbeans. Under salinity stress, the contents of secondary
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metabolites and antioxidant capacity were improved in
mungbean sprouts, and key genetic factors had been
identifed through RNA-sequencing technology [42]. Along
with LC-based metabolomics data, such an integrated omics
approach can be a powerful tool to identify genetic factors
mediating the biosynthetic pathways of functional
substances [43].

A qualitative-quantitative analysis of individual antho-
cyanins was conducted in the mungbean seed coat. In the
seed coat of black soybean, fve anthocyanins, including
delphinidin 3-O-glucoside (Del-3-G), cyanidin 3-O-
galactoside (C-3-Gal), cyanidin 3-O-glucoside (C-3-Glu),
petunidin 3-O-glucoside (Pet-3-G), and peonidin 3-O-
glucoside (Peo-3-G), were detected [44]. In the current
study, only Pel-3-G and C-3-Glu were predominantly de-
tected in all 10 genotypes (Table S1). In a previous study, C-
3-Glu and Pel-3-G were detected only in black mungbean
and not in green mungbean [18]. However, in the present
study, the highest C-3-Glu and Pel-3-G were detected in
Vo1301 (5) and yellow gram (9) genotypes with green and
yellow seed coats, respectively. Unlike soybeans, our results
indicate no signifcant correlation between the contents of
anthocyanins and seed coat color in mungbean. Instead,
syringic acid was quantifed only in the seed coats of two
genotypes, Damyang, Jeollanam-do-1994 3231 (1) and
Tecer-Hitam (2), with brown seed coats (Table S1). Poly-
merization of gallic acid and syringic acid has been reported
to confer brown pigmentation [45]. In general, the content
of gallic acid in seed coats was also higher in brown or black
seeds than in green or yellow seeds (Table S1). Tese results
indicate that gallic acid and syringic acid might be the
leading causes of seed coat color in mungbean and not
anthocyanins.

Te contents of total phenols, total favonoids, and
antioxidant activity had no signifcant correlation with seed
coat color and origin. In contrast, the accumulation of in-
dividual polyphenolic compounds had tissue and genotype
specifcity in mungbeans. Our fndings indicate that
mungbean sprouts and seed coats should be consumed for
the synergistic efect of mungbean intake. Although to
identify candidate key genes regulating the contents of the
target secondarymetabolites, further transcriptomic analysis
is required, the biochemical features identifed in this study
will help understand the biosynthetic pathways of phyto-
chemicals and the nutritional values in mungbean sprouts
and seed coats [42, 46]. Tese fndings will provide valuable
information for molecular breeding to develop mungbean
cultivars for sprout production with high polyphenol con-
tent accompanying benefcial efects on human health.

5. Conclusions

Antioxidant activity and the contents of individual sec-
ondary metabolites of whole sprouts and seed coats were
evaluated using 10 mungbean genotypes with diverse seed
colors and origins in this study. Tis study was developed to
provide nutritional information for mungbean sprouts from
diferent genotypes with diferent seed coat colors.
Depending on genotypes, signifcant variations in the

contents of each phytochemical were identifed before/after
germination. Individual polyphenolic compounds had tissue
and genotype specifcity in mungbean. Tese fndings will
provide valuable information for molecular breeding to
develop mungbean cultivars with high polyphenol content
for sprout production.
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